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Abstract
Antenna position ambiguity is a common problem that affects radar imaging systems that are
mounted on mobile platforms. Existing approaches that aim to recover a sharp radar image
despite this ambiguity aim to estimate the shift in the antenna position by modeling the radar
scene as a sparse image with a small number of tar- gets using explicit analytical models for
the statistical distribution of the targets in a radar image. The radar imaging problem is then
solved by alternating between estimating the radar image, followed by estimating the shift
in the antenna positions, until convergence is reached. While such approaches have shown
tremendous success, they still struggle to recover the true target positions and may arrive at
incorrect local optima when the measurement noise level is high. In this work, we develop
a data-driven learning-based strategy for modeling the image of the radar scene instead of
relying on explicit analytical models. We adopt a residual Unet architecture of a neural
network to act as a denoising operator which takes a backprojected radar image as input and
outputs a true target image. While deep denoisers may generally result in unstable iterative
algorithms, we introduce a simple filtering step that suppresses noise belonging to the null
space of the radar operator from the iterates to stabilize the iterative procedure. We evaluate
the effectiveness of our solution using simulated numerical experiments and demonstrate its
superiority over the analytic signal prior.
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ABSTRACT

Antenna position ambiguity is a common problem that affects radar
imaging systems that are mounted on mobile platforms. Existing
approaches that aim to recover a sharp radar image despite this am-
biguity aim to estimate the shift in the antenna position by model-
ing the radar scene as a sparse image with a small number of tar-
gets using explicit analytical models for the statistical distribution
of the targets in a radar image. The radar imaging problem is then
solved by alternating between estimating the radar image, followed
by estimating the shift in the antenna positions, until convergence is
reached. While such approaches have shown tremendous success,
they still struggle to recover the true target positions and may arrive
at incorrect local optima when the measurement noise level is high.
In this work, we develop a data-driven learning-based strategy for
modeling the image of the radar scene instead of relying on explicit
analytical models. We adopt a residual Unet architecture of a neural
network to act as a denoising operator which takes a backprojected
radar image as input and outputs a true target image. While deep
denoisers may generally result in unstable iterative algorithms, we
introduce a simple filtering step that suppresses noise belonging to
the null space of the radar operator from the iterates to stabilize the
iterative procedure. We evaluate the effectiveness of our solution us-
ing simulated numerical experiments and demonstrate its superiority
over the analytic signal prior.

Index Terms— Radar autofocus, blind deconvolution, sparse
image reconstruction, deep image priors, block-coordinate descent

1. INTRODUCTION

Distributed radar imaging has emerged in recent years as an essen-
tial tool in a variety of remote sensing applications that require high
resolution imaging. By combining measurements from spatially dis-
tributed antennas with relatively small apertures, distributed imag-
ing achieves a large physical aperture that enables generates a high
cross-range (azimuth) resolution [1–4]. The multi-antenna setup of-
fers the advantage of reducing operational and maintenance costs,
and adds flexibility and robustness to sensor failures.

The radar imaging resolution can be significantly improved by
leveraging prior knowledge of the structure of the scene along with
synchronization of the antennas and exact knowledge of their posi-
tions. However, the true antenna positions are often inexactly known
with the uncertainty spanning multiple wavelengths despite the use
of advanced positioning and navigation systems, such as the global
navigation satellite system (GPS/GNSS) and the inertial navigation
system (INS). To remedy this problem, several solutions have been
proposed in the literature to compensate for the antenna position er-
rors [5–10]. In some cases, the underlying structure of the radar im-

age, such as its sparsity and spatial distribution, is utilized to limit the
solution space and produce higher quality reconstructions [11–19].

Fig. 1: A distributed radar acquisition system with position ambi-
guity. The round dots indicate the assumed but erroneous antenna
positions, while the ×’s indicate the true positions.

In this paper, we explore the effectiveness of incorporating neu-
ral network-based denoisers as deep signal priors to replace the ex-
plicit analytical modeling of the spatial structure of a radar image in
the distributed acquition setting. More formally, we are interested in
the problem of recovering an image of a stationary scene composed
of small number of targets, and represented in vector form as x ∈
CN . The image is to be recovered by processing F−dimensional
frequency-domain measurements {ỹm}Mm=1 fromM distributed an-
tennas that suffer from position ambiguity. Following [18], we adopt
the image domain convolution model to represent the radar pertur-
bations. This model is exact in the colocated transmitter-receiver
regime, which we also adopt in this paper. Let Ãm denote the radar
propagation matrix at the correct antenna positions, and denote by
Am the corresponding matrix at the incorrect positions. Then the
received radar measurements are given by ỹm = Ãmx 6= Amx.
Let hm be a two-dimensional spatial shift kernel corresponding to
the antenna perturbation, then we arrive at the image-domain convo-
lution model represented as

ỹm = Am (x ∗ hm) + nm, (1)

where the image x and the convolution kernels hm are unknowns,
and nm denotes the measurement noise.

In [18, 19], a fused Lasso penalty function that combines the
`1-norm with the total variation function was used to regularize the
ill-posed inversion problem in (1) and promote sparsity along with
piecewise smoothness of the reconstructed radar image. We explore
a data-driven learning-based approach in this paper for modeling the
image of the radar scene instead of relying on explicit analytical
models. We adopt a residual Unet architecture of a neural network to
act as a denoising operator that takes a backprojected radar image as
input and outputs a true target image. However, incorporating such
a neural network inside an iterative solver may result in an unstable



divergent algorithm. This divergent behavior results from the inabil-
ity of the neural network to process noise belonging to the null-space
of A that arises from iterative updates of the radar image since the
network does not observe such noise during training. To remedy this
divergent behavior, we introduce a module that filters out compo-
nents belonging to the null-space of A from the iterates of x before
applying the neural network denoiser. As a result, the incorporation
of the deep denoiser inside the iterative solver becomes stable.

Over the past several years, a rich literature has emerged for
incorporating deep signal priors within iterative reconstruction al-
gorithms. In particular, the plug-and-play priors (PnP) [20] and the
regularization-by-denoising (RED) [21, 22] frameworks replace ex-
plicit proximal mapping operators of penalty functions with sophisti-
cated or learning-based denoisers to improve the reconstruction per-
formance [23]. These deep prior based iterative methods have been
proven to converge when the denoiser is properly trained to be non-
expansive (or demi-contractive) [24,25]. While the above techniques
have been shown to be quite effective at reconstructing signals while
remaining relatively agnostic to the forward operator, it was shown
that incorporating knowledge of the forward operator in the inver-
sion process through algorithm unfolding or deep equilibrium archi-
tectures can significantly improve the reconstruction quality [26,27].
In the context of radar autofocus problems, deep denoisers have been
proposed in the literature as part algorithm unfolding where the net-
work learns to correct the phase of the iterates of the reconstructed
image [28]. Other works considered the autofocus problem synthen-
tic aperture sonar imaging as a postprocessing step where a deep de-
noiser was employed to correct the phase of the reconstructed image
and reduce the computational time [29].

We describe in Section 2 the problem setup where we for-
malize the reconstruction problem and describe the general block-
coordinate descent algorithm for solving the sparse blind decon-
volution problem in the image domain. In Section 3, we present
our proposed autofocus algorithm that exploits a deep image prior
and discuss the stability of the proposed framework. Finally, we
present numerical simulations in Section 4 that demonstrate the im-
provement in performance of the deep prior over the state-of-the-art
analytical model, and conclude the paper in Section 5.

2. PROBLEM FORMULATION

2.1. Signal model

Consider a two-dimensional radar imaging scenario in whichM dis-
tributed antennas are used to detect K targets. The targets are lo-
cated within a spatial region of interest that is discretized on a grid
Ω ⊂ R2, |Ω| = N, and N = Nx ×Ny with Nx and Ny specifying
the number of grid points in the horizontal and vertical directions.

Let Γ ⊂ R2, |Γ| = M be the set of all the spatial locations of the
M antennas. We consider the monostatic case where every antenna
acts as a transmitter and receiver. A transmitting antenna at position
r ∈ Γ emits a time-domain pulse p(t) with frequency spectrum
P (ω), where ω = 2πf is the angular frequency and f ∈ B is the
ordinary frequency in the signal bandwidth B, |B| = F .

Denote by ym and Am the corresponding measurement vector
and imaging operator of antenna pair indexed by m. Let r̃m =
rm + em be the perturbed antenna positions, where em denotes the
positioning errors. The receiver measurement ỹm observes the scene
reflectivity x through the perturbed imaging operator Ãm, i.e.,

ỹm = Ãmx + nm. (2)

Since the operator Ãm is unknown, we need to define the re-

(a) (b) (c)

Fig. 2: Example of the iteration noise that is generated for (a) a target
scene, (b) the first iteration given the radar operator corresponding to
the true antenna positions, and (c) the first iteration given the radar
operator corresponding to the incorrect antenna positions.

ceived measurements ỹm as a function of Am and x. Let hm ∈
RN

2
h , Nh ≤ min{Nx, Ny} be a vectorized two-dimensional shift

kernel of size Nh × Nh. Under the image domain convolutional
model, the received signal of the antenna pair indexed by m is
written as in (1).

2.2. Reconstruction problem

Consider the image-domain convolution model expressed in the spa-
tial Fourier domain below

ỹm = Am (x ∗ hm) + nm
= AmFH

2Dĥm
x̂ + nm,

(3)

where F2 is the two dimensional Fourier transform operator applied
to the vectorization of a matrix, ĥm = F2hm and x̂ = F2x denote
the two-dimensional Fourier transforms of hm and x, respectively,
and Dĥm

is the diagonal matrix with ĥm on the diagonal.
We define the regularized inversion problem for computing the

radar reflectivity image x and the spatial convolution filters hm from
noisy measurements ỹm as follows:

min
x ∈ CN ,

hm ∈ R
N2

h
+

M∑
m=1

1
2
‖ỹm −AmFH

2Dĥm
x̂‖22

subject to 1Thm = 1, ∀m ∈ {1 . . .M},
Rx(x) ≤ 0

(4)

where Rx(·) is a penalty function for x, and 1 is the all one vector.
In [18, 19], a fused Lasso penalty [30] was used to regularize the
ill-posedness of the problem in (4). We will describe below our pro-
posed deep prior based implicit regularization approach that replaces
the explicit prior.

3. RADAR AUTOFOCUS USING DEEP PRIORS

3.1. Deep denoiser as a mapping function

Deep signal priors have recently been shown to offer a significant
boost to the signal reconstruction quality in a wide range of applica-
tions. One approach for incorporating the deep prior in the solution
to an inverse problem is to train a deep denoiser to replace the prox-
imal mapping operator or the projector onto the class of desirable
signals with the deep denoiser.

Unlike the plug-and-play approaches [20–23], we emphasize
here the importance of not using a Gaussian denoiser since the it-
erates generated during the inversion process exhibit artifacts that
are far from additive white Guassian noise. This phenomenon is il-
lustrate in Figure 2. To that effect, we train a deep denoiser Dθ(·)



that can map from the space of backprojected images to the space of
ground truth images. Specifically, for a set of radar measurements
y = Ax + n, we have:

Dθ(AHy) : AHy→ x, (5)

where the vector θ denotes the trainable neural network parameters.
Given a training set of target radar images x ∈ X with associated
radar operators and noisy measurements y = Ax + n, the training
procedure then optimizes for the parameters θ by minimizing the
mean square error loss as follows:

θ∗ = arg min
θ
‖x−Dθ(AHy)‖22, ∀x ∈ X . (6)

This approach is similar in spirit to algorithm unfolding and deep
equilibrium architectures in that the denoiser is provided with exam-
ples of the noise that arises in the iterative updates. The difference
is that our approach much simpler train and requires far less mem-
ory during the training process. The caveat is that an algorithm that
incorporates such a denoiser quickly becomes unstable since the de-
noiser is not trained on noise experienced in later iterations.

3.2. Stabilizing the deep denoiser

To illustrate the effect of iteration noise, we consider a forward-
backward splitting (FBS) procedure, such as the proximal gradient
descent (PGD) iteration, with the proximal mapping operation re-
placed by the deep denoiser, i.e.,

xt+1 = D
(

(I− αAHA)xt + αAHy
)
. (7)

Next, we note that the training procedure of our deep denoiser is
identical to the first PGD iteration with zero initialization and is
given by

x1 = D
(
αAH(Ax∗ + n)

)
= x∗ + e1,

(8)

where x∗ is the target signal, and e1 denotes the noise vector of the
first iteration that contains elements from the null space of A. Ap-
plying the same procedure to later iterations results in the following
expression after rearranging some terms:

xt = D
(
x∗ + αAH(n−Ant−1) + et−1

)
, (9)

where et−1 is the noise term from iteration t − 1 that also contains
components from the null space of A.

However, our denoiser training procedure does not provide the
denoiser with examples of noise outside of the range space of A.
Therefore, we propose to add a filtering step to suppress the null
space components by multiplying the iterates by AHA before in-
putting into the denoiser, i.e.:

xt = D
(
AHA

(
x∗ + αAH(e−Ant−1) + nt−1

))
. (10)

We observed that using such a simple filtering step stabilizes the iter-
ative process and results in convergent algorithms without imposing
any Lipschitz constraints on the structure of the network.

3.3. Reconstruction algorithm

It is evident from (4) that the overall problem is nonconvex and our
aim is to find a stationary point to the problem. Therefore, we follow
a block coordinate descent approach, summarized in Algorithm 1,

that alternates between the accelerated projected gradient apg sub-
routine in Algorithm 2 and the forward backward splitting fbs sub-
routine in Algorithm 3 for each of hm, and x, respectively. We de-
fine the forward operator of the image x for a fixed htm at iteration t
as

Amx (htm) := AmFH
2DF2ht

m
F2. (11)

Similarly, the forward operator of the shift kernel hm for a fixed xt

at iteration t is defined as

Amh (xt) := AmFH
2DF2xtF2. (12)

The shift kernels hm are all initialized to the no-shift kernel h0,
an Nh × Nh zero-valued matrix with the central entry set equal to
one. For each descent step updating hm, we apply a small num-
ber of iterations of Nesterov’s accelerated projected gradient descent
(APG). Note that, every descent step of hm, produces an estimate
h̃m which does not necessarily satisfy the shift kernel properties,
since we only run a small number of APG iterations. Therefore, we
use a projector P (h̃m) onto the space of shift kernels which sparsi-
fies h̃m by setting its largest entry that is closest to the center to one
and setting the remaining entries to zero. For the update of the im-
age x, we use a forward backward splitting approach where forward
step minimizes the data mismatch and the backward step applies the
deep denoiser to project the iterate on to the class of signals used in
the training dataset.

Algorithm 1 Block coordinate descent for solving (4)

input: measurements {ỹm}Mm=1, initial guess x0,h0, and max-
imum subroutine iterations T .
set: j ← 1; h̃0

m,h
0
m ← h0 for all m

1: repeat
2: Amx ← Amx (hj−1

m ) for all m
3: xj ← fbs({Amx }Mm=1, λRx, {ỹm}Mm=1,x

j−1, T )
4: for m← 1 to M do
5: Amh ← Amh (xj)
6: h̃jm ← apg(Amh , µRh, ỹm, h̃

j−1
m , T )

7: hjm ← P (h̃jm)

8: j ← j + 1
9: until stopping criterion

return: estimate of the radar image xj .

Algorithm 2 apg subroutine for updating hm

input: Amh , µRh, ỹm, h̃
j−1
m , T .

set: q0 = 1, u0 = s0 = h̃j−1
m

1: α← inverse of maximum eigenvalue of AmH
h Amh

2: for t← 1 to T do
3: zt ←

(
st−1 + αAmH

h

(
ỹm −Amh st−1

) )∣∣∣
R+

4: ut ← 1
1T ut ut

5: qt ←
1+

√
1+4q2t−1

2

6: st ← ut +
qt−1−1

qt
( ut − ut−1)

return: sT .

4. PERFORMANCE EVALUATION
We evaluate the performance of our radar autofocus framework us-
ing the simulation setup shown in Figure 1. The figure illustrates
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Fig. 3: Reconstructions for two example radar scenes at 20dB PSNR. The columns illustrate (a) the ground truth images, (b) reconstruction
using the correct radar operator and deep prior, (c) the correct radar operator and fused Lasso penalty, (d) autofocus from the incorrect forward
operator with the deep prior, and (e) autofocus from the incorrect radar operator with the fused Lasso penalty [18, 19].

Algorithm 3 fbs subroutine for updating x

input: {Amx }Mm=1, λRx, {ỹm}Mm=1,x
j−1, T .

set: q0 = 1, s0 = xj−1

1: α← inverse of maximum eigenvalue of
M∑
m=1

AmH
x Amx

2: for t← 1 to T do

3: zt ← st−1 + α
M∑
m=1

AmH
x

(
ỹm −Amx st−1

)
4: vt ← α

M∑
m=1

AmH
x Amx zt

5: st ← Dθ∗
(

vt
)

return: sT .

a radar scene acquired by 16 distributed antennas divided into four
arrays with average position error around 2λ and maximum error at
3.5λ, where λ is the wavelength of the center frequency of a differ-
ential Gaussian pulse centered at 6 GHz with a 9 GHz bandwidth.
The true antenna positions are indicated by the ×’s whereas the er-
roneous assumed positions are indicated by the dots. The received
signals are contaminated with white Gaussian noise at peak signal to
noise ratios (PSNR) in the set {20, 10, 4}dB after matched-filtering
with the transmitted pulse.

For training the denoiser, we generate a dataset composed of
7200 samples with the 100 distinct target configurations represent-
ing the ground truth images. For each distinct target configura-
tion, we apply a random rotation and shift and we simulate radar
measurements from 4 distributed arrays with a random number
of antennas M ∈ {4, 8, 12, 16, 20, 24}. We then add Gaussian
random noise to the radar measurements with target PSNR in the
set {4, 6, 8, 10, 15, 20}. The noisy inputs to the deep denoiser are
then generated by computing backprojected images using both the
true and incorrect radar operators. The training dataset is then split
(80/10/10) into 5760 training images, 720 validation images, and
720 test images.

Figure 3 shows a comparison between the reconstructed im-
ages obtained using the deep prior compared to using a fused Lasso
penalty as in [18, 19]. It can be seen from the figure that even in the

Fig. 4: ROC curves of the reconstructed images using the deep priors
based scheme and the fused Lasso regularized scheme.

case of full antenna position knowledge, the deep prior does a bet-
ter job at recovering the target image compared to the fused Lasso
prior. Similarly, we observe superior performance when the auto-
focus algorithm is used. In both cases, there remains a global shift
ambiguity due to the image-domain convolution model. Next, we
compare the detection accuracy of the two prior models under dif-
ferent measurement PSNR values. Figure 4 shows the receiver op-
erating characteristic (ROC) curves computed for twenty different
target configurations. The figure illustrates that the deep prior model
delivers comparable behavior to the fused Lasso prior at 10dB PSNR
but significantly outperforms the analytical model in the 20dB and
4dB settings.

5. CONCLUSION

In conclusion, we presented a stable deep prior training approach
for radar autofocus imaging that outperforms the fused Lasso prior.
The algorithm stability depended on filtering out the null space of
the forward operator before applying the deep denoiser. For future
work, we plan to compare the performance of our approach to deep
denoisers trained using the deep equilibrium model as well as the
iteration unfolding model.
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