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Improved A-Search Guided Tree for Autonomous Trailer Planning

Jessica Leu, Yebin Wang, Masayoshi Tomizuka, and Stefano Di Cairano

Abstract— This paper presents a motion planning strategy
that utilizes the improved A-search guided tree to enable
autonomous parking of a general 3-trailer with a car-like
tractor. Different from the state-of-the-art state-lattice-based
methods where numerous motion primitives are necessary to
ensure successful planning, our work allows quick off-lattice
exploration to find a solution. Our treatment brings at least
three advantages: fewer and lower design complexity of motion
primitives, improved success rate, and increased path quality.
Unlike on-lattice exploration, where the cost-to-go is obtained
by querying a heuristic look-up table, off-lattice exploration
entails the heuristic function being well-defined at off-lattice
nodes. We train a neural network through reinforcement
learning to model the maneuver costs of the trailer and use
it as the heuristic value to better approximate the cost-to-
go. Simulations demonstrate the effectiveness of the proposed
method in terms of planning speed and path length.

I. INTRODUCTION

Autonomous tractor-trailer systems have attracted strong
interests from both industry and academia due to their high
cargo transportation efficiency. However, their complicated
kinematics pose significant challenges in both control and
planning, particularly, when reversing maneuvers and colli-
sion avoidance are needed.

Early works proposed flatness-based trajectory genera-
tion for unconstrained environments [1], [2], while others
proposed hierarchical planners [3], [4] that first plan a
collision-free holonomic path and then iteratively modify it
to a kinematically feasible trajectory. Recent works resorted
to the state-lattice framework to accomplish kinodynamic
planning [5]–[7], where the dynamic feasibility and collision
avoidance are addressed simultaneously. These algorithms
search a graph, where the vertices are discrete states and
the edges are from a set of precomputed motion primitives
(MPs). Since the MPs can be generated offline by solving
optimal control problems (OCP), the difficulty incurred by
the dynamics is handled offline. Resolution optimality and
completeness are guaranteed by state-lattice-based planners.

A major limitation with state-lattice-based methods is the
curse of dimensionality. Works [7], [8] restricted the MPs
to those admitting transition between circular equilibrium
configurations. This lowers the dimension of the search space
that planners explore. However, a large amount of MPs is
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necessary. The trade-off between the number of MPs and
planning success rate/planning accuracy needs to be managed
carefully so that the planner can find a path that ends close to
the goal within a reasonable time. A well-informed heuristic
function that correctly approximates the true cost-to-go from
a state to the goal state is needed to maintain real-time
performance [5], [9]. Work [9] combines Euclidean distance
and a free-space heuristic look-up table (HLUT) to calculate
the heuristic value. Nevertheless, the memory burden of
storing the HLUT may be of concern for certain applications,
which could be as large as hundreds of MB memory.

A remedy to lattice-based limitations is an improved A-
search guided tree (i-AGT) [10], which is constructed on-the-
fly and accepts off-lattice exploration. This work adopts and
extends i-AGT to tractor-trailer systems since moving away
from state-lattice-based methods enables using a smaller set
of MPs with similar planning success rate and yields better
path quality, particularly, shorter path length. We propose
a construction process to generate the set of MPs for off-
lattice use and analyze its connectivity to achieve reasonable
performance. On top of these advantages, i-AGT groups MPs
into various modes with their associated priorities, allowing
a mode selection process to improve computation efficiency
of node expansion. Unlike lattice-based methods where the
cost-to-go can be readily constructed by as the HLUT, i-
AGT with off-lattice nodes requires a more sophisticated
design to estimate the cost-to-go. We reckon that the cost-
to-go oftentimes largely depends on the “level of maneuver
difficulty”. In this light, we learn the maneuver costs of the
complicated trailer kinematics by reinforcement learning, and
use the learned value function to obtain the heuristic value.

Thus, this work presents a motion planning method that
utilizes i-AGT with a data driven heuristic to plan for
autonomous tractor-trailer systems. Main contributions are:

• A simple set of MPs is generated for i-AGT with
reachability guarantees.

• A data-driven heuristic is proposed to increase search
efficiency of i-AGT.

• Extensive simulation is performed to show the effec-
tiveness of the proposed system.

II. RELATED WORKS AND PRELIMINARIES

A. Related Works

Sampling-based motion planning, such as RRT [11] and
PRM [12], is popular for its computation efficiency and ease
of implementation. On the other hand, optimization-based
algorithms [13]–[15] require a non-trivial initialization to
converge, especially in cluttered environments [16], [17],



[17], [18]. Search-based planning is another popular method
for tractor-trailer systems, which abstracts the configuration
space as a graph with nodes and edges [7], [19]. Search
operations are often done by A* [6], [20], [21]. State-lattice-
based planners are deterministic sampling-based planners
which uses a finite set of precomputed MPs online to find a
resolution-optimal solution [9], [22]. However, due to the
discretized search space, the graph resolution will affect
optimality [23].

B. Problem Statement

Consider a system with the following dynamics

Ẋ = f(X) + g(X,u), (1)

where X ∈ X ⊂ Rnx is the state, u ∈ U ⊂ Rm is the control
input, f is a smooth vector field, and g = (g⊤1 , · · · , g⊤m)⊤,
where gi is a smooth vector field. A configuration of sys-
tem (1) is a complete specification of the position of every
points of that system. The configuration space C ⊂ Rnc is
a compact set representing all possible configurations; and
Cfree denotes a collision-free configuration space. This work
assumes C = X and the motion planning problem as follows:

Problem 2.1: Given an initial configuration X0 ∈ Cfree,
a goal configuration Xf ∈ Cfree, and system (1), find a
feasible trajectory Pt which

(I) starts at X0 and ends at Xf , while satisfying (1); and
(II) lies in the collision-free configuration space Cfree.

C. Trailer Modeling and control

Consider a front wheel drive standard trailer system [24],
[25] as shown in Fig. 1, where (x, y)⊤ are the coordinates
of the midpoint of the tractor’s rear wheel axis, θ0 is the
tractor orientation, θ1, θ2, θ3 are the orientations of trailers,
vf is the front-wheel velocity of the tractor, δ is the steering
angle of the tractor, and L is the distance between (x, y)
and the midpoint of the front wheel axis. The control inputs
are vf and δ. A mechanical constraint |δ| ≤ δmax limits the
minimum turning radius R of a path. Provided that vf and
δ can be independently controlled, we introduce new control
variables: u = (v, s)⊤ = (cos(δ)vf ,

tan(δ)
tan(δmax)

)⊤, where
tan(δmax) =

L
R , and s ∈ [−1, 1] is the normalized steering

angle. It is beneficial to represent the kinematic model in the
coordinates ξ = (x, y, θ0, θ1 − θ0, θ2 − θ1, θ3 − θ2)

⊤, where:

ẋ = cos(θ0)v

ẏ = sin(θ0)v

θ̇0 =
vs

R

ξ̇4 = −v
d1s+ sin(ξ4)R

Rd1

ξ̇5 = −v
d1 cos(ξ4) sin(ξ5)− d2 sin(ξ4)

d1d2

ξ̇6 = −v cos(ξ4)
d2 cos(ξ5) sin(ξ6)− d3 sin(ξ5)

d2d3
.

(2)

In ξ-coordinates, the constraints to prevent a jack-knife
configuration are

|ξi| ≤ ξmax, 4 ≤ i ≤ 6, (3)

𝐿𝐿
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Fig. 1: Kinematics of a front drive tractor with 3 trailers. (All trailers
are on-axle and all angles representing the orientation of tractor and
trailers (θi, i = 0, . . . , 3) are w.r.t. the x-axis.)

where ξmax must be less than π
2 . The trailer system is subject

to additional state and control constraints:

0 ≤ θ0 < 2π, |v| ≤ vmax, |s| ≤ 1. (4)

Remark 2.2: As manifested below, this work can be read-
ily generalized to other trailer systems.

To check for collisions, we wrap around the tractor, the
trailers, and the obstacles with rectangles. A controller based
on model predictive control [26] can control the trailer to
follow a reference trajectory.

D. i-AGT Algorithm

i-AGT constructs a tree T , with a root node Xinit ∈
{X0, Xf} and a goal Xgoal ∈ {X0, Xf}\{Xinit}, which
reaches a neighbor Bϵ(Xgoal) ≜ {X ∈ X |d(X,Xgoal) ≤
ϵ}. Specifically, d(·, ·) is a distance function, e.g. a
weighted 2-norm: ∥Xi −Xj∥P = ((Xi − Xj)

⊤P (Xi −
Xj))

1/2, Xi, Xj ∈ C. Similar to A*, each node X is assigned
an F -value calculated as follows:

F (X) = g(Xinit, X) + h(X,Xgoal), (5)

where g(Xinit, X) represents the cost-to-come, or the arrival
cost, from Xinit to X , and h(X,Xgoal) denotes the esti-
mated cost-to-go, or the heuristic value, from X to Xgoal.
i-AGT maintains a priority queue Q, which contains nodes
to be expanded. All nodes in Q are ordered according to
their F -values.

The trade off between planning time and maneuver res-
olution, i.e., the cardinality of the set of MPs, denoted
by M, has to be made [23]. i-AGT pivots on a concept
‘mode’ which divides M into m subsets of motion primitives
Mi ⊂ M, i = 1, . . . ,m. During node expansion of the best
candidate node Xbest, a current mode Mc which has the
highest priority among untried modes is determined. Then,
Xbest is expanded by applying primitives in Mc one by one.
Applying each MP gives a new node Xk and the connecting
trajectory Pk from Xbest to Xk. If Xk is δ-distant away
from T and Pk is collision free, then the algorithm

(I) updates priority PMc

Xbest
according to F (Xbest) and

F (Xk);
(II) copies the mode priorities of Xbest to Xk;

(III) adds node Xk and edge E(Xbest, Xk) to T ;
(IV) inserts node Xk into Q.

Details of i-AGT can be found in [10].



III. METHODS

i-AGT entails three components: the MPs which governs
node expansion, the mode priority which governs mode
selection, and the heuristics which governs node selection.
A naive approach is to directly apply the i-AGT used in [10]
to the trailer planning setting, i.e., use the same heuristics
and mode definition, while defining the MPs as a tuple of
constant velocity and constant steering angle over a certain
period of time. In Case 7 (Fig. 5(f)), the i-AGT constructs
a tree with 2617 nodes using 7sec. However, it undergoes
heavy computation, because the MPs result in exploring
the 6-dim state space and land too many collision-free but
kinematically undesirable nodes. Planning over the 6-dim
state space is dominated by the curse of dimensionality.

The following sections introduce our proposed methods
to enable trailer planning using i-AGT, particularly, the
construction of the MPs set and obtaining a informative
heuristics for a trailer system.

A. Dimension Reduction

To find a better set of MPs, we follow the well-established
idea in [9], [25] to circumvent the curse of dimensionality
by restricting X to meet the condition that the tractor and
all trailers move in circles (trailers and tractor have the
same yaw rate C). Given v, the yaw rate of the tractor
and the headings of all trailers are uniquely determined
by the steering action s. For tractor θ̇0 = vs/R = C(s),
the headings of trailers can be uniquely determined from
ξ̇k = 0, k = {4, 5, 6}, which admit the solutions

ξ4(s) = − arcsin(
sd1
R

), ξ5(s) = − arcsin(
sd2
Rc1

)

ξ6(s) = − arcsin(
sd3

Rc1c2
),

(6)

where c1 =
√
1− (sd1/R)2, c2 =

√
1− (sd2/(Rc1))2.

As a result, planning is carried out over the 4-dim space
X̄ ⊂ R4 with X̄ = (x, y, θ0, s)

⊤ ∈ X̄ , i.e., the tree has 4-
dim nodes. Note that the trailer system state still evolves in
X ⊂ R6 during the transition between nodes.

B. Motion Primitives

An MP can be viewed as a function mp(·) that transforms
a node X̄i to a new node X̄j , i.e., X̄j = mp(X̄i). To ensure
all nodes in i-AGT remains in the 4-dim space X̄ , one should
design M so that that X̄ is M-invariant, while satisfying (2).
That is mp(X̄) ∈ X̄ ,∀X̄ ∈ X̄ ,mp ∈ M. Below illustrates
how to obtain such M for on-lattice exploration and for off-
lattice exploration, respectively, by solving a multitude of
steering problems.
The Steering Problem. Steering refers to connecting two
states with a kinematically or dynamically feasible trajectory.
It can be posed as an open-loop optimal control problem
(OCP). We denote the initial state as X0, the target state as
Xf , an admissible control set as U , an objective function as
c(X,u), the control input as u, and final time as tf . If the
final time is free, the steering problem is cast into a fixed

final time OCP via time-scale transformation γ = t
tf

. The
time-scaled OCP has a final time 1:

min
u,tf

c(X,u)

s.t.
dX

dγ
= tff(X,u) & (3) & (4)

X(0) = X0, X(1) = Xf , u ∈ U , tf ∈ [0, t̄f ],

(7)

where t̄f is a finite constant. The OCP (7) is formulated and
solved by using CasADi [27] and IPOPT [28]. Notice that
the MPs generated consider inputs u, allowing the solution
from i-AGT to be directly executable.

When solving (7) numerically in ξ-coordinates, we choose
50 time steps over [0, 1], and the bounds

|x| ≤ 10, |y| ≤ 10, |θ0| ≤ 2π

|ξi| ≤
π

2
, 4 ≤ i ≤ 6

|v| ≤ vmax = 5R, |s| ≤ 1.

(8)

The key of constructing M is to determine what are the MPs
and design the state-lattice accordingly, so that we can obtain
the underlying MPs by solving the steering OCPs from one
state-lattice node to the other.
State-lattice and Simplification. The main concern when
designing the state-lattice is to ensure discrepancy and dis-
persion of the underlying MPs. Here we employ uniform dis-
cretization of a compact set: D0 ≜ [−Lx, Lx]× [−Ly, Ly]×
[−π, π] × [−1, 1] ⊂ X̄ . Denote the lattice set S. Steering
problems are defined with (X̄0, X̄f ) ∈ S × S .

The number of elements in S could be huge. For example,
with Lx = Ly = 2m and the resolution of the state-lattice
∆x = ∆y = 1m,∆θ = π/8, and ∆s = 0.5, we obtain
a total of 2125 nodes. Solving steering problems by trying
all possible combinations of (X̄0, X̄f ) will lead to solving
millions of steering problems – computationally prohibitive.
We simplify the MP generation process by exploiting the
properties of the steering problems: invariance w.r.t. (x, y),
symmetry against x-axis, π/2 rotation, and reversibility over
time. In the following, we treat the x, y positions, the heading
θ, and steering s as functions of time duration within the MP,
i.e., (x(t), y(t), θ0(t), s(t)), t ∈ [0, 1].

Solving steering problems from X̄0 ∈ D2 ≜ {0} × {0} ×
[0, π/2)× [−1, 1] → X̄f ∈ D0 gives a group of MPs: Mon.
Similar to [5], [9], [22], one can categorize all MPs according
to X̄0, i.e., each class of MPs is associated with a unique
2-dim pose q = (θ0, s). During node expansion, one first
performs mod (θ0,

π
2 ) to map X̄ into D2, then retrieves

the corresponding MPs as Mon,q , and finally applies Mon,q

at X̄ . In such a way, all nodes explored during planning
remains on lattice.
Off-Lattice Motion Primitives. Applying MPs in an on-
lattice manner is beneficial to maintaining the tree spar-
sity and high computational efficiency. However, restricting
all nodes to lattice introduces significant limitations which
compromised feasibility in tight environments and results
in long paths with multiple cusps. One can remedy these
shortcomings by adopting a large number of MPs for better
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Fig. 2: Reachability analysis of Mon and Moff : (a) adjacency matrix of Mon (b) outdegree of Mon, (c) 9 poses of Moff , (d) adjacency
matrix of Moff , and (e) outdegree of Moff .

resolution completeness and potentially better path quality.
However, ensuring the quality and connectivity of the MPs
requires an even more complicated process.

To overcome such curse of dimensionality, the planner
should plan over 4-dim space, not over the lattice within
the 4-dim space. MPs should be classified and applied in a
way that off-lattice nodes can be generated. This is readily
achievable by grouping MPs according to steering s: given
X̄ , one fetches and applies the MPs beginning with s at
X̄ . In this case, each class of MPs should associate with a
unique 1-dim pose q = (s). We construct Moff from Mon

by merging all MPs beginning with the same s to one class,
and pruning MPs that ends close. In this work, we follow
the above process to obtain Mon containing 2904 MPs and
Moff containing 594 MPs. The analysis below shows that
Moff contains enough MPs.

Remark 3.1: Generating Moff from Mon does not alle-
viate the computation complexity of MP generation. How-
ever, off-lattice application allows us to apply MPs that are
generated with θ0 = 0 to other configuration with the same
pose. Therefore, one can directly solve much less steering
problems by further restricting X̄0 to the set: {0} × {0} ×
{0} × [−1, 1].

Remark 3.2: To keep the element in Moff simple enough
to be followed by the underlying control system, we remove
the MPs that contain cusps.
Analysis. Both Mon and Moff have to meet certain criteria
for reasonable planning performance. We analyze them in the
graph framework. Given an MP set M, one can construct a
directed graph G(V, E) where the node set V represents all
possible poses q of X̄0, and E is a collection of directed edges
from qi to qj where each of them represents the existence of
an MP allowing the uni-directional transition from qi to qj .

The graph G constructed from M shall satisfy the follow-
ing properties: 1) the graph is connected, meaning the trailer
can transform from one pose to another pose in finite steps;
2) all nodes have similar in-degree and out-degree, meaning
the transformation from pose to pose can potentially be done
easily; and 3) all q have similar amount of backward and
forward MPs, meaning the trailer can potentially move easily
in 2D space. We construct Gon,Goff from Mon,Moff ,
respectively. Fig. 2 shows the analysis results, when θ0 and
s are discretized over [−π

2 ,
π
2 ] and [−1, 1] with resolution

π
12 and 1

4 , respectively. As a result, Mon ends up with 99
2-dim poses q, and Moff contains 9 1-dim poses. Fig. 2(a)
and (d) plot the adjacency matrices of Mon and Moff ,
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Fig. 3: The critic net (left) and actor net (right).

respectively where yellow in (i,j) means the transition from
qi to qj exists. We can see that the yellow area in Fig.
2(d) covers almost matrix, meaning that without considering
obstacles, the trailer can transform from one pose to another
pose by applying at most two MPs. One easily confirms the
connectivity of Mon,Moff by checking the indegree and
outdegree of all nodes. Fig. 2(b) and (d) show the outdegree
of Mon and Moff , respectively, where Mon exhibits much
more non-uniformity than Moff . Fig. 2(c) illustrates 9 poses
used in Moff . It is noteworthy that Moff is better in the
sense that it is fully connected with much less (5x) MPs.

C. Mode and Estimated Cost-to-go

The planning efficiency of i-AGT is highly dependent
on the mode definition/selection to find the right subset of
MPs to apply; and the estimation accuracy of the cost-to-
go to find the right node to apply these MPs. In this work,
we applied the idea in [10] and classify the MPs into two
modes: forward mode and backward mode. A child node
generated following II-D is likely to explore the forward
MPs if the parent node was also exploring forward, so that
the planner won’t easily “undo” its previous exploration. A
more involved mode definition/selection can be developed,
which may be future work. On the other hand, constructing a
heuristic function to approximate the cost-to-go for trailers is
much more challenging and time consuming than for cars,
because the steering problem does not admit an analytical
solution. We propose to learn the navigation policy and
value function in free space with the soft actor-critic (SAC)
algorithm [29], which is a model-free, online, off-policy,
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actor-critic reinforcement learning method. Previous works
have considered learning polices for similar systems with
deep deterministic policy gradient (DDPG) [30] or deep Q-
Network (DQN) [31]. Since our goal is to obtain a value
function to approximate the cost-to-go, we favour exploration
property and continuous action space, and hence choose SAC
over DDPG or DQN.

To learn the navigation policy, we initialize the trailer state
randomly in X . The network structure is shown in Fig. 3,
where observation refers to the state X and action refers
to the input u. “FC(n)” refers to a fully connected layer
with output size n. “Add” refers to an addition layer, which
adds inputs from multiple neural network layers element-
wise. The “softplus” layer applies the softplus activation
function y = log(1 + ex), which ensures the positiveness
of outputs. The “concat” refers to the concatenation layer,
which takes inputs and concatenates them along a specified
dimension. Since the zero heading and steering configuration
is often a preferred trailer parking pose, reward is given when
the trailer is closed to Xtrain,goal = (0, 0, 0, 0, 0, 0)⊤. Each
episode terminates when the maximum steps per episode
MaxSteps is reached, when the trailer goes out of a
35[m]x35[m] window centered at the goal, or when the
trailer runs into a jack knife configuration. The design of
the reward function and the training process are crucial to
the performance of the trained policy. The two objectives of
the reward function are:

• encouraging the trailer to go to Xtrain,goal as quickly
as possible;

• not discouraging exploration of the complicated trailer
kinematics and the control policy.

We design a sparse reward function. While MaxSteps is
not reached, the reward at time k with observation Xk is:

r(Xk) =

{
1 if ∥Xk −Xtrain,goal∥W1 ≤ ϵ

0 otherwise
, (9)

where W1 = diag([4.83, 4.25, 0.33, 0.15, 0.07, 0.03]) is a
weight matrix and ϵ determines the size of the “goal region.”
Since the reward is sparse, it is hard to receive reward at the
beginning if ϵ is too small. Therefore, we start the training
with ϵ = 1 until the average reward converges, then shrink
ϵ to half of its previous value, and repeat the process until
ϵ = 0.25.

To obtain the approximated cost-to-go from the learned
critic value function, we use a zero vector for the action input

and use the resulting critic value function as the heuristic
value. We compare the proposed heuristic with heuristic
functions based on Euclidean distance and Reeds-Shepp
(RS) path [32], respectively. Fig. 4(b), (c), and (d) show
the heuristic value to reach Xtrain,goal = (0, 0, 0, 0, 0, 0)⊤

starting from X̄ = (x(0), y(0), 0, 0) as an example. The
color indicates the heuristic value, where the locations with
lower cost-to-go are colored in blue and higher cost-to-go
are colored towards yellow. The heuristic value provided by
Euclidean distance is shown in Fig. 4(b), where the value
change is the same in all directions from the origin. This in-
dicates that this heuristic cannot reflect the different levels of
difficulty in maneuvering tasks when the trailer heading and
steering angles are different. The heuristic value provided
by RS path length is shown in Fig. 4(c), which has smaller
values along the x-axis and larger values with location close
to y-axis. This reflects the difficulty in terms of steering for a
car model and similarly for the trailer. However, this heuristic
cannot represent the steering angle, which largely affects
the maneuvering difficulty. The heuristic based on the value
function learned by SAC is shown in Fig. 4(d), which has
lower values along the x-axis because the trailer only needs
to drive straight to the goal. It also captures the fact that the
trailer may need a larger space for maneuvers even though
the Euclidean distance to the goal and the RS path length are
small. This is reflected, for example, by (x, y) = (−20,−5)
having a smaller value than (0,−5) in Fig. 4(d), which is
not captured by the other two heuristics. Thus, the learned
value function can more accurately reflect the true cost-to-
goal. Note that the learned heuristic also has a higher value
when the trailer needs to go backward. Although there is no
preference between forward and backward motions during
planning, in reality, forward motions are preferred because
they are easier to execute.

IV. EMPIRICAL EVALUATION

The proposed method is tested by simulation to benchmark
the performance of the i-AGT with the proposed heuristic
(i-AGT-NN) against the baseline i-AGTs that use RS as
heuristic, ones with on-lattice (i-AGT-RS-on) MPs and the
other with off-lattice (i-AGT-RS-off) MPs. The simulation
environments are designed to mimic a tracker-trailer moving
matirials in a large factory area where it needs to navi-
gate through narrow aisles and park into narrow spaces.
This section presents several of the simulation results as
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(i) Case 11.

Fig. 5: Simulation results of 10 cases. The initial position of the trailer is colored in green and the goal position in colored in red. The
blue line indicates the trajectory of the tractor.

TABLE I: Comparison i-AGT performance with heuristic based on RS and SAC value function

Case
No.

i-AGT-RS-on i-AGT-RS-off i-AGT-NN

Planning
Time [s]

# of Nodes
Explored

Path
length

[m]

Planning
Time [s]

# of Nodes
Explored

Path
length

[m]

Planning
Time [s]

# of Nodes
Explored

Path
length

[m]
1 N/A* N/A N/A 14.44 2094 (18475) 35.67 2.02 319 (972) 38.65
2 0.50 67 (410) 37.68 4.08 585 (6666) 29.37 0.63 79 (317) 33.03
3 N/A N/A N/A 274.22 17381 (514137) 71.62 130.42 9400 (265622) 78.00
4 2.44 274 (5714) 36.27 103.88 7625 (198423) 58.33 0.53 68 (335) 28.79
5 2.98 179 (4812) 90.27 324.78 19551 (623083) 68.58 2.028 300 (912) 47.32
6 2.80 166 (5722) 88.15 5.49 383 (8598) 40.93 8.31 581 (13588) 69.71
7 1.54 98 (2536) 57.19 5.57 413 (5770) 45.19 2.46 182 (2239) 45.19
8 N/A N/A N/A 49.67 2285 (93292) 71.03 14.71 1043 (19528) 75.00
9 N/A N/A N/A N/A N/A N/A 66.52 2859 (134787) 79.05

10 2.89 2094 (4812) 90.27 2.49 172 (2531) 52.09 4.54 325 (4739) 52.09
11 N/A N/A N/A 6.78 466 (8285) 69.52 1.59 124 (1883) 61.87

* Solver failed or time out. The maximum computation time is 350 seconds.

examples. The tractor-trailer parameters used L = 2.396[m]
and d1 = d2 = d3 = 2[m]. The MPs are processed
following the proposed method, which leads us to an Mon

containing 2904 MPs and an Moff containing 594 MPs. The
algorithms terminate when any node on the tree X satisfies
∥X−Xf∥2 ≤ ϵ, where ϵ = 0.2. Simulation is conducted on a
10-core Intel i9 3.7GHz desktop with Matlab R2021a. Fig. 5
shows the simulation results with i-AGT-NN in 10 cases,
where the initial position of the trailer is colored in green
and the goal position is in red. Table I shows the detailed
planner performance.

We first compare i-AGT-NN and i-AGT-RS-off to verify
the effectiveness of the proposed heuristic. Fig. 5(a)-(e)
show the cases for trailer parking where several narrow
parking spots are in the bottom right and an open space
is on the top right allowing for maneuvering. Case 1 and
2 require the trailer to perform a right turn parking and
a parallel parking, respectively. In both cases, i-AGT-NN
outperforms i-AGT-RS-off in terms of planning time and
requires less node exploration with similar resulting path
length. Case 3 moves the trailer from one parking spot to
another. In order to change the heading angle by 180 degrees,
the trailer must utilize the empty space, which makes the
planning problem very challenging, because moving trailer

to the upper boundary for successful planning, is against
the direction suggested by the heuristic of both heuristics.
It takes both i-AGT-NN and i-AGT-RS-off a longer time to
solve the problem comparing to other test cases. However, i-
AGT-NN requires 50% less time than i-AGT-RS-off. Case
4 and 5 show the importance of having a heuristic that
accurately captures the system kinematics. Both cases require
similar navigation skills as case 2 and case 1, respectively.
While i-AGT-NN performs similarly to cases 2 and 1, i-
AGT-RS-off suffers a longer planning time and path length
because the heuristic cannot capture the steering error. In
previous cases 1 and 2, the narrow space around the goal
forced the steering to be closed to zero. However, when the
goal is in a relatively free space, the results of case 4 and
5 shows that it is important to have an accurate heuristic to
efficiently guide the search. Fig. 5(f)-(i) show the cases of
trailer navigating around narrow aisles. All planners perform
similarly in cases 6, 7, 10, and 11, while the planning time is
shown to be largely decreased by i-AGT-NN in case 8 and 9.
The path length from both planners are also similar in cases
7∼11.

i-AGT-RS-on has short planning time in the successful
cases, but it fails to find a solution in nearly half of the
cases due to insufficient resolution, and results in long paths



in cases 5,7,10. Using the NN heuristic may help reducing
path length but will not improve the success rate. Note that
Moff is derived from Mon, and these results show that
allowing off-lattice exploration truly requires less MPs to
reach the same level of (or even improve) planning success
rate. In summary, i-AGT-NN outperforms i-AGT-RS-off in
terms of average planning time while being able to keep
the path length at the same level, and it outperforms i-AGT-
RS-on in terms of success rate and path length. While the
computation time is acceptable for off-line planning in static
environments, the computation load is still heavy for reactive
planning in dynamic environments.

V. CONCLUSION AND FUTURE WORK

This paper presented a motion planning strategy that uti-
lized improved A-Search Guided Tree to enable autonomous
parking of a standard 3-trailer system with a car-like tractor.
While exploiting the well-established lattice idea to circum-
vent the curse of dimensionality, we proposed to perform
planning over 4-dim space instead of planning over 4-dim
lattice by allowing the planner to explore outside of the
lattice. This is achieved by constructing motion primitives
dependent only on the steering angle. This drastically lowers
the complexity in the generation and selection of motion
primitives; leads to better success rate; and typically results
in improved paths. To further increase search efficiency, we
described a data-driven heuristic modeling the maneuver
cost of the trailer to capture the cost-to-go by training a
neural network through reinforcement learning. Simulations
demonstrated the effectiveness of the proposed method in
terms of success rate, planning speed, and path length.
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