
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning Audio-Visual Dynamics Using Scene Graphs for
Audio Source Separation

Chatterjee, Moitreya; Ahuja, Narendra; Cherian, Anoop

TR2022-140 November 02, 2022

Abstract
There exists an unequivocal distinction between the sound produced by a static source and
that produced by a moving one, especially when the source moves towards or away from the
microphone. In this paper, we propose to use this connection between audio and visual dy-
namics for solving two challenging tasks simultaneously, namely: (i) separating audio sources
from a mixture using visual cues, and (ii) predicting the 3D visual motion of a sounding
source using its sepa- rated audio. Towards this end, we present Audio Separator and Motion
Predictor (ASMP) – a deep learning framework that leverages the 3D structure of the scene
and the motion of sound sources for better audio source separation. At the heart of ASMP is
a 2.5D scene graph capturing various objects in the video and their pseudo-3D spatial prox-
imities. This graph is constructed by registering together 2.5D monocular depth predictions
from the 2D video frames and associating the 2.5D scene regions with the outputs of an object
detector applied on those frames. The ASMP task is then mathematically modeled as the
joint problem of: (i) recur- sively segmenting the 2.5D scene graph into several sub-graphs,
each associated with a constituent sound in the input audio mixture (which is then separated)
and (ii) predicting the 3D motions of the corresponding sound sources from the separated au-
dio. To empirically evaluate ASMP, we present experiments on two challenging audio-visual
datasets, viz. Audio Separation in the Wild (ASIW) and Audio Visual Event (AVE). Our
results demonstrate that ASMP achieves a clear improvement in source separation quality,
outperforming prior works on both datasets, while also estimating the direction of motion of
the sound sources better than other methods.
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Abstract

There exists an unequivocal distinction between the sound produced by a static
source and that produced by a moving one, especially when the source moves
towards or away from the microphone. In this paper, we propose to use this
connection between audio and visual dynamics for solving two challenging tasks
simultaneously, namely: (i) separating audio sources from a mixture using visual
cues, and (ii) predicting the 3D visual motion of a sounding source using its sepa-
rated audio. Towards this end, we present Audio Separator and Motion Predictor
(ASMP) – a deep learning framework that leverages the 3D structure of the scene
and the motion of sound sources for better audio source separation. At the heart
of ASMP is a 2.5D scene graph capturing various objects in the video and their
pseudo-3D spatial proximities. This graph is constructed by registering together
2.5D monocular depth predictions from the 2D video frames and associating the
2.5D scene regions with the outputs of an object detector applied on those frames.
The ASMP task is then mathematically modeled as the joint problem of: (i) recur-
sively segmenting the 2.5D scene graph into several sub-graphs, each associated
with a constituent sound in the input audio mixture (which is then separated) and (ii)
predicting the 3D motions of the corresponding sound sources from the separated
audio. To empirically evaluate ASMP, we present experiments on two challenging
audio-visual datasets, viz. Audio Separation in the Wild (ASIW) and Audio Visual
Event (AVE). Our results demonstrate that ASMP achieves a clear improvement in
source separation quality, outperforming prior works on both datasets, while also
estimating the direction of motion of the sound sources better than other methods.

1 Introduction
Events around us are often audio-visual in nature and our senses have evolved to leverage this
multimodal synergy to better reason about the world. For example, the sight of a kid laughing aloud
while sliding down a slide allows us to associate the laughing sound with the kid and get a sense
of his/her direction of motion, even when a myriad of other sounds are present in the scene. In this
paper, we propose to leverage this synergy between sight and sound for solving two challenging tasks
simultaneously, viz.: (i) separating audio sources from a mixture using visual cues, and (ii) the novel
task of predicting the 3D visual motion of the sounding source using its corresponding separated
audio.

Typical approaches to visually-guided audio source separation use weakly- or self- supervised
models trained to separate a mixture of acoustic sources into its constituents by conditioning on
appropriate visual regions [8, 14, 48, 57, 58]. Such approaches impose constraints on the space of
the separated audio (e.g., cyclic consistency, object identifiability, etc.) to derive gradients for training
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the underlying neural models. A few of such methods additionally seek to ground the separated audio
with the appearance of the sounding object [8, 14, 48]. Chatterjee et al. [8], construct a 2D scene
graph on the video frames to capture the visual context of the audio source for better separation; their
key intuition being that certain sounding objects (e.g., a guitar) cannot produce the sound by itself, but
must have a suitable spatial context around them (e.g., a person). However, all the above approaches
ignore one key aspect of the physical world – that it is three dimensional and this 3D structure
influences the sound being heard. For example, if a person playing a guitar is spatially distant from
the microphone, then the audio mixture to be separated is unlikely to have the sound of that guitar.
Further, the 3D scene structure also allows for incorporating the motion of sounding objects. Imagine
the whistling of a train moving towards you. There is an inevitable relationship between the evolution
of the sound of the train being heard and its 3D motion, which can help distinctly separate its sound
from other whistling trains or background clamour and vice-versa. Thus, if the audio of this train
is well-separated via visually-guidance, then the separated audio must also be able to predict the
direction of the train’s motion. Leveraging these insights, we present Audio Separator and Motion
Predictor (ASMP) – an innovative graph neural network for video-guided audio source separation
from an acoustic mixture that can also predict the direction of motion of the sound source.

Inspired by Cherian et al. [9], our ASMP framework begins by computing a dense 2.5D representation
of the frames of a video where 2.5D refers to the 2D visual context of the frames enriched with the
pseudo-depth for that frame produced using a 2D-to-3D monocular depth prediction method [41].
Next, we succinctly capture the semantic context of this 2.5D visual scene by means of a novel
2.5D scene graph representation. The nodes of this scene graph capture the various objects in the
scene (projected onto the pseudo-3D scene via the depth map), while the graph edges characterize
the approximate 3D spatial distances between the objects. Note that our graph does not explicitly
capture any spatio-temporal dynamics of the scene objects, instead is constructed on singleton frames.
To achieve audio source separation, we propose a recurrent graph neural network that is trained to
segment this 2.5D scene graph into sub-graph embeddings; each of which is trained to be associated
with a potentially unique sounding object or interaction and is used to induce separation of that
sound source from the audio mixture. During training, we enforce this uniqueness via imposing
orthogonality constraints between the generated sub-graph embeddings. To make ASMP associate
the evolution of sound with the 3D motions of their sources, we propose to include an auxiliary task
that demands the prediction of the 3D direction of motion of a sounding object from its separated
audio, where the ground truth 3D motion is estimated from the 2.5D scene graph using optical flow.

A natural question one may have at this point is: how can a method predict the 3D motion from
monaural audio using a 2.5D scene graph constructed on a single video frame? The key insights
come from two observations: (i) there are often implicit object motion cues present in singleton
video frames, such cues may be embedded within the scene graph node features (e.g., a graph node
corresponding to a train may have the inductive priors suggesting the train is moving in the direction
it faces), and (ii) when the audio is separated via visual-guidance, these implicit features modulate
the audio separation masks, thereby incorporating motion cues into the separated audio spectrograms.
Thus, when trained end-to-end for the joint task of sound separation and motion prediction, the model
leverages on these implicit cues to minimize the learning objective.

To demonstrate the efficacy of ASMP on the dual tasks of sound source separation and motion
direction prediction, we present experiments on two challenging datasets, namely (i) Audio Separation
in the Wild (ASIW) [8] and (ii) Audio Visual Event (AVE) [49]. Both of these datasets feature
videos of sounding objects and sounding interactions in the wild. Our results clearly show that
ASMP outperforms competing prior methods on both these datasets as well as on both the tasks,
underscoring the importance of incorporating 3D spatial structure and the benefits of learning audio-
visual dynamics.

Below, we summarize the key contributions of the paper:

• We introduce a novel 3D geometry-aware scene graph representation [22] for visually-
guided audio source separation, called ASMP.

• We introduce a novel task of predicting 3D motion direction of a sound source in the scene
from the the temporal evolution of the sound it makes, aided by appropriate visual context,
and use it to improve audio separation.

• ASMP demonstrates state-of-the-art audio source separation and motion prediction perfor-
mances on two challenging datasets for this task, viz. ASIW and AVE.
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Figure 1: A detailed illustration of our proposed ASMP model.

2 Related Works

Visually-guided Audio Source Separation is the task of separating a mixture of audio signals
into its constituent sources by discovering the association between the separated sound sources and
their visual appearances in the physical world. Typical methods for solving this task find a wide
range of real-world applications, such as separating sounds of musical instruments [14, 12, 57, 58],
separating speech signals [1, 11, 35], and separating on-screen sounds from off-screen ones for
generic objects [38, 50]. A learning pipeline often used to train such methods conditions a sound-
separation network (such as a U-net [43]) with an appropriate visual object representation, to induce
a source separation on a mixed audio input, obtained by mixing the audio streams of two different
videos. In recent years, research in this area has moved from using global visual features of motion
and appearance [57] towards extracting very fine-grained visual conditioning information to induce
more effective separations [14, 48]. Additional refinement steps have also been explored [8] to ward
off potential false separation triggers. However, none of these approaches factor the 3D geometry of
the scene captured by the video – an important gap that we attempt to fill using ASMP.

Localizing Sound in Video Frames has been attempted in several recent methods by learning to
ground the sound source in the visual space, e.g., identifying the pixels of the sound source [4, 18,
23, 44, 48]. While, these approaches strive to learn the association between the visual appearance
and acoustic signatures of sound sources, they do not apply such methods to audio source separation –
a task that is the focus of this work.

Sound Synthesis from Videos constitutes another category of important techniques in the audio-
visual realm [39, 59] that has become popular lately. Towards this end, several approaches have
recently been proposed for the task of generating both monaural and binaural audio starting from
videos [13, 36, 55, 29]. However, differently, we seek to solve the task of sound source separation
and motion prediction in the visual space.

Application of Scene Graphs to Videos has resulted in massive strides in video understanding
tasks. Scene graphs, while traditionally used for capturing the static content of images [22, 30] have
lately been used for several video understanding tasks. For instance, Ji et al. [21] applied them for
action recognition, Geng et al. [15] for visual dialog, and Chatterjee et al. [8] for visually-guided
sound-source separation. However, their scene graphs are usually 2D, while we attempt to explicitly
incorporate the 3D scene geometry into the scene graphs. While, Cherian et al. [9] proposes (2.5+1)D
scene graphs for video question answering, our task of audio separation and motion prediction brings
in several novel components beyond their setup.

Audio Separation Using Direction of Arrival has been an important topic of recent interest in the
audio research community [54, 33, 37, 46], where the direction of arrival of sound to a microphone
array is explicitly used for improved sound source separation. While, our approach is inspired by
their key findings, we attempt to explore this in the audio-visual domain.
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Figure 2: A step-wise illustration of the pseudo-3D scene graph construction process on an example
frame from an ASIW video. We show the original (reference) frame, its predicted monocular 3D
depth map, its optical flow estimate with an adjacent frame, and a pseudo-3D scene graph for the
frame. The highlighted part of the graph (blue edges) is the sub-graph associated with the sound of
the horse’s motion, while the black-arrow denotes the motion direction of the horse in pseudo-3D
space. Note that the motion direction is not used in our graph embeddings, instead provides ground
truth guidance when minimizing our losses.

3 Proposed Method
3.1 Task Setup and Method Overview
Let V denote an unlabeled video, and m(t) =

∑N
i=1 ai(t) be its accompanying discrete-time audio

arising from a linear mixture of N acoustic sources ai(t). The main goal of visually-guided audio
source separation is to use cues derived from V to induce a separation of m(t) into its constituent
acoustic sources ai(t), for i ∈ {1, 2, . . . , N}. For effectively capturing the audio-visual semantic
alignment, we represent the video V as a scene graph G = (V, E) with nodes V = {n1, n2, . . . , nK}
denoting the objects in V and E capturing the set of edges eij characterizing the spatial proximity
of a pair of nodes (ni, nj). The key idea in our proposed Audio Separator and Motion Predictor
(ASMP) framework is to map each of the acoustic sources ai(t) to a sub-graph of G. We realize this
mapping by auto-regressively partitioning the graph G into mutually-orthogonal neural embeddings
and using these embeddings to condition an Acoustic Separator sub-network tasked with extracting
a sound source ai(t) from the mixture m(t). A key ingredient in our model is equipping the audio
separator to also predict the direction of motion of the sounding object. We incorporate this ability by
including a direction prediction training loss. Figure 1 provides an overview of our model and the
details follow.

3.2 Estimating Ground Truth Sound Source Motion
One novel aspect of ASMP is that it can predict the motion direction of a source from its sound,
which in turn is derived from an embedding of a sub-graph of G. However, the ground truth for
this task is not directly available from the 2D frames of a given video. In the following, we detail
the pre-processing steps for estimating this ground truth, and present an overview of these steps
in Figure 2. We denote a motion displacement vector, as di for the source ai(t), which will be
subsequently used as an auxiliary cue to train the audio source separator.

Computing Pseudo-Depth Maps: Constructing a 3D scene from 2D images is a classic problem
explored in computer vision for which a variety of solutions exist [2, 16]. However, many of these
methods make strong assumptions, such as: (i) the scene being static, (ii) existence of sufficient
overlap between the frames, or (iii) knowledge of the intrinsic parameters of the camera, none of
which might hold for the type of videos that are typically used in our task. To this end, we propose
to build upon the recent progress made in monocular 3D reconstruction realm towards mapping
each video frame Ff of V into a 2.5D pseudo-depth image [56]. In particular, we use the MiDAS
algorithm [41] because of its ease-of-use and accuracy of depth predictions.

Rectifying Frames for Camera Motion: Since we do not assume that the frames in V have been
captured by a static camera, we next align them to a common 3D reference frame Fr. To this end,
we apply the classic Lucas-Kanade tracker [32] across the frames. As there may be objects moving
out of the scene or shot-switches in the video, we found that tracking the static objects in the video
typically does not sustain its full length. Thus, we group the frames into fixed-size windows, each
with a maximum of ℓ continuous frames. A video can therefore, be considered as a collection of
W windows, with each window producing its own motion displacement vector. This consequently
also implies that our frames are aligned (rectified) within their respective windows. Concretely, let x
denote a tracked point, in pseudo 3D, within a window. Suppose xf ∈ R3 and xr ∈ R3 be the 3D
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coordinate corresponding to x in Ff and that in the reference frame Fr, respectively. Then, using the
full set of such tracked points in this window, we rectify Ff to Fr by estimating a 3D transformation
matrix, accurate upto a scale, using the iterative closest point (ICP) algorithm [6]. Once the target
frame Ff has been rectified, we also rectify its corresponding pseudo-depth map using the same
transformation matrix.

Visual Detection of Sound Sources: To construct our scene graph, we first use a Faster-RCNN
(FRCNN) [42] model for detecting a set of M objects and their 2D spatial bounding boxes in the
reference frame Fr of a window. The detection model is trained (on the Visual Genome dataset [27])
to recognize and localize 1600 commonplace object classes. However, some of the data that we use in
our experimental study consists of sound producing objects that are not in the Visual Genome classes
list. To accommodate such classes (e.g., musical instruments), we use a separate FRCNN model
pre-trained on images annotated with these classes in the Open Images dataset [26]. Let C denote
the set of all detectable classes by either of these two detectors. For a frame Fr, the FRCNN model
produces a set of M quadruples:

{(
Ci

r, B
i
r, F

i
r , S

i
r

)}M

i=1
= FRCNN(Fr), one for each detected

object, consisting of the label C ∈ C of the detected object, its bounding box B in the frame, a feature
vector F characterizing the visual appearance of the object, and a detection confidence S.

Tracking a Sound Source: In order to robustly track the visual trail of a potential sound source
between a reference frame Fr and a target frame Ff , we employ RAFT [47] – an off-the-shelf
state-of-the-art robust optical flow method. RAFT yields a dense optical flow field for each pixel
in the reference frame. We filter this flow field using the bounding boxes Bi

r, and associate it with
the i-th detected sounding object. Next, we base the flow field in a 3D coordinate space using the
estimated pseudo-depth map associated with the respective frames; thus allowing for the recovery of
the motion track of the sounding object in a pseudo-3D space.

Estimating the Ground-Truth Displacement Vector: Our proposed flow-based tracking method
yields numerous displacement vectors (one for each pixel) within a detected object bounding box,
this box corresponding to a potential sound source in the reference frame Fr. However, as alluded to
above, we envisage representing a scene succinctly using a scene graph with each node capturing a
single motion vector. To this end, we summarize the flow field associated with a detection box using
its median; thus charaterizing the 3D displacement di of that object in that window.

3.3 Constructing the Pseudo-3D Visual Scene Graph
With the object detections in place, as described above, we now proceed to construct the Pseudo-3D
Visual Scene Graph for V . While, for most of the prior approaches [15, 21], all detected objects
are trivially added to the graph as nodes, our use-case of sound source separation dictates that
the constructed graph permits the learning of correlations between appropriate subgraphs and the
separated audio sources. Towards this end, each sound source in a dataset is associated with a set
of objects in the visual domain (i.e., from the set of classes C of FRCNN) which we call Auditory
Objects and which could potentially create sound. For instance, a crying sound could arise from
classes such as kid, baby, etc. Let us denote an auditory object by p, where p ∈ C . The entire video
V could then be thought of as a collection of auditory objects, P = {p1, . . . , pN}, which together
generate the mixed audio m(t). For each of these auditory objects pi, we identify the subset Vpi of
M − N objects that are non-auditory and overlap with pi with an Intersection Over Union (IoU)
greater than a pre-defined threshold γ. These objects are called Context Objects. The vertex set V of
the graph G associated with the video V is then constructed as V =

⋃N
i=1({pi}

⋃
Vpi

).

Next, we describe the process of constructing the edge set E of the graph G. While prior approaches
that use scene-graphs, typically either design dense fully-connected scene-graphs with equal edge
weights [8] or deploy a visual relationship detector [15], nonetheless they do not usually embody
any 3D scene geometry. Instead in ASMP, we propose to mitigate this shortcoming by computing
the edge weights from the pseudo-3D scene we constructed above. To this end, we first extract
3D point clouds for every object i in frame Fr by leveraging the rectified pseudo-depth map. Let
Qi (for i = 1, 2, . . .M ) denote the pseudo 3D point cloud of all pixels associated with node ni

within its corresponding FRCNN bounding box. Note that each point xQi
r ∈ Qi is a 3D vector with

pixel-normalized xy coordinates and their pseudo-depths. To define the spatial proximity between
two nodes ni and nj , we compute the symmetrized Chamfer distance (Dij) [5] between every pair
of points in xQi

r and xQj
r . These distances are then normalized to be within [0, 1] by dividing by the

maximum value over all edges in E and are used to create a weighted-adjacency matrix defining the
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graph edges E by using a radial basis function on the Chamfer distance matrix, i.e., the weight of
an edge eij = exp(

−Dij

σ2 ), for a suitable scale σ, set in our experiments as the 25th percentile of the
entries in the distance matrix.

Visual Encoding of Sounding Interactions: The scene graph G is a spatio-semantic summary of the
visual information in V and is the visual analogue to the mixed audio m(t) accompanying V . For the
purposes of our task, we are interested in extracting appropriate subgraphs of G that are capable of
inducing a separation of m(t) into its constituents ai(t) for i = {1, 2, . . . , N}. This is accomplished
by employing a recurrent graph attention to segment the graph G into sub-graphs. To segment the
graph G, we first employ a multi-headed graph attention network [51] which operates on the features
associated with the scene graph nodes and performs multi-head graph message passing. This allows
ASMP to incorporate the spatial scene geometry (from edge weights) and scene context from the
neighbors of an auditory node for characterizing the visual representation of a sound source. For
capturing the visual representation of interactions (between objects) that produce a sound, we design
an edge convolution network [53], the features from which are then simultaneously pooled with the
graph attention features using global max-pooling and global average pooling [28] and concatenated.
This results in an embedding vector ζ for the entire graph. Since we need to extract separate sub-graph
embeddings to induce a separation of the sound mixture into N sources, we employ a gated recurrent
unit (GRU), to recursively extract visual feature vectors Y = {y1,y2, . . . ,yN} from ζ. We noticed
that extracting a separate background sound from every mixture helps. Thus, our GRU is executed
for N + 1 steps, rather than N .

To ensure that the extracted graph embeddings Y from the GRU do not repeat a sub-graph, we enforce
mutual orthogonality [8] between these embeddings. That is, each embedding yi emerging out of a
recurrence of the GRU is expected to produce a unit-normalized embedding ŷi that is orthogonal to
each of the unit-normalized embeddings generated prior to it, i.e., {ŷ1, ŷ2, . . . , ŷi−1}. This constraint
is incorporated as a regularization in our training setup. Mathematically, a softer-version of this
constraint given by the following is implemented:

Lortho(Y ) =
∑

i,j∈{1,2,...,N},i̸=j

(ŷ⊤
i ŷj)

2. (1)

Acoustic Separator Network: Finally, to induce the separation in the acoustic signal, we incorporate
an Acoustic Separator Network (ASN), which is a U-Net [43] style encoder-decoder network. Such
networks have recently shown promise in sound source separation tasks [20, 31], particularly those
that are employed in conditioned settings [14, 34, 45, 58]. The network has three main parts: (i) an
encoder consisting of a stack of 2D-convolution layers, each coupled with Batch Normalization and
Leaky ReLU, (ii) a bottleneck layer that concatenates the encoder embedding with the conditioning
information, and (iii) a decoder which is made up of a series of up-convolution layers, followed
by non-linear activations, each coupled with a skip connection from a corresponding layer in the
U-Net encoder, matching in spatial resolution of its output. The encoder encodes the input, which
is a magnitude spectrogram X ∈ RΩ×T of a mixed audio m(t) produced via the short-time Fourier
transform (STFT), where Ω and T denote the number of frequency bins and the number of video
frames, respectively. This encoding is then concatenated with each of the normalized visual encoding
vectors ŷi and decoded to generate a time-frequency mask, M̂i ∈ [0, 1]Ω×T , which when multiplied
with the magnitude spectrogram X of the mixture yields an estimate of the magnitude spectrogram
of the separated source Ŝi = M̂i ⊙X, where ⊙ denotes element-wise product. The separated signal
in time domain, âi(t), is then recoverable by applying inverse Short time Fourier Transform (iSTFT).

Direction Prediction Network: A single-channel audio typically only indicates whether the sound
source is moving towards/farther away from the camera [3]. However the sub-graph embeddings, yi,
that the ASN is conditioned on, injects into the separated spectrograms, motion information implicit
in the appearance of the objects in the frame. This enriches these spectrograms, permitting us to
obtain a coarse estimate of the direction of source motion in pseudo 3D. We therefore cast the task of
predicting the motion vector di of the auditory object as a classification task. We setup two variants
of this task using varied quantizations of the unit displacement vector di, namely: (i) to predict the
octant (or corners) of a unit-cube into which an 8-quantized unit displacement vector di belongs,
where the center of the cube refers to the 3D centroid of the corresponding graph node; and (ii) to
predict among the 26 directions pertaining to the 8 corners, 6 faces, and 12 edges of a unit-cube, di is
quantized into (using cosine similarity). Additionally, for both settings a class is created for denoting
little/no motion and another class captures the direction vector obtained from the background source.
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We thus have 10 and 28-classes respectively, in the two settings. We realize this objective in ASMP
by incorporating a classifier network hΛ(·), with parameters Λ, that takes as input the (spectrogram)
output of the ASN and produces the class label corresponding to the quantization of di.

Note that we compute a separate displacement vector di per window w, while the separated Ŝi spans
the whole length of the video. We thus compute a set of displacement vectors {dw

i }
W
w=1, for each

window w. Our network takes as input the separated spectrogram, Ŝi, and the visual encoding of the
source i (ŷi) and produces as output an estimate of the direction class, d̂w

i ∈ {0, 1, 2, . . . , 9} or d̂w
i ∈

{0, 1, 2, . . . , 27}, depending on the direction in which the vector lies. In order to predict the vector
for a particular window, appropriate time-aligned slices of Ŝi are chosen. The sliced spectrogram is

then embedded through a ResNet [17] style network. Thus, we have hΛ : Ŝi →
{
d̂w
i

}W

w=1
. For the

architectural details of the various components in our model, please refer to the Appendix.

3.4 Learning Losses

ASMP trains purely with weak/self-supervisory cues. In particular, we train our model by employing
the “mix-and-separate” strategy [8, 12, 14, 57, 58], where the audio tracks from multiple videos
(typically two) are combined, with the goal being to separate the audio for each possible source from
the mixture (X). Towards this end, we employ the following set of losses:

Consistency Loss ensures that the separated spectrograms of a particular class of sound source (such
as a sound from a guitar, the cry of a baby, etc.) always retains its (visual) identity irrespective of
which video it comes from [14]. Typically a cross-entropy loss satisfies this requirement. However in
ASMP, since the separation is induced by a holistic scene graph recurrently embedded by a GRU,
it is not known in advance, in what order the sources are separated. Thus, we consider all possible
combinations of the ground truth labels and assign the one with the minimum loss. This is given by:

Lcons =
∑
u=1,2

min
σu∈SNu+1

−
Nu+1∑
i=1

K∑
c=1

1
u
i,σu(c) log p

u
i,c, (2)

where Nu + 1 is the number of auditory objects in the u-th video, SNu+1 indicates the set of all
permutations on {1, . . . , Nu + 1}, pui,c denotes the predicted probability produced by the classifier
for class c given Ŝu

i as input, 1u
i,σu(c) is an indicator for the ground-truth class of the c-th object in

video u, and K denotes the number of sounding object classes in the dataset.

Cyclic Loss attempts to preserve the consistency of the generated audio masks from the same video.
Specifically, this loss ensures that the separated masks corresponding to each of the sources in the
video, when combined, yields a mask which separates the audio spectrogram for that video from the
mixture audio (that combines audio from two videos). Mathematically, our cyclic loss is written as:
Lcyc =

∑
u=1,2

∥∥∥∑Nu+1
i=1 M̂u

i −Mu
ibm

∥∥∥
1
, where Mu

ibm = 1Xu>X¬u denotes the binary mask for
the audio of video u within the mixture X.

Direction Prediction Loss is a standard cross-entropy loss, which checks for the accuracy of the
predicted direction class {0, 1, . . . , Dk}, where Dk ∈ 9, 27 for every separated sound source, per
window. It is given by:

Ldirpred =
∑
u=1,2

W∑
w=1

min
σu∈SNu+1

−
Nu+1∑
i=1

Dk∑
c=1

1
u,w
i,σu(c) log q

u,w
i,c , (3)

where Nu + 1 is the number of auditory objects in the uth video. SNu+1 indicates the set of all
permutations on {1, . . . , Nu + 1}, qu,wi,c denotes the predicted probability produced by the classifier
for class c given Ŝu,w

i as input, and 1u,w
i,σu(c) is an indicator of the ground-truth class of the c-th object

in video u for window w.

Final Training Loss of ASMP is given by the following, with weights λ1, λ2, λ3, λ4 > 0:

L = λ1Lcons + λ2Lcyc + λ3Lortho + λ4Ldirpred. (4)
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Table 1: SDR, SIR, and SAR results on the ASIW and AVE test sets. [Key: Best, second-best results.]

Approach ASIW AVE
SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑

Sound of Motion (SofM) [57] 6.7 9.4 11.1 4.1 9.2 7.6
Cyclic Co-Learn [48] 7.0 13.4 12.4 4.2 9.7 8.4
Co-Separation [14] 6.6 12.9 12.6 3.9 9.3 7.8
AVSGS [8] 8.8 14.1 13.0 5.8 10.4 8.2

ASMP (only 2.5D graph) 9.0 14.3 13.7 6.5 12.4 8.9
ASMP (2.5D graph + motion) 9.6 14.5 14.1 7.2 13.3 9.4

Table 2: Direction Prediction results on the ASIW and AVE on test splits.

Direction Prediction ASIW AVE

10-class (%)↑ 28-class (%)↑ 10-class (%)↑ 28-class (%)↑
Majority Vote 19.1 14.3 26.3 21.2
Sound of Motion (SofM) [57] 28.6 27.0 31.2 30.6
Cyclic Co-Learn [48] 34.8 32.3 30.7 29.2
Co-Separation [14] 32.2 31.7 28.2 28.0
AVSGS [8] 39.2 38.7 38.9 34.7

ASMP (Ours) 42.5 41.3 38.5 36.8

4 Experiments
In this section, we demonstrate the effectiveness of our ASMP approach on challenging visually-
guided audio separation benchmarks.

4.1 Datasets and Experimental Setup

Audio Separation in the Wild (ASIW) Dataset: Several prior works present experiments mainly for
separating sounds of musical instruments [12, 48]. Such results may not necessarily carry over easily
to more generic and natural day-to-day life contexts. To this end, we consider the recently proposed
Audio Separation in the Wild (ASIW) dataset [8] for our experiments. This dataset consists of 147
validation, 322 test, and 10,540 training videos crawled from the larger AudioCaps dataset [24]. It
has 14 auditory classes (i.e. K = 15, 14 auditory classes and 1 background audio class), such as
baby cries, bell ring, birds chirp, camera clicks, train sounds, automobile sounds, etc. Each video in
the dataset is 10s long, has significant camera motion, and captures diverse audio-visual contexts. To
evaluate ASMP for direction prediction, we divide each video into temporal windows of 1s long and
predict a discretized 3D direction vector for each window.

Audio Visual Event (AVE) Dataset: Apart from the challenging ASIW dataset, we conduct additional
experiments by adapting the popular Audio Visual Event (AVE) Dataset [49] for our task. Since this
dataset was originally designed for the task of identifying audio-visual events, adapting it to evaluate
our approach is straightforward. We treat each audio-visual event class as an auditory class and
associate with it a set of Auditory Objects (as discussed before). The dataset contains 2211 training,
257 validation, and 261 test set videos. We use videos corresponding to 18 audio-visual event classes,
including both potentially-moving object classes such, such as bus, train, etc. and static classes like
banjo, clock etc. (i.e. K = 19 here). The videos in this dataset are 10s long as well. Similar to ASIW,
we divide each video into windows of 1s long for computing the motion displacement vectors.

Baselines: To the best of our knowledge, the task of jointly separating audio sources (using video)
and predicting motion directions is a novel task, and thus does not have a prior baseline to compare to.
Therefore, we compare ASMP against the following state-of-the-art methods for audio-visual source
separation, specifically those methods that use the “mix-and-separate” learning and also evaluate
against them for assessing the efficacy of direction prediction. Specifically, we compare to: (i)
Co-Separation [14] that uses a single auditory object for conditioning a source separation network,(ii)
Sound of Motion (SofM) [57] that incorporates object/human appearances and their pixel-level motion
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Table 3: SDR, SIR, and SAR Ablation results on the ASIW test set. [Best results in bold.]

ASIW

Row Method SDR [dB]↑ SIR [dB]↑ SAR [dB]↑
1 ASMP (Full Model) 9.6 14.5 14.1

2 ASMP- Multiscale Chamfer 9.2 14.1 14.0
3 ASMP- Only 10-class Direction Prediction (λ1 = λ2 = λ3 = 0) 6.4 11.2 11.7

Video 1

Video 2

Mixed 
Spectrogram

Ground-Truth 
Spectrograms Ours AVSGSReference 

Frame 

Ours - 
Motion 

Directions

ASIW

Video 1

Video 2

Mixed 
Spectrogram

Ground-Truth 
Spectrograms Ours AVSGS

Ours - 
Motion 

Directions

Reference 
Frame 

AVE

Figure 3: Audio source separation and motion prediction results on ASIW (top) and AVE (bottom).
Bounding boxes on reference frames show regions attended by ASMP. Red boxes indicate regions
of high differences between ground truth and predicted spectrograms. The orange unit cube shown in
the Motion Directions images, indicates the object whose motion is predicted. The green dot shows
the ground truth motion direction, while the yellow arrow shows the predicted direction by ASMP.

trajectories to condition an audio separation network, (iii) Cyclic Co-Learning [48], which is a recent
method that trains a deep neural model for the joint task of audio separation and visual grounding of
the audio source, and (iv) Audio-Visual Scene Graph Segmenter (AVSGS) [8], that uses a scene graph
for conditioning an audio separator network using the 2D visual context of the audio source.

Evaluation Metrics: We quantify the audio source separation performances using the standard
evaluation metrics [14, 48, 58], namely: (i) Signal-to-Distortion Ratio (SDR) (in dB) [40, 52] – a
higher SDR indicating a more faithful reproduction of the original signal, (ii) Signal-to-Interference
Ratio (SIR) (in dB) – quantifying the extent of reduction in interference in the estimated signal, and
(iii) Signal-to-Artifact Ratio (SAR) (in dB) – capturing the extent to which artifacts are introduced by
the separator. Further, as our motion direction prediction sub-task is cast as a classification problem in
our setup, we also report its classification accuracy (Dir. Acc. (%)) for both 10 and 28 class settings.

Implementation Details: For every video in our setup, we detect upto two auditory objects, one
background auditory object, and 20 context nodes. The visual feature of the background object
is derived from a FRCNN embedding of a random crop of the reference frame Fr, from a region
which does not overlap with other boxes in the frame. The audio streams are sub-sampled at
11kHz and STFT spectrograms are extracted using a Hann window of size 1022, with hop length
of 256, following prior works [14, 58]. We set Ω = 256 and T = 256. The embeddings, ŷi, and
the GRU-hidden state are 512-dimensional. The IoU threshold, γ is set to 0.1 for both datasets.
Each window in a video has l = 8 frames. The weights on the different losses are as follows:
λ1 = 0.05, λ2 = 1.0, λ3 = 1.0, λ4 = 0.05. Our model is trained using the ADAM optimizer [25]
with a weight decay of 1e-4, β1 = 0.9, β2 = 0.999. The learning rate is set to 1e−4 and is decreased
by a factor of 0.1 every 15K iterations.
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4.2 Experimental Results

In Table 1, we present results for source separation by our method versus competing approaches on
the ASIW and AVE datasets. In Table 2, we report the direction prediction accuracy of ASMP on
the same set of competing methods for both 10 and 28 class setting. Our results clearly attest to the
benefit of using the 3D structure of the scene and the motion direction prediction for audio separation.
Specifically, ASMP itself (without motion prediction) yields a boost of upto 0.7 dB SDR over prior
methods, just on source separation. Additionally, the performance of ASMP improves by another
0.6 dB (on the SDR scale) across the two datasets, when trained to predict the motion direction
(Table 1). Furthermore, the results evince that ASMP outperforms prior approaches in almost all
of the evaluation categories, by upto 2.0 dB on the SIR scale on the AVE dataset over the next best
(and closely-related) approach of AVSGS [8]. These results clearly demonstrate the generalizability
of our method to varied datasets, scene contexts, and audio diversity. From amongst the competing
techniques, we find that AVSGS comes closest to matching our performance across the two datasets,
which is perhaps unsurprising given that they use a 2D scene graph to encode the visual context of the
sounding object. However, our results show that the presence of 3D scene geometry is also essential
for good audio separation (Table 1 last two rows).

In Table 2, we also report the accuracy of motion prediction of the sounding object (in %) for
both ASMP and other baselines for both 10-class and 28-class settings by passing their separated
spectrograms through the direction prediction module. As is clear from the table, we find that the
accuracy of direction prediction using ASMP is much better than prior methods (by upto ∼ 3%). The
gains over a simple majority label prediction is especially pronounced, attesting to the efficacy of our
direction prediction pipeline.

Ablation Study: We report performances of a few key ablated variants of our model in Table 3 on
the ASIW dataset, viz. : (i) by computing the weights of the graph edges via a multiscale RBF kernel,
(ii) using only the motion direction prediction as a training signal. For the former, we threshold the
Chamfer distances at two scales, viz : (a) the median of the weights and (b) 100th percentile of the
weights. This creates a forest of graphs, which is used in the audio separator network. Our results in
Table 3 show that this approach of graph construction levels up to our RBF formulation but falls a bit
short, perhaps because of the hard thresholding of edges. In another ablation study, we train only the
motion direction prediction loss (i.e., λ1 = λ2 = λ3 = 0). As the results in Table 3 show, this variant
underperforms our full model, corroborating the utility of the other loss terms.

Qualitative Results: In Figure 3, we present sample separation results from the ASIW and AVE test
sets, juxtaposing the results obtained by our method against the AVSGS baseline. The superiority
of our model’s separability is evident even at a glance of the separated spectrograms that mimic the
ground truth spectrograms more closely compared to AVSGS. The estimates of the motion directions
seem to agree with the ground truth as well. Additional details and results are in the appendix.

5 Conclusions
In this work, we presented ASMP, a novel algorithm to leverage visual scene geometry to induce better
separation of a mixed audio signal into its semantic constituents. Towards this end, we incorporated
pseudo-3D cues into our algorithmic audio separation pipeline via a scene graph data structure.
Our work further derives self-supervision cues from the visual dynamics inherent in the videos and
use such cues to predict the direction of motion of the sound source from the separated audio; our
experiments demonstrate this self-supervision to improve source separation. ASMP demonstrates
state-of-the-art performances on two challenging “in-the-wild” datasets. The success at the task
of predicting the direction of motion from the visually-guided separated audio suggests ASMP’s
potential to be used in a variety of other audio-visual problems, including occlusion reasoning, and
video generation from audio [7]. We will be making our PyTorch implementation public.

Limitations: While ASMP presents promising results on both separation and direction prediction
tasks, some caveats remain. For example, our model is not yet capable of effectively inducing source
separation for sounds emanating from the background. Further, we require trained object detectors
for sound producing classes, which for some rare/uncommon classes maybe hard to obtain.

Acknowledgements. MC and NA would like to thank the support of the Office of Naval Research
under grant N00014- 20-1-2444, and USDA National Institute of Food and Agriculture under grant
2020-67021-32799/1024178.
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A Summary of Supplementary Results

In this supplementary document, we provide:

• Details of the ASIW and AVE datasets
• Studies on generalizability of our approach
• Ablation studies including compute time analysis
• Ablation studies on the choice of the RBF kernel scale
• User study on the quality of the separated audio
• Details of our network architecture
• Details of our compute environment, and
• Qualitative results on direction prediction.

We also provide (in the supplementary bundle):

• Video demonstration of the audio separation capability of our approach. Please use a
standard media player like VLC or Microsoft Movies & TV for playing it.

B Details of the ASIW and AVE Datasets

Audio Separation in the Wild (ASIW) Dataset: The Audio Separation in the Wild (ASIW)
dataset [8] consists of 147 validation, 322 test, and 10,540 training videos crawled from the larger
AudioCaps dataset [24]. It has 14 auditory classes which are: baby, bell, bird, camera, clock, dogs,
toilet/drain, horse, man/woman, telephone, train, sheep/goat, vehicle/bus, water/water tank. Each
video in the dataset is 10s long, has significant camera motion, and captures diverse audio-visual
contexts. For the direction prediction task, we divide each video into temporal windows of 1s long
consisting of 8 frames each.

Audio Visual Event (AVE) Dataset: The popular Audio Visual Event (AVE) Dataset [49] was
originally designed for the task of identifying audio-visual events. We adapt it to evaluate our
approach. We treat each audio-visual event class as an auditory class and associate with it a set of
Auditory Objects. The dataset contains 2211 training, 257 validation, and 261 test set videos. We
use videos corresponding to 18 audio-visual event classes, including both potentially-moving and
stationary object classes, for which pre-trained object detectors are avalable. The classes are: man,
woman, car, plane, truck, motorcycle, train, clock, baby, bus, horse, toilet, violin, fiddle, flute, ukulele,
acoustic guitar, banjo, accordion. The videos in this dataset are 10s long as well. Similar to ASIW,
we divide each video into windows of 1s long (i.e. 8 frames per window) for computing the motion
displacement vectors.

C Generalizability of ASMP

To understand the real-world generalization of our approach to audio separation in videos outside
the datasets used for training the model, we downloaded several videos from Youtube each with
an arbitrary mix of multiple sounds, with the goal of applying our approach on them to separate
the sounds. We selected videos having audio in the set of classes of the ASIW dataset. We then
applied the model trained on the ASIW dataset on these videos. The results for these experiments are
provided in the supplementary video. Our results clearly demonstrate that our approach leads to high
quality audio separation even when the scene contains heavy distractors, such as continuous sound
of rain, jammed traffic, or weak sounds, such as train announcements, etc. and exhibits reasonable
amount of out of domain generalizability.

D Additional Ablation Results

In this section, we provide additional studies on the importance of each component in our model.
We note that some of these results are already in the main paper, however are grouped in a different
manner.
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D.1 3D Graph and Direction Prediction

In Table 4, we examine the contribution of each of the core novelties of our method on the ASIW
dataset. From the table, we see that the absence of the direction prediction loss supervision
deteriorates the SDR performance by 0.6 dB. Given that this is in log-scale, this implies a significant
drop in audio separation quality, thereby attesting to the importance of this loss in the separation
task. In order to assess the contribution of the Pseudo 3D Scene Graph, we replaced our 3D scene
graph with a 2D scene graph (as in AVSGS [8]) , where the edges do not denote 3D spatial proximity,
instead assume a fully-connected graph with equally-weighted edges. From the table, we see that this
results in a drop of about 0.2 dB in the SDR, emphasizing the criticality of this module. However,
when the direction prediction loss is introduced back into the training regime, we notice a slight boost
in performance.

Table 4: SDR, SIR, SAR performance for different ablated model components of ASMP on the ASIW
test set. [Best results in bold.]

ASIW

Method SDR↑ SIR↑ SAR↑
1. ASMP (Full Model) 9.6 14.5 14.1

2. ASMP: w/o Direction Prediction (λ4 = 0) 9.0 14.3 13.7
3. ASMP: w/o 3D Spatial Distances & w/o Direction Prediction 8.8 14.1 13.0
4. ASMP: w/o 3D Spatial Distances & w/ Direction Prediction 9.1 14.3 13.6

D.2 Ablations on Losses

Table 5 presents the results of ablating the different loss terms in our optimization objective on
the ASIW dataset. The results reveal that the direction prediction loss alone, while promising, is
insufficient in providing a reasonably accurate separation/direction prediction performance. However,
we find that training the models with any one of the other loss terms in conjunction with the direction
prediction loss, results in a boost in model performance, with the presence of the co-separation loss
resulting in the maximum gain. This underscores the importance of all three loss terms: co-separation
loss, consistency loss, and the orthogonality loss, besides the direction prediction loss for effective
model training.

D.3 Compute Time Analysis

Thanks to the use of GPUs, the Chamfer distance between pairs of point clouds can be computed
very quickly. Typically, a forward pass of one batch (with 25 samples) through the full network
takes about 1.2 seconds on a Intel Core i7 workstation with NVIDIA RTX 2070 GPUs. When the
additional task of computing the Chamfer distance is not there, i.e. the 3D Scene Graph is replaced
with a graph with equal edge weights, this results in a saving of only 0.06 seconds per batch.

Table 5: SDR, SIR, SAR, and Direction Prediction performance for loss ablated models on the ASIW
test set. [Best results in bold.]

ASIW

Method SDR↑ SIR↑ SAR↑ 10-class Dir. Acc. (in %) ↑
1. ASMP (Full Model) 9.6 14.5 14.1 42.5

2. ASMP- Only Direction Prediction (λ1 = λ2 = λ3 = 0) 6.4 11.2 11.7 32.7
3. ASMP- Direction Prediction + Lortho (λ1 = λ2 = 0) 6.4 11.7 10.1 33.2
4. ASMP- Direction Prediction + Lco−sep (λ1 = λ3 = 0) 7.9 13.2 10.9 35.6
5. ASMP- Direction Prediction + Lcons (λ2 = λ3 = 0) 6.4 11.6 11.9 33.1
5. ASMP- No Direction Prediction (λ4 = 0) 9.0 14.3 13.7 -
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Figure 4: A plot showing the sensitivity of our proposed ASMP model to the choice kernel bandwidth
(percentile) against the (inverse) sparsity induced into the graph.

Table 6: Human preference score on samples obtained from our method vs. AVSGS [8]

Datasets Prefer ours
ASIW - Ours vs. AVSGS [8] 63%
AVE - Ours vs. AVSGS [8] 68%

E Performance Against Varying Kernel Scale

Recall that the Radial Basis Function (RBF) kernel is used to model the weighted adjacency matrix of
the 3D scene graph, where the kernel is constructed on the Chamfer distances between 3D coordinates
of the graph nodes. Thus, the bandwidth of the kernel describes a soft ball of a certain radius around
each node to accommodate other nodes in the graph. As this radius depends on the specifics of
the 3D graph constructed on the scene, it is not ideal to use a fixed radius for all graphs. Instead,
we first compute a Chamfer distance matrix across all pairs of nodes in a given graph, and use the
σ-th percentile of these distances to form the kernel bandwidth. In Figure 4, we plot the model
performance (SDR) against increasing RBF kernel bandwidth, as well as the sparsity in the resulting
graph (y-axis on the right), assessed by counting the number of edges with weights below 1e− 5 as a
fraction of the total number of edges. In the main paper, we reported results using the 25th-percentile
of the Chamfer distance matrix, which corresponds to σ = 25%. In Figure 4, we plot against
σ = 25, 50, 75 as well. Note that using a a higher σ leads to several dense connections, resulting in
lower sparsity, leading to mistaken contexts for a node for separation. We found that using σ = 25%
leads to the best performance.

F User Assessment Study

In order to subjectively assess the quality of audio source separation, we evaluated a randomly chosen
subset of separated audio samples from ASMP and our closest competitor AVSGS [8] for human
preferability on both ASIW and AVE datasets. For the purpose of this study, we chose a set of
in-house annotators, who have successfully completed annotation/evaluation tasks for speech/audio
separation, in the past. Table 6 reports these performances, which show a clear preference of the
evaluators, for our method over AVSGS about 60–65% of the time, on average.

G Details of Compute Environment

We conduct experiments on a cluster of workstations, each with Intel Core i7 CPU, with 256GB
RAM. Each of the workstations is equipped with 8 NVIDIA RTX 2070 GPUs.
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Figure 5: A detailed illustration of our proposed ASMP model.

H Network Architecture Details

Our model, the Audio Separator and Motion Predictor (ASMP) has several components, as shown in
Figure 5. Below, we list the key architectural details of each of them.

H.1 Feature Extractor

Our model, ASMP, captures the visual representation of the objects in the scene by means of Pseudo-
3D scene graph; representing the visual entities of the scene as nodes of a graph (with associated
features). These features are computed using a Faster R-CNN (FRCNN) network [42], with a
ResNet-101 [17] backbone pre-trained on the Visual Genome Dataset [27]. The features of the
musical instrument type nodes that arise out of the Audio Visual Event (AVE) dataset are obtained
by training another FRCNN network on the images of musical instruments on the OpenImages
dataset [26]. The FRCNN network yields 2048-dimensional vectors for the Visual Genome dataset,
which are then mapped to 512-dimensions via a 2-layer Multi-Layer Perceptron (MLP) with Leaky
ReLU activations (negative slope=0.2), while the network yields 512-dimensional vectors for object
features for the images in the OpenImages dataset and are used as is.

H.2 Pseudo-3D Graph Attention Network

Post the object detection and feature extraction, we construct the pseudo-3D scene-graph following
the method laid out in the Proposed Method section of the paper. The scene graph is processed by a
Graph Attention Network, which is a cascade of the following three modules:

Graph Attention Network Convolution (GAT Conv): This module [51] is responsible for updating
the node features of the graph by employing a multi-headed graph message passing based on the
adjacency of the nodes and edge weights. Our graphs are fully-connected and the edge weights are
determined by the RBF kernel score as discussed in the paper. We design a 4-headed network, which
outputs a 512-dimensional vector that embeds the full graph.

Edge Convolution (Edge Conv): Edge Convolutions [53] act on the output of the Graph Attention
Network modules. These take in a concatenated pair of features associated with the two nodes of
an edge and produces a vector as output. The input dimensions are thus 512× 2 = 1024, while the
output dimension is 512.

Pooling Layers: Finally, the Graph Attention Network pools the updated features [28] across the
nodes obtained from the previous steps. The Global Max and Average Pooling techniques are used
for this purpose and the feature vectors from the two are concatenated.
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H.3 Recurrent Network

To iteratively (and automatically) segment the graph into appropriate subgraphs, we introduce a
Recurrent Network into the pipeline. We instantiate it using a Gated Recurrent Unit (GRU) [10],
whose input space and feature dimensions are 512-dimensional.

H.4 Acoustic Separator Network

The actual task of separating a mixed audio into its constituents is undertaken by an encoder-decoder
network called the Acoustic Separator Network. In broad strokes, the network follows a U-Net [43]
style architecture, with an encoder, bottleneck, and decoder modules. The encoder and decoder parts
consists of 7 convolution and 7 up-convolution layers, respectively. Each layer has 4 × 4 filters
with LeakyRELU activations and negative slope of 0.2. Moreover, encoder layers with matching
spatial resolution of output feature maps are connected by skip connections to the corresponding
decoder layers. The bottleneck layer concatenates the encoder embedding with the scene graph
embedding, with each element of the latter tiled 2× 2 times. The dimensions of the bottleneck layer
are (2× 2× 512), each for the encoder embedding and the scene graph embedding.

H.5 Direction Prediction Network

A central innovation in ASMP is the aspect of using the motion direction of a sound source as an
additional supervisory signal to train the audio separation module. In order to leverage this auxiliary
supervision, we take time-slices of the separated source spectrogram and pass it through a network
called the Direction Prediction Network, which predicts which one of the 8 (or 26 depending on
the setting) direction of motions (and one additional direction denoting no motion, and a second
class denoting the displacement of the background) centered at the current location of the object, did
the object move in, within the window. The network consists of a ResNet-18 style module [17] for
embedding the separated spectrogram into a 512-dimensional vector. This is followed by a a 2-layer
Multi-Layer Perceptron (MLP). The hidden layer embedding is passed through a 1d BatchNorm [19]
and Leaky ReLU activations (negative slope=0.2) before being processed by the second layer of the
MLP. The output of the second layer is a 10 (or 28)-dimensional vector, constituting the logits of the
direction prediction classifier.

I Qualitative Results

In Figures 6, 8, and 7, we present several qualitative results demonstrating the direction prediction by
ASMP across ASIW and AVE datasets. We show these results on the starting frame of a window used
for the direction prediction, and show a sequence of such windows. Also shown is a cube centered
at an Auditory Object in the scene, with one of its corners marked with a green dot denoting the
true direction of motion of the object in the window (as estimated using our optical flow estimation,
between the first and the last frames in a window, and combined with the pseudo 3D depth estimation.
Note that, if an object has no motion, the green dot is then placed at the center of the cube. The
estimated motion directions are denoted by yellow-colored vectors and point to one of the eight
corners of the cube or to the cube center (in case there is no motion).
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Figure 8: Qualitative direction prediction results on AVE videos. We show a unit cube around
the Auditory Object with a green dot denoting the ground truth direction of motion. The yellow
arrow indicates the predicted motion direction by ASMP using only the audio signal from a mixed
spectrogram.
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