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Self-tuning optimal torque control for servomotor drives via

adaptive dynamic programming

Yebin Wang

Abstract—Data-driven methods for learning optimal control
policies such as adaptive dynamic programming have garnered
widespread attention. A strong contrast to full-fledged theoreti-
cal research is the scarcity of demonstrated successes in indus-
trial applications. This paper extends an established data-driven
solution for a class of adaptive optimal linear output regulation
problem to achieve self-tuning torque control of servomotor
drives, and thus enables online adaptation to unknown motor
resistance, inductance, and permanent magnet flux. We make
contributions by tackling three practical issues/challenges: 1)
tailor the baseline algorithm to reduce computation burden; 2)
demonstrate the necessity of perturbing reference in order to
learn feedforward gain matrix; 3) generalize the algorithm to
the case where F matrix in the output equation is unknown.
Simulation demonstrates that the deployment of adaptive dy-
namic programming lands at optimal torque tracking policies.

I. INTRODUCTION

Permanent magnetic synchronous motors (PMSMs) have

been increasingly found in a wide range of application across

factory automation and electrified transportation, thanks to

their high torque density and specific power density. Various

applications put distinctive emphasis and requirements on

PMSMs, such as, productivity for automation related appli-

cations, and energy efficiency for transportation sector. This

means that control in motor drives should exhibit certain

flexibility, i.e., allowing customers to reconfigure objectives

and achieving online adaptation to varying load conditions.

Meanwhile, the desire to build a sustainable society calls

for further refining to strike the balance between energy

consumption and productivity. All these pose challenges and

opportunities to motor designers and control engineers.

This work investigates optimal self-tuning control design

for surface-mounted PMSM (SPMSM) operating in torque

control mode, i.e., the motor torque needs to track a reference

while operating at constant flux and speed. For simplicity,

full state feedback is assumed. Under such setup, SPMSM

dynamics can be modeled as a linear time-invariant (LTI) sys-

tem, with reference torque and unknown model parameters.

It falls into the category of linear output regulation problem

(LORP), where a plethora of theoretical contributions have

been proposed. For example, seminar papers [1], [2] propose

the internal model principle. It is extension to nonlinear

systems can be thoroughly investigated in [3]–[5]. Assuming

the exact knowledge of model, [6], [7] study optimal LORP
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to shape transient performance. Parametric uncertainties in

model are treated by adaptive control theory [8] for LTI

systems, and [9], [10] for nonlinear systems. Recent work

[11], [12] study the optimal tracking of nonlinear system

whereas the plant dynamics are exactly known. Little work

has been focusing on adaptive optimal LORP (AOLORP)

which not only deals with parametric uncertainties in the

model, but also takes care of optimal performance.

Based on adaptive dynamic programming (ADP), recent

work [13] proposes a data-driven solution to solve LORP

optimally, even if when the plant model contains paramet-

ric uncertainties. Inspired by the advancement, this paper

investigates the potential of applying [13], [14] to enhance

flexibility and performance of servomotor drives running in

torque control mode. From theoretical perspective, this paper

is strongly tied to a series of theoretical work on ADP for

LTI systems [13], [15]–[17].

Instead of making contribution to theory, this work is

devoted to tackling three practical issues and challenges

arising from the course of applying [13] to SPMSM. First,

with resistance and inductance unknown, AOLORP for the

SPMSM can be viewed as a special case of problem studied

in [13]. It is meaningful to customize the original algorithm to

reduce computation burden during learning process. Second,

in the course of applying the customized algorithm, we

observe that the customized algorithm is unable to solve

the AOLORP, specifically failing to learn feedforward gain.

Our analysis shows that the constructed regression matrix

for the learning of the value function, feedback and feedfor-

ward control policies suffers from column rank deficiency.

This discovery prompts a necessary step which learns the

feedforward gain matrix by perturbing the reference signal.

This leads to a two-step algorithm. Finally, in the absence

of permanent magnet flux knowledge, the SPMSM admits

a form where matrix F in the output equation is unknown,

and thus cannot be treated by established results. We propose

to first identify the permanent magnet flux by putting the

SPMSM at no load condition and thus follow the two-step

algorithm for learning the feedback and feedforward gain

matrices. Simulation verifies that the proposed algorithm

achieves convergent parameter estimation, and synthesizes

the optimal output regulation control policies.

The rest of the paper is organized as follows. In sec-

tion II, we formulate the self-tuning torque tracking control

problem and introduce the established data-driven solution

to AOLORP. Section III presents two main algorithms to

synthesize optimal torque control policies, when the perma-



2

nent magnet flux is known, whereas Section IV investigates

the case where the permanent magnet flux is unknown.

Simulation results are reported in Section V. Conclusions

and future work are made in Section VI. Notations used in

this work are summarized in Table I.

TABLE I
NOTATIONS USED IN THE SPMSM MODEL

Notation Description

φd rotor flux

Ω rotor speed

φpm permanent magnet flux

id, iq current in d- and q-axis

ud, uq voltage in d- and q-axis

Ls stator inductance

p number of pole pairs

Rs winding resistance

γ Rs/Ls

J rotor inertia

TL load torque

II. PRELIMINARIES

The SPMSM dynamics are modeled as a system of ordi-

nary differential equations which admit the following state

space representation

i̇d = −γid − pΩiq +
ud
Ls

i̇q = −γiq − pΩ(id +
φpm
Ls

) +
uq
Ls

JΩ̇ =
3p

2
(Lsid + φpm)iq − TL

y = [id, iq,Ω]
⊤,

(1)

where ud, uq are control input. In the well-established vector

control framework [18], [19], id is used to regulate the rotor

flux φd which, with its dynamics being omitted, can be

written as φd = Lsid+φpm; and iq corresponds to the torque

that the SPMSM produces, given by Te = 3pφdiq/2. Note

that id, iq can be controlled by ud and uq , respectively, and

thus φd and Te can be regulated independently.

If the rotor speed is not beyond the rated value, φpm is

the desired rotor flux for torque generation, i.e., φ∗d = φpm,

which implies i∗d = 0. In order for SPMSM to operate

beyond its rated speed, a non-zero id is applied to weaken

the magnetic field established by permanent magnet so that

control voltage uq can overcome back-electromagnetic force.

Regular operation is assumed in this work, i.e., φ∗d = φpm
and i∗d = 0.

In industrial applications, the SPMSM is typically put into

either torque or velocity control mode. In torque control

mode, the motor should produce a prescribed torque T ∗

L

whatever its rotor speed is; and in velocity control mode, the

motor should track a prescribed speed no matter what load

torque is. This work considers self-tuning in torque control

mode, where Ω is constant or piecewise constant with long

enough dwelling time.

A. Self-tuning torque control problem

In torque control mode, the rotor speed Ω is determined by

external apparatus, and not a state variable anymore. Hence

the SPMSM model is reduced to a second order ordinary

differential equation representing the dynamics of id and iq:

i̇d = −γid + pΩiq +
ud
Ls

i̇q = −γiq − pΩ(id +
φpm
Ls

) +
uq
Ls

y = [id, iq]
⊤,

(2)

where Ω is a known parameter. It is clear that the model (2)

is LTI. Given state id, iq, the SPMSM generates torque

Te =
3p
2 (Lsid+φpm)iq . With φ∗d = φpm, the operation point

(φ∗d, T
∗

L) corresponds to the equilibrium xe =
[
0,

2T∗

L

3pφpm

]⊤
.

Torque control problem is to design u(x, xe) such that

x(t) → xe as t → ∞. Because the reference T ∗

L could

change, torque control essentially requires to solve an LORP

with the regulated variable being e(t) = x(t)− xe.

In the case that all model parameters are known, well-

recognized results in [1], [2], [5] can be directly applied to

find the solution. Alternatively, one can first determine the

non-vanishing control ue at x = xe, given by

ue =

[
pΩLsi

∗
q

Lsγi
∗
q + pΩφpm

]
. (3)

Let u = ue + v(e) with v(e) = [vd(e), vq(e)]
⊤. One can

obtain the tracking error dynamics

ėd = −γed − pΩeq +
vd
Ls

ėq = −pΩed − γeq +
vq
Ls

.
(4)

Output regulation problem is reduced to stabilization of e =
0. Linear control theory, such as linear quadratic regulator

(LQR), can be employed to achieve optimal torque tracking.

It is unfortunate that exact values of Rs, Ls, φpm are

unavailable in practice. The torque control has to combat

against parametric uncertainties. Meanwhile, it is desirable

to take the transient performance into account, considering

that SPMSM is expected to operate mostly in transient.

The performance and adaptability entails self-tuning optimal

torque control by studying AOLORP. The self-tuning optimal

torque control problem is formulated below:

Problem 1. Let SPMSM operate in torque control mode.

Given the SPMSM dynamical model (2) with Rs, Ls (pos-

sibly φpm) being unknown parameters. Find an optimal

feedback forward control u∗e and an optimal state-feedback

control policy v∗(e) to ensure: 1) the zero solution of the

closed-loop system (or e-dynamics) is globally exponentially

stable; and 2) the following cost function is minimized during

the transient toward e = 0

C(u) =
∫ ∞

0

{
e⊤Qe+ (v(e))⊤Rv(e)

}
dt, (5)

where Q and R are positive definite matrices that weight

tracking accuracy and control costs, respectively.
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B. Adaptive optimal output regulation for LTI systems

Consider the following LTI system

ẋ = Ax+Bu +Dw

ẇ = Ew

e = Cx+ Fw,

(6)

where x ∈ R
n is the system state,u ∈ R

m control input, w ∈
R

q the exogenous system state, and e ∈ R
r the tracking error.

All system matrices are known, and w is the disturbance or

reference. A rough formulation of LORP is: given (6), design

a controller u = −Kx+Lw such that the closed-loop system

is globally exponentially stable and the tracking error e(t)
converges to zero. What is available for controller synthesis

is (x, e, w,A,B,C,D,E, F ). Seminal paper [1] establishes

that LORP is solvable if (A,B) is stabilizable, and there

exists a solution to the following regulator equations

AX +BU +D = XE

CX + F = 0,
(7)

with L = U +KX .

Remark 1. LORP admits a solution if

rank

[
A− λIn B

C 0

]
= n+ r

where λ is any eigenvalue of E [5, Thm. 1.9]. If LORP

is solvable, then for any initial condition x(0) and w(0),
limt→∞(u(t)−Uw(t)) = 0 and limt→∞(x(t)−Xw(t)) = 0.

Remark 2. The solution to optimal LORP, assuming the

knowledge of system matrices A,B,C,D,E, F , can be

readily attained by solving a convex optimization problem

and algebraic Riccati equation sequentially.

Work [13] investigates AOLORP, where matrices A,B,D
are unknown. Since the control for LOPR takes alternative

parametrization: u = −Kx̄ + Uw where x̄ = x − Xw,

AOLORP is about finding the optimal (X∗, U∗) satisfying

min
(X,U)

Tr(X⊤QX + U⊤RU) subject to (7),

where Q > 0, R > 0; furthermore, with ū = u − U∗w, x̄ =
x−X∗w, and its dynamics

˙̄x = Ax̄+Bū

e = Cx̄,

the optimal feedback control ū = −K∗x̄ minimizes

J(ū) =

∫
∞

0

{x̄⊤Qx̄+ ū⊤Rū}dt,

where (A,
√
Q) observable.

III. SELF-TUNING TORQUE CONTROL: KNOWN FLUX

This section deals with the self-tuning torque control when

Rs, Ls are unknown by solving AOLORP. We work on the

id- and iq-dynamics instead of e-dynamics. The signals to be

regulated are e =
[
id, iq − i∗q

]⊤
, where i∗q may or may not

be known. Rewrite (4) in the form of (6) with

A =

[
−γ pΩ
−pΩ −γ

]
, B =

1

Ls

I2, C = I2, E = 0,

and the expressions of matrices D,F depend on how exoge-

nous signals are defined. The target of output regulation prob-

lem is to find control u = ue+v such that limt→+∞ e(t) = 0,

while minimizing the cost function (5).

A. Customized algorithm

The SPMSM dynamics (2) is written in the form (6) with

D =

[
0 0
1
Ls

0

]
, F =

[
0 0
0 −2

3pφpm

]
, w =

[
pΩφpm
T ∗

L

]
. (8)

With Rs, Ls unknown, matrices A,B,D are unknown,

whereas matrices C,E, F are known.

Output regulation problem for LTI systems with unknown

matrices A,B,D has been solved in [13]. With E = 0,

self-tuning torque control for SPMSM can be treated as a

special case of AOLORP considered in [13]. Specifically, the

regulator equations are

AX +BU +D = 0

CX + F = 0.
(9)

One can immediately solve X∗ = −F , which can be

further exploited to customize the algorithm and thus lower

computation burden.

What’s left in (9) is to solve U∗ with A,B,D being

unknown. Since B is non-singular, one can immediately con-

clude that LORP admits a unique solution U∗ = −Ls(AX+
D), i.e., there is no freedom in designing the steady-state

control to optimize system performance. We can skip the

Sylvester map and rewrite the regulation equation (9) into

the following vector form

−(I2 ⊗B)vec(U) = vec(D +AX∗), (10)

where B and the right hand side (RHS) will be attained as a

byproduct of solving the optimal state feedback control ū =
K∗x̄ using data-driven policy iteration (PI) algorithm [20].

To facilitate the following derivation, we let x̄ = x−X∗w
and have its dynamics given by

˙̄x = Ax̄+Bu+ (AX∗ +D)w

e = Cx̄.

If there exists a stabilizing state feedback control law −Kx̄
as a priori, we have

˙̄x = (A−BK)x̄+B(u +Kx̄) + (AX∗ +D)w. (11)

Given (11), data-driven PI algorithm is employed to syn-

thesize K∗, and determine B, vec(AX + D). As usual, it

begins with an initial stabilizing feedback policy v0 = K0x̄,

and the value function is parameterized as a positive definite

quadratic function, i.e., V (x̄) = x̄⊤Pj x̄ with Pj > 0. At

the jth policy iteration, Pj ,Kj+1 and vec(AX +D) will be

determined, given vj = Kj x̄.
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The knowledge of X∗ greatly simplifies the search for K∗.

Specifically, one can construct the regressor matrix based on

the system x̄ = x − X∗w instead of a sequence of x̄i =
x − Xiw, where Xi is the basis of the solution space of

CX+F = 0 in [13]. Hence the evaluation of a control policy

vj , i.e., solving the corresponding value function, along the

trajectory of the resultant closed-loop system (11) over the

time interval [t, t+ δt], can be simplified as follows

x̄⊤(t+ δt)Pj x̄(t+ δt)− x̄⊤(t)Pj x̄(t)

=

∫ t+δt

t

{
x̄⊤(A⊤

j Pj + PjAj)x̄+ 2(u+Kjx̄)
⊤B⊤Pj x̄

+2w⊤(D +AX∗)⊤Pj x̄
}
dτ

= −
∫ t+δt

t

x̄⊤(Q+K⊤

j RKj)x̄dτ

+

∫ t+δt

t

2(u+Kjx̄)
⊤RKj+1x̄dτ

+

∫ t+δt

t

2w⊤(D +AX∗)⊤Pj x̄dτ,

where the first term corresponds to cost related to feedback

control, the second term is contributed by the non-vanishing

control, and the third term related to exosignal. Vectorization

of the aforementioned matrix equation gives the following

linear equations from data over [t, t+ δt]
[
ψP (t) ψK(t) ψD(t)

]
Θ = ψb(t)

where

ψP (t) = v̂ecs(x(t+ δt))− v̂ecs(x(t))

ψK(t) = −2

∫ t+δt

t

(x̄⊤ ⊗ (u+Kj x̄)
⊤)dτ × (In ⊗R)

ψD(t) = −2

∫ t+δt

t

(x̄⊤ ⊗ w⊤)dτ

Θ =




vecs(Pj)
vec(Kj+1)

vec((D +AX∗)⊤Pj)




ψb(t) = −
∫ t+δt

t

x̄⊤(Q+K⊤

j RKj)x̄dτ.

Here for a vector x = [x1, · · · , xn]⊤ ∈ R
n,

v̂ecs(x) = [x21, · · · , x2n, x1x2, · · · , xn−1xn]
⊤;

for a positive definite matrix P ∈ R
n×n,

vecs(P ) = [P11, · · · , Pnn, 2P12, · · · , 2Pn−1,n]
⊤; and

for a matrix T ∈ R
n×m, vec(T ) = [T⊤

1 , · · · , T⊤
m ]⊤.

For self-tuning torque control, the aforementioned linear

equations contain 11 variables to solve, and thus requires

collecting data over at least 11 time intervals. Assume we

collect N data and have

ΨΘ = Ψb

Ψ =



ψP (t1) ψK(t1) ψD(t1)

...
...

...

ψP (tN ) ψK(tN ) ψD(tN )




Ψb =
[
ψb(t1) · · · ψb(tN )

]⊤
.

(12)

With Θ being solved, matrix B can be determined as:

B = (RKj+1P
−1
j )⊤. With the knowledge of (D + AX∗),

feedforward gain matrix U∗ can be readily determined

from (10). The aforementioned procedure is summarized by

Algorithm 1, where 0 < ǫ2 ≤ ǫ1 ≪ 1.

Algorithm 1: One-step algorithm for AOLORP

1 Initialize j = 0, δt,M ;

2 Design an initial feedback control policy ufb = K0x
and feedforward control uff = U0w;

3 for j ≤M do

4 Solve (12) for Θj by applying

uj(x̄) = −Kjx̄+ Ujw + ρ(t), where ρ(t) be a

vector of perturbation signals over [t, t+ Ts];
5 Update Kj+1 for next iteration;

6 if |Θj−1 −Θj| < ǫ1 then

7 Update feedforward gain Uj+1;

8 if |Θj−1 −Θj | < ǫ2 then

9 Break;

10 return Θj;

B. Two-step algorithm

To facilitate the derivation of the two-step algorithm, we

define vectors of parameters Θ1 = [vecs(P )⊤, vec(K)⊤]⊤,

and Θ2 = vec((D +AX)⊤P ).
Let us take a close examination of the regression matrix

Ψ. Particularly, for ψD, we have x̄ ⊗ w = [x̄1w, · · · , x̄nw].
For the first q columns, we have [x̄1w1, · · · , x̄1wq]. Hence,

for N data points, we rearrange the first q columns below

ΨD1 =




∫ δt

0
x̄1(τ)w1(τ)dτ · · ·

∫ δt

0
x̄1(τ)wq(τ)dτ

...
...

...∫ t+δt

t
x̄1(τ)w1(τ)dτ · · ·

∫ t+δt

t
x̄1(τ)wq(τ)dτ




Apparently, if w is constant over [0, t+ δt], ΨD1 has rank 1.

Hence, Θ2 is not identifiable, and thus the feedforward gain

matrix cannot be learned. This implies that one has to adopt

a time-varying reference w during data collection to ensure

that ΨD is full-column rank.

It is natural to modify Alg. 1 by perturbing reference w
with an additive time-varying signal wd(t). Such a treatment

however is susceptible to numerical issues, because of the

co-existence of ρ(t). In fact, one can see that perturbation

wd(t), ρ(t) have similar impacts on ΨK and ΨD. Take a

special case R = Im as an example. We have In ⊗ R as an

identify matrix. The impacts of perturbations ρ(t), wd(t) on

ΨK and ΨD can be represented by the following two terms

δΨK =

∫ t+δt

t

x̄⊤ ⊗ ρ⊤dτ, δΨD =

∫ t+δt

t

x̄⊤ ⊗ w⊤

d dτ,

The mutual-canceling effects of ρ(t), wd(t) would not com-

promise the learning K because u is time-varying, but could

significantly jeopardize the rank condition of ΨD. As a result,

we propose to learn feedback control-related parameters, e.g.,
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Θ1, and feedforward-related parameters, e.g., Θ2, separately.

Particularly, the second step tries to solve for Θ2 from:

ψD(t)Θ2 = ψb(t)− [ψP (t), ψK(t)]Θ1. (13)

The two-step algorithm is summarized in Alg. 2.

Algorithm 2: Two-step algorithm for AOLORP

1 Initialize j = 0, t0 = 0,M ;

2 Design an initial feedback control policy ufb = K0x
and feedforward control uff = U0w;

3 for j ≤M do

4 Solve (12) for Θj by applying

uj(x̄) = −Kjx̄+ Ujw + ρ(t), where ρ(t) be a

vector of perturbation signals over [t, t+ Ts];
5 Update Kj+1 for next iteration;

6 if |Θ1,j−1 −Θ1,j| < ǫ1 then

7 Solve (13) for Θ2 by applying

uj(x̄) = −Kj x̄+ Ujw and

w(t) = w + wd(t), where wd(t) be a vector

of perturbation signals over [t, t+ Ts];
8 Update Θj according to Θ2;

9 Update Uj+1 according to Θj ;

10 if |Θj−1 −Θj| < ǫ2 then

11 Break;

12 return Θj;

IV. SELF-TUNING TORQUE CONTROL: UNKNOWN FLUX

The absence of φpm means the previously defined F is

unknown. Matrices D,F and exogenous signal w have the

the following expressions

D =

[
0 0

φpm

Ls
0

]
, F =

[
0 0
0 −2

3pφpm

]
, w =

[
pΩ
T ∗

L

]
. (14)

The method developed in [13] is not directly applicable,

because Xi cannot be constructed. We propose the following

two-step algorithm to solve such a case.

Algorithm 3: Three-step solution

1 Initialize j = 0, t0 = 0, δ,Mj,Mi, Θ̄
V g
0 ;

2 Design an initial feedback control policy u = K0x;

3 Operate motor with T ∗

L = 0 and solve the first

AOLORP for Kj, Pj , (AX +D)j , Uj ;

4 Solve the regulation equations (9) with D,F given

by (8) for a solution X̂, Û ;

5 Optimal control policy is constructed as:

u = −K∗x+ (K∗X∗ + U∗)w,

where K∗ = Kj, X
∗ = X̂, U∗ = Û .

At first, with T ∗

L = 0, we have e = 0 ⇔ x = 0, and

thus output regulation problem is reduced to the problem of

stabilizing x = 0. The stabilization has the same problem

setup as the case of known φpm. That is: A,B,D are

unknown and C,F are known. Particularly, A,B,C are

exactly the same as the known φpm case, while D,F are

slightly different:

D =
[
0,

φpm

Ls

]⊤
, F = 0. (15)

One can follow the procedure outlined in Section III to

solve Θ. Thanks to F = 0, the second regulation equation

gives a unique zero solution X∗ = 0. Thus we have a simpler

expression of Θ

Θ =




vecs(Pj)
vec(Kj+1)
vec(D⊤Pj)


 .

Once Alg. 2 converges, we obtain Kj , Pj , construct D from

Pj and vec(D⊤Pj), and solve Uj from (10).

At the second step, with non-zero T ∗

L and the knowledge of

B,D, φpm, one can construct a solution to output regulation

problem as

uj = −Kjx̄+ Ujw

x̄ = x−Xjw,

where Xj = −F .

Proposition 1. Assume that the first step gives a unique

solution of Kj , Pj , φ̂pm, Uj, Xj with T ∗

L = 0; and the second

step gives X = X̂, U = Û . The solution to AOLORP

with unknown Rs, Ls, φpm can be constructed with X∗ =
X̂, U∗ = Uj,K

∗ = Kj .

Proof: We need to verify that (X∗, U∗) satisfies the

regulation equations of the original AOLORP; and then show

K∗ is the optimal feedback control of the tracking error

dynamics. We know Xj satisfies the regulation equations

with D,F given by (15), and X̂ satisfies the regulation

equations with D,F given by (8). One can readily verify

that

A(Xj + X̂) +B(Uj + Û) +D = 0

C(Xj + X̂) + F = 0,

where Xj = 0, Uj = 0.

Let x̄ = x−X∗w, ū = u− U∗w. We have

˙̄x = Ax̄+Bū, e = Cx̄.

The optimal state feedback control ū = −K∗x̄ satisfies the

ARE, the solution of which is indeed solved by data-driven

policy iteration in the first step as Kj . Therefore we have the

overall optimal control policy

u = −K∗x+ (K∗X∗ + U∗)w.

This completes the proof.

V. SIMULATION

Simulation compares closed-loop systems result from three

distinct control policies: optimal LQR control with exact

model knowledge, Alg. 1, and Alg. 2, where φpm is assumed

known. Simulation is based on Matlab®2020b.
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TABLE II
PARAMETER VALUES

Notation Values Notation Values

Rs 0.439 Ω ω∗ 10 rad/sec
Ls 0.0615 H φ∗ 0.5 Web

J 0.0163 Kgm2 T ∗

l
10 Nm

Motor model parameter values, references, and con-

troller gains are provided in Table II. The system ma-

trices A,B,C,D,E, F can be readily obtained. With the

full knowledge of model parameters, the system equilib-

rium (xe, ue) is determined as xe = [0, 7.2464]⊤, ue =
[−8.7101, 12.3812]⊤. Matrices Q and R in the cost func-

tion (5) are selected Q = diag(104, 104) and R = I2.

The LQR control is designed based on e-dynamics (4). We

have uLQR = ue −K∗e and the resultant value function is

V (e) = e⊤P ∗e. Performing LQR design yields the optimal

feedback gain and the quadratic value function matrix

K∗ =

[
31.1868 0

0 31.1868

]
, P ∗ =

[
1.8743 0

0 1.8743

]
.

By solving LORP, we obtain the exact solution

X∗ =

[
0 0
0 0.7246

]
, U∗ =

[
0.0028 −0.8660
0.9999 0.3181

]
.

Based on matrices A,B,D,K∗, P ∗, X∗, U∗, the values of

parameters Θ corresponding to the optimal output regulation

are given below

Θ∗ =[1.8743, 1.8743, 0, 31.1868, 0, 0, 31.1868,

0, 27.1642,−31.1868,−9.9210]⊤.

0 0.005 0.01 0.015 0.02 0.025
-0.1

0

0.1

0.2
LQR

Initial control

Alg. 1

Alg. 2

0 0.005 0.01 0.015 0.02 0.025
-0.1

0

0.1

0.2
LQR

Initial control

Alg. 1

Alg. 2

Fig. 1. d-axis current trajectories.

We apply the proposed solutions to learn Θ∗ based on

knowledge of C,E, F and x,w. During the implementation

of Alg. 1, two perturbation signals ρ1(t), ρ2(t), uniformly

distributed over [−1, 1], are injected into control inputs ud
and uq , respectively. For Alg. 2, we additionally inject the

following signal on top of the reference w:

wd =
[
sin(1000t); 0.1 cos(3000t)

]⊤
.

Both AOLORP algorithms start with an initial control policy

0 0.005 0.01 0.015 0.02 0.025
0

2

4

6
LQR

Initial control

Alg. 1

Alg. 2

0 0.005 0.01 0.015 0.02 0.025

-6

-4

-2

0

LQR

Initial control

Alg. 1

Alg. 2

Fig. 2. q-axis current trajectories.

u0 = −K0x̄+ U0w where

K0 =

[
20π 0
0 20π

]
, U0 = 0.

We select an initial condition x(0) = [0, 0]⊤ in simulation.

The sampling period is 10−5sec. Each iteration of learning

Θ uses an episode which restarts and runs the system for

0.005sec. The results are shown in Figs. 1-5. All figures adopt

the following color code: green solid - LQR; blue dash -

initial control; cyan dash - Alg. 1; and red dash - Alg. 2.

Fig. 1 depicts the trajectories of state id and tracking

error ed for four controls. One can tell that both initial

control and Alg. 1 give the same steady state errors. This is

because that Alg. 1 could not estimate (AX +D)⊤P which

corresponds to the last four elements in Θ, and thus fail to

learn the feedforward gain matrix U∗. Similar phenomena

can be observed in Fig. 2 which presents the trajectories of

state iq and tracking error eq. It is interesting to notice two

observations in Figs. 1-2: 1) Alg. 1, although giving steady

state tracking errors, lands transients analogous to the LQR

case; and 2) the initial control results in smaller tracking

errors than Alg. 1. The first is due to the separation principle:

the feedback control gain K∗ and feedforward control gain

U∗ are independent from each other, and can be synthesized,

independently, and thus Alg. 1 could synthesize K∗. The

second reflects the fact that optimal feedback gain K∗ is

much lower than K0 and thus leads to larger tracking errors.

0 0.005 0.01 0.015 0.02 0.025
-10

-5

0

5

LQR control

Initial control

Alg. 1

Alg. 2

0 0.005 0.01 0.015 0.02 0.025
0

100

200

300
LQR control

Initial control

Alg. 1

Alg. 2

Fig. 3. Trajectories of feedback control −Kx̄.
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0 2 4 6 8 10
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200
True cost - Alg. 1

Learned cost - Alg. 1

0 2 4 6 8 10
100

150

200
True cost - Alg. 2

Learned cost - Alg. 2

Fig. 5. True and learned cost-to-goes over iterations.

0 2 4 6 8 10
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10

20

30

40

50

60
Alg. 1

Alg. 2

Fig. 4. 2-norm of parameter error Θ− Θ̂ over iterations.

Fig. 3 plots the trajectories of feedback control portions

for all four cases. For both LQR control and Alg. 2 cases,

tracking error x̄ = e converges to zero, which implies the

output regulation achieved; whereas the initial control and

Alg. 1 settle non-zero steady constants. Fig. 4 plots the 2-

norm of parameter error vector Θ − Θ̂ over iterations for

both Algs. 1 and 2. Particularly, Alg. 1 stops learning after

3 iterations, in spite of the constant parameter estimation

error. This is because Ψ matrix is not full-column rank.

On the contrary, Alg. 2 keeps improving the parameter

estimation until the parameter estimation error is close to

zero. it is noteworthy that at the 3rd iteration, Alg. 2 gives

less parameter error than Alg. 1 beaucase of the additional

step of estimating (AX +D)⊤P .

Fig. 5 compares the true/learned cost-to-go from x(0)
corresponding to control policies that Algs. 1-2 produce.

Particularly, the upper and lower plots show that the progress

of cost-to-go for Algs. 1 and 2, respectively. For Alg. 1, there

exists an offset between the true cost-to-go and the learned.

This is because Alg. 1 could not infer the feedforward gain

correctly and thus the learned value function could not predict

the true value. On the other hand, Alg. 2 can learn the

feedforward gain accurately, indebted to additional step of

estimating (AX + D)⊤P , and thus the true and estimated

cost-to-go values match. It is noteworthy that the learned

cost-to-go for Alg. 1 matches that of Alg. 2. This confirms

that Alg. 1 can learn the feedback gain and the value function,

even though the feedforward gain is biased.

VI. CONCLUSION AND FUTURE WORK

This work investigated whether ADP can facilitate self-

tuning torque tracking control of SPMSM for optimal perfor-

mance. The customized two-step ADP algorithm can synthe-

size the feedback and feedforward gain matrices separately

online, in the presence of model parametric uncertainties.

Our study provided a numerically promising outcome. Future

work will include experiment validation, and extension to

speed control mode.
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