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Abstract
In recent years, fuel-efficient station-keeping techniques have been developed for the planned
Lunar Gateway mission to a near rectilinear halo orbit (NRHO). Station-keeping approaches
that rely on an autonomous navigation system that doesn’t require communications with
Earth are particularly important for ensuring safety and reliability. This paper presents a
targeting approach for NRHO station keeping based on sequential linearization and evaluates
its performance in a closed- loop simulation with a state estimator that receives position
measurements from horizon-based optical navigation (OPNAV). Simulation results indicate
an annual station-keeping cost (delta-v) of about 1.14 m s-1 for the proposed OPNAV-based
station keeping.

AAS/AIAA Astrodynamics Specialist Conference 2022

c© 2022 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





AAS 22-844

SEQUENTIAL LINEARIZATION-BASED STATION KEEPING WITH
OPTICAL NAVIGATION FOR NRHO

Purnanand Elango*, Stefano Di Cairano†, Karl Berntorp‡, and Avishai Weiss§

In recent years, fuel-efficient station-keeping techniques have been developed
for the planned Lunar Gateway mission to a near rectilinear halo orbit (NRHO).
Station-keeping approaches that rely on an autonomous navigation system that
doesn’t require communications with Earth are particularly important for ensuring
safety and reliability. This paper presents a targeting approach for NRHO station
keeping based on sequential linearization and evaluates its performance in a closed-
loop simulation with a state estimator that receives position measurements from
horizon-based optical navigation (OPNAV). Simulation results indicate an annual
station-keeping cost (delta-v) of about 1.14 m s−1 for the proposed OPNAV-based
station keeping.

INTRODUCTION

The upcoming Lunar Orbital Platform-Gateway (LOP-G)1, 2 will be deployed on a 9:2 resonant
near-rectilinear halo orbit (NRHO) around the Earth-Moon L2 point.3, 4 The ideal 9:2 NRHO is
a closed, periodic solution to the Earth-Moon circular-restricted three-body-problem (CR3BP).
However, the CR3BP does not consider the gravitational influence of celestial bodies other than
Earth and Moon, does not make use of the true positions of the celestial bodies with respect to a
time epoch, i.e., ephemeris information, nor does it account for higher-order effects on spacecraft
dynamics, e.g., solar radiation pressure (SRP) and Moon J2 harmonics. To keep station-keeping fuel
consumption as low as possible, a high-fidelity trajectory near the ideal NRHO that accounts for such
realistic effects may be computed and used as a baseline trajectory for the LOP-G.3 See Figure 1 for
an example of such a baseline. The baseline trajectory is aperiodic, of finite length, and unstable.
Since deviations from the baseline are unavoidable due to navigational uncertainty, station keeping is
required.

The recently launched CAPSTONE mission will be the first spacecraft to fly on an NRHO to verify
the dynamics of the orbit and validate station-keeping strategies under real conditions.5 Shortly after
trans-lunar injection, CAPSTONE lost communication with NASA’s Deep Space Network (DSN),
jeopardizing the mission.6 While the spacecraft eventually regained communication,7 such events
highlight the possibility of communication faults and the need for backup autonomous navigation
solutions that do not rely on DSN. Furthermore, in the coming years, NRHO will see a host of
spacecraft, both crewed and uncrewed, arriving to build LOP-G, supply and service it, and use it
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Figure 1: An NRHO solution represented in the Earth-Moon rotating frame FS computed in the high-fidelity
ephemeris model via multiple shooting. The solution consists of 60 revolutions around the Moon spanning
394 days.

as a launching pad for missions to the lunar surface or out to Mars. Given the increased activity,
DSN-based navigation services will need to be rationed. As such, there is a need for alternatives.
The Lunar GNSS Receiver Experiment (LuGRE) will attempt to use GPS and Galileo signals in
the lunar environment and on the lunar surface,8 and CAPSTONE will be testing a new peer-to-
peer autonomous navigation system that measures range and range-rate relative to NASA’s Lunar
Reconnaissance Orbiter (LRO).5

Horizon-based optical navigation (OPNAV) is another candidate technology that has recently
matured and will be demonstrated on the upcoming Artemis 1 mission, currently slated for launch
later this summer.9 OPNAV is a fully onboard solution that can be deployed in the vicinity of any
planet or moon.

In this work, we develop an autonomous station-keeping approach for NRHO that relies on state
estimates generated from OPNAV measurements. In recent years, many strategies for station-keeping
on high-fidelity NRHOs have been proposed.10–20 Such strategies are generally categorized into
short-horizon maneuvering, which maintains a spacecraft near an existing baseline, and long-horizon
maneuvering, which transitions from one baseline trajectory to another. Using both short- and long-
horizon maneuvering enables indefinite station-keeping on NRHOs.17 Short-horizon maneuvering is
further categorized into spectrum-based strategies that align a spacecraft with the stable subspace
near the baseline,20–22 and target point approaches that control the spacecraft state or a portion of the
state to attain a desired value at some future time, see e.g., x-axis crossing control.14, 21 Target point
methods can also be used for long-horizon maneuvering. While long-horizon maneuvers may solve
an optimal control problem to transition between two pre-computed baseline trajectories,17 when
used for long-horizon maneuvers, target point methods do not require a pre-computed baseline to
transition to, but rather generate the baseline trajectory in real-time.10

We introduce a variant of the long-horizon x-axis crossing control method based on sequential
linearization. We use the method in a receding-horizon approach that obviates the need for short-
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horizon station-keeping.14 That is, instead of generating a baseline trajectory offline or computing
one in real time and then using short-horizon maneuvers to maintain the spacecraft near the baseline,
long-horizon maneuvers are computed after each revolution to maintain the spacecraft near an NRHO.
Every apolune, the algorithm checks whether the x-component of the predicted spacecraft velocity at
perilune relative to the Earth-Moon rotating frame six and half revolutions downstream is beyond a
threshold, and if so, triggers the computation of a long-horizon maneuver to ensure the threshold
will be satisfied. The long-horizon maneuver is computed based on sequentially linearizing the
predicted trajectory. A linear approximation of the high-fidelity nonlinear dynamics is iteratively
used to determine a velocity impulse which ensures the desired target velocity is achieved by the
nonlinear system. The proposed approach is closely related to the sequential convex programming
algorithms specialized to trajectory optimization23 where the nonlinear dynamics is linearized about
an iteratively updated reference trajectory.

We demonstrate the robustness of this baseline-free station-keeping strategy on NRHO to state
estimates generated by an extended Kalman filter (EKF) that gets OPNAV position measurements
from a high-fidelity ephemeris-based simulation and the synthetic rendering software Basilisk24 and
Vizard.25 To the authors’ knowledge, only a few other past works12, 26–29 have demonstrated realistic
closed-loop station-keeping simulations with OPNAV, and this work may be the first to do so on
NRHO with implementation details.

The rest of the paper is organized as follows. First we introduce the spacecraft and control model
along with the high-fidelity model for NRHO. We then provides details on horizon-based optical
navigation and the extended Kalman filter. Next, we describe the sequential linearization-based
targeting approach for NRHO station keeping. We then demonstrate the performance of the approach
in a closed-loop station-keeping simulation with OPNAV. Finally, concluding remarks are provided.

SPACECRAFT MODEL

Consider a point-mass spacecraft in cis-lunar space and the synodic frame FS. The frame FS is
a non-inertial rotating frame with its x-axis pointing from the Earth-Moon barycenter towards the
center of mass of the Moon and its z-axis along the angular momentum vector of the Earth-Moon
system in the CR3BP. This frame is commonly chosen for the analysis of NRHOs since it is useful
for observation and communication from Earth [30, Section 2.1.2]. The nonlinear equation of motion
of the spacecraft is given by

θ̇(t) = g(t, θ(t), u(t)), (1)

where θ ≜ [r⊤ v⊤]⊤ is the state vector, r is the position of the spacecraft with respect to the
Earth-Moon barycenter resolved in FS, v ≜ ṙ is the velocity of the spacecraft with respect to FS

resolved in FS, and u is the control vector of thrust forces acting on the spacecraft, resolved in FS.
The right-hand-side of the model in (1) accounts for the major predictable external forces acting on
the spacecraft, see [31, Section 2.3] for further details.

We assume that the spacecraft is actuated with impulsive thrusters, wherein a thrust impulse is
modeled to cause an instantaneous change in the velocity of the spacecraft. Consider the motion of
the spacecraft in the time interval [t1, t2] with a thrust impulse ζ ∈ R3 applied at t′ ∈ (t1, t2). The
control input u(t) can be represented as

u(t) =

[
03
ζ

]
δ(t− t′), (2)
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for t ∈ [t1, t2], where δ(t) is the Dirac delta function. The right-hand-side of (1) can be rewritten as

g(t, θ(t), u(t)) = f(t, θ(t)) + u(t), (3)

for t ∈ [t1, t2], where f includes the previously mentioned external forces acting on the spacecraft.
The (uncontrolled) natural motion of the spacecraft is thus given by

θ̇(t) = f(t, θ(t)). (4)

The spacecraft state at t2 obtained after the impulse at t′ is

θ(t2) = θ(t1) +

∫ t2

t1

g(τ, θ(τ), u(τ))dτ, (5)

= θ(t1) +

∫ t2

t1

([
03
ζ

]
δ(τ − t′) + f(τ, θ(τ))

)
dτ,

= θ(t′) +

∫ t2

t′
f(τ, θ(τ))dτ,

where

θ(t′) = θ(t1) +

[
03
ζ

]
+

∫ t′

t1

f(τ, θ(τ))dτ. (6)

While the propagation of spacecraft dynamics with impulsive thrust (6) is used in the subsequent
development, with minor modifications it can be adapted to handle thrust pulses of finite-duration.
Note that finite-duration thrust pulses on the order of minutes can be approximated fairly well by
thrust impulses due to the slow time scales of the system dynamics (4) on NRHO, especially near
apolune.

A solution to (4) spanning a year is computed using multiple-shooting and is shown in Figure 1.

HORIZON-BASED OPTICAL NAVIGATION

This work considers horizon-based OPNAV as an autonomous backup navigation strategy for
spacecraft station keeping on NRHO, which does not rely on external measurements and commu-
nication, e.g. range and range-rate measurements from the Deep Space Network (DSN). We can
measure (estimate) the spacecraft position in the Moon-centered inertial frame using the OPNAV
algorithm in [32, Figure 5], which is based on detecting the lit limb on the horizon of the Moon
using an image taken by an onboard camera. This technique also provides the covariance associated
with the position measurement [32, Figure 6]. The position measurement and the covariance can be
transformed to the synodic frame FS.

To demonstrate closed-loop station keeping with realistic OPNAV we used the astrodynamics
simulation and visualization software Basilisk24 and Vizard.25 Given a time epoch and the true
position of the spacecraft, Basilisk can query the instantaneous positions of Sun, Earth, and Moon
from the DE 421 ephemeris,33 and call Vizard to render them along with the spacecraft in an
appropriate frame. A pin-hole camera of desired field of view can be attached to the spacecraft,
which can be oriented to point to the Moon. Vizard is capable of accurately capturing the illumination
of the Moon due to the Sun in the view from the spacecraft, particularly the lit limb on the Moon
horizon, which is a key aspect contributing to the realism of our closed-loop simulator. Moreover, the
Vizard camera can simulate commonly observed distortions in images taken from spacecraft. Figure
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Figure 2: Flowchart describing how realistic images of the Moon are acquired from a simulated
onboard camera.

2 illustrates this Basilisk-Vizard pipeline for acquiring Moon images. The limb points on the image
of the Moon captured by the spacecraft camera are detected via the Canny transform34 implemented
in OpenCV,35 and then used in the OPNAV algorithm [32, Figure 5] to measure (estimate) the
spacecraft position.

Figure 3 shows the Vizard windows initialized by Basilisk when the spacecraft is near apolune and
perilune. The limb points detected by the Canny transform from the two instances in Figure 3 are
shown in Figure 4.

In our closed-loop simulation we use images of constant resolution (2048 × 2048 pixels) at all
times. Since the computational cost of the OPNAV algorithm is very dependent on the image
resolution, we prefer not to vary the resolution of the image captured at different regions of the
NRHO trajectory. Since the perilune and apolune of the NRHO are situated at about 3200 km and
70000 km, respectively, to ensure that the Moon occupies roughly the same fraction of area in all
camera images, the field of view F of the camera is varied as follows

F = min

{
2.8 arctan

(
RMoon

dMoon(t)

)
,
5π

12

}
rad, (7)

where RMoon is the mean volumetric radius of the Moon, and dMoon(t) is the distance between the
spacecraft and the Moon. This means that F ranges between 3◦ to 78◦ as the spacecraft moves from
apolune to perilune.

The OPNAV measurement error is empirically observed to range between 2 and 20 km. The large
variation in F causes the OPNAV measurement covariance computed according to [32, Section V] to
be inconsistent with the observed measurement error, especially near perilune where F is large. This
inconsistency is a combined effect of the large variation in F and a potential mismatch in modelling
the geometry of the Moon between the OPNAV algorithm and the CAD model of the Moon used in
Vizard. Since Moon’s oblateness is not very pronounced, we assume that it is a perfect sphere with
radius RMoon = 1737.4 km (mean volumetric radius) in [32, Eq. 6] of the OPNAV algorithm. In a
real mission, we could use a very high resolution camera with constant field of view. This will ensure
that limb detection at apolune is reliable even if the Moon occupies a small fraction of the image.
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(a) Spacecraft at perilune.

(b) Spacecraft at apolune.

Figure 3: Vizard renderings of the Moon and the spacecraft at a perilune and an apolune of a baseline
NRHO solution. The windows on the left of each screen-capture show the image of the Moon taken
by the spacecraft camera. Vizard renders the realistic lighting conditions of the Moon (as seen by the
spacecraft at a given time epoch) based on the positions of Sun, Earth and Moon received from the
DE 421 ephemeris via Basilisk.

Furthermore, if the Moon is imaged at intervals of a few hours, the onboard computers will have
sufficient time to operate on the high resolution image of the Moon to extract the OPNAV position
measurement. Therefore, in our simulation we scale the measurement covariance from the OPNAV
algorithm [32, Figure 6] to ensure that its maximum eigenvalue is at least 16. This ensures that
the state estimator will not excessively trust the OPNAV measurements. Future work will examine
improvements to the simulation framework that allow greater reliance on the OPNAV measurement
covariance.

State Estimation

We use an EKF36 to estimate the spacecraft state from the OPNAV position measurements. The
true state of the spacecraft at the sampling time tj , for some j ∈ N, is

θj = θj−1 +

∫ tj

tj−1

f(τ, θ(τ)) dτ, (8)
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(a) Camera image at perilune. (b) Camera image at apolune.

Figure 4: The lit limb (marked in red) detected by the Canny transform performed on the spacecraft
camera images from Figure 3.

where the true initial state is θ(t0) = θ0. The prediction of the state and covariance at time tj given
the measurements until time tj−1 is

θ̂j|j−1 = θ̂j−1|j−1 +

∫ tj

tj−1

f
(
τ, θ̂j−1(τ)

)
dτ, (9a)

Σj|j−1 = Φ(tj , tj−1)Σj−1|j−1Φ(tj , tj−1)
⊤ +Qj−1, (9b)

where θ̂j−1(τ) is the predicted state for τ ∈ [tj−1, tj ] with θ̂j−1(tj−1) = θ̂j−1|j−1, and the state
transition matrix (STM) Φ(tj , tj−1) is given by integrating the matrix differential equation

Φ̇(τ, tj−1) =

(
∂f(γ, θ)

∂θ

∣∣∣∣(
τ,θ̂j−1(τ)

)
)
Φ(τ, tj−1), (10)

over the time interval [tj−1, tj ] with Φ(t0, t0) = I6. In (9b) the STM computed for the predicted
trajectory is used to propagate the state covariance. Although there is no mismatch between the
actual system dynamics and the system model used in the filter, we introduce process noise to tune
the estimator to account for potential model mismatch in the measurement equation*. We assume the
following form of the process noise covariance (9b),

Qj =

[
q2rI3 03×3

03×3 qv(tj)
2I3

]
, (11)

where

qv(tj) = qv,a

∣∣∣∣∣ d̂Moon(tj)− dMoon,p

dMoon,a − dMoon,p

∣∣∣∣∣+ qv,p

∣∣∣∣∣dMoon,a − d̂Moon(tj)

dMoon,a − dMoon,p

∣∣∣∣∣ , (12)

*Note that we do not account for the highly nonlinear mapping between the Moon image and the OPNAV position
measurement described in [32, Figure 5].
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with qv,a = 0.05 cm s−1, qv,p = 0.5 cm s−1, qr = 0.5 km, dMoon,a = 71000 km, dMoon,p = 3200

km, and the predicted distance to Moon denoted by d̂Moon(tj). Since the performance of the station-
keeping approach is strongly dependent on the accuracy of the velocity estimates, we prescribe qv
as a function of d̂Moon to account for the order of magnitude difference between the apolune speed
(∼ 0.1 km s−1) and the perilune speed (∼ 1.6 km s−1).

The OPNAV position measurement at time tj entering the filter is denoted by

βj = Erθj + νj , (13)

where νj ∼ N (νj , Rj) with mean νj and covariance Rj , and

Er =

[
I3

03×3

]
.

Finally, the correction step of the filter for obtaining the optimal state estimate and covariance at time
tj is given by

Kj = Σj|j−1E
⊤
r

(
ErΣj|j−1E

⊤
r +Rj

)−1
, (14a)

θ̂j|j = θ̂j|j−1 +Kj(βj − Erθ̂j|j−1), (14b)

Σj|j = (I −KjEr)Σj|j−1, (14c)

where Kj is the Kalman gain.

SEQUENTIAL LINEARIZATION-BASED TARGETING

We propose a sequential linearization-based targeting approach for NRHO station keeping in
Algorithm 1 based on the well-known x-axis crossing control method.14 This approach does not
require a pre-computed baseline solution like the one in Figure 1. In fact, it can generate one. The
key idea behind the algorithm is to test (in Line 11) when the spacecraft arrives near apolune whether
the x-component of the velocity at a perilune a few revolutions (typically six14) downstream is
within a certain threshold ϵ. If it is not, then a sequential linearization approach is used to compute a
delta-v correction which ensures that the predicted target perilune state of the nonlinear dynamics
(4) satisfies the velocity threshold. The proposed approach combines the so called short- and long-
horizon maneuvers for station keeping, and reduces vulnerability to accumulation of errors while
targeting several revolutions downstream. The typical x-axis crossing control computes delta-v
corrections based on the state transition matrix (STM) computed for a single predicted trajectory
from current apolune to the target perilune. Since the errors due to linearization accumulate over long
duration, the calculated delta-v correction might not result in the intended behavior. The strategy
we propose iteratively predicts the target perilune state and updates the delta-v until the desired
x-axis velocity at perilune is achieved according to the nonlinear model (4). Each iteration of the
sequential linearization process solves for the minimum-magnitude delta-v correction which ensures
that the magnitude of x-axis velocity at target perilune does not exceed ϵ (Line 12). This problem
is equivalent to that of determining the projection of the origin in R3 onto the intersection of two
half-spaces. The solution of the projection operation is known in closed-form [37, Proposition 29.23].
Any y satisfying the targeting condition in Line 12 belongs to the intersection of two halfspaces{

y
∣∣ ∣∣a⊤y + b

∣∣ ≤ ϵ
}
⇐⇒

{
y
∣∣ a⊤y ≤ ϵ− b

}⋂{
y
∣∣ − a⊤y ≤ −ϵ+ b

}
, (15)
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where a⊤ = Φ[4,4:6]
p and b = ẋp. Also, observe that when ϵ = 0 Line 12 is equivalent to estimating

the projection of the origin onto a subspace. To account for uncertainties with state estimation and
system model, the trigger condition is evaluated every time the spacecraft comes close to an apolune.
Such a recursive strategy for handling uncertainties obviates the need for separate short-horizon
maneuvers to track the solution generated by Algorithm 1.

Algorithm 1 Sequential Linearization-based Targeting

Input: θ̂0, P0,K,H,∆t, ϵ

1: Ev ←

[
03×3

I3

]
2: for 0 ≤ k ≤ K − 1−H do
3: k̃ ← k +H

4: T ←
[
k̃tTBP, (k̃ + 1)tTBP

]
▷ Time interval containing target perilune after H revolutions

5: tp ← SEARCHPERILUNE(θ̂k, T ) ▷ Target perilune time instant

6: T ←
[
ktTBP, tp

]
7: θp ← PROPAGATE(θ̂k, T ) ▷ Target perilune state

8: Φp ← STM(θ̂k, T ) ▷ Linearize about predicted trajectory to target perilune

9: ẋp ← θ[4]
p ▷ x-axis velocity at target perilune

10: ∆vk ← [0 0 0]⊤

11: while ẋp ≥ ϵ do
▷ Compute minimum-norm delta-v as projection on intersection of two half-spaces

12: ∆v ← argmin
y∈R3

∥y∥2 subject to |Φ[4,4:6]
p y + ẋp| ≤ ϵ

13: ∆vk ← ∆vk +∆v ▷ Update delta-v

14: θp ← PROPAGATE(θ̂k + Ev∆vk, T ) ▷ Predict target perilune state with delta-v correction

15: Φp ← STM(θ̂k + Ev∆vk, T ) ▷ Linearize about new predicted trajectory

16: ẋp ← θ[4]
p

17: end while
18: T ← [ktTBP, (k + 1)tTBP]

▷ Estimate state at next apolune with delta-v correction

19:
(
θ̂k+1, Pk+1

)
← PROPAGATEFILTER(θ̂k + Ev∆vk, T,∆t, Pk)

20: end for
21: c←

∑K−1−H
k=0 ∥∆vk∥2 ▷ Cumulative station-keeping cost

Output: c, {∆vj}K−1−H
j=0

The input to Algorithm 1 assumes that the true initial state of the spacecraft is close to an apolune
state of a known NRHO baseline solution. An estimate for the initial state θ̂0 and the associated
covariance P0 are provided as input. It is reasonable to assume that the spacecraft was station-keeping
on another baseline solution, and that Algorithm 1 begins execution when the spacecraft reaches the
terminal apolune state of that baseline solution. The other inputs to Algorithm 1 are the targeting
horizon H , which is the number of revolutions downstream until the target perilune, the planning
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horizon K, which is the total number of revolutions around the Moon for which station keeping is
performed, the sampling time ∆t of the OPNAV measurements, and the threshold ϵ for targeting the
x-axis velocity at perilune.

The various components of Algorithm 1 are as follows. The PROPAGATE(θ̂, T ) function returns
the final state of the trajectory predicted by propagating the spacecraft dynamics (4) with initial
condition θ for time interval T . The STM(θ, T ) function returns the STM for time interval T of
the linear approximation of the system about the trajectory predicted by PROPAGATE(θ, T ). The
PROPAGATEFILTER(θ, T,∆t, P ) function calls the EKF which accepts OPNAV position measure-
ments at sampling intervals ∆t to estimate the true spacecraft state at the end of time interval T ,
with initial state θ and covariance P . And finally, the SEARCHPERILUNE(θ, t, T ) function in Line
5 predicts the target perilune time within the interval T via a bisection search for determining the
perilune state, where the initial state is θ at time t. Note that it is not critical to apply the maneuvers
precisely at apolune. Since the time scale of the dynamics is slow near apolune, we can use the
time period tTBP of the NRHO in CR3BP to approximate the actual apolune time. However, we
cannot use such an approximation for predicting the target perilune states due to the fast time scale
of the dynamics near perilune. Even a small error in predicting the target perilune time may cause
the algorithm to target a state significantly different from the actual perilune which will cause the
trajectory to diverge. This is because states far from either perilune or apolune are supposed to
have significantly large x-axis velocity on a NRHO solution. So targeting them to be close to zero
would be incorrect. The SEARCHPERILUNE function ensures that the target perilune state is accurately
predicted.

A block diagram of the simulation stack considered in this work with station keeping, state
estimation, and OPNAV is shown in Figure 5. The first component of the OPNAV block is described
in Figure 2. We do not consider spacecraft attitude control in this work. We assume that the spacecraft
camera(s) can be oriented to image the Moon in each sampling period.

Figure 5: Block diagram of the closed-loop station-keeping simulator with OPNAV.
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RESULTS

This section presents the results of station keeping on NRHO from the closed-loop simulation
described in Figure 5.

Figure 6 shows the error in state estimates from the EKF that receives OPNAV measurements at
sampling intervals of 3 hours for a spacecraft that followed a known NRHO baseline solution for
26 days. The 2σ bounds on measurements and state estimates are shown as red and blue patches
respectively. The true initial state is an apolune state of the baseline solution. The initial state estimate
for the filter is obtained by randomly perturbing the true position by 5 km and true velocity by 5 cm
s−1. The initial state covariance is a diagonal matrix chosen to be consistent with the initial state
error. The high sensitivity of the spacecraft dynamics near perilune leads to relatively large state
estimation error. The spikes of about 40 cm s−1 prominently seen in the error in velocity estimates
in Figure 6 correspond to perilune. Hence, perilune is unsuitable for applying delta-v corrections.
However, the velocity estimation error near the apolune region is relatively lower at around 1 cm s−1,
which allows maneuvers to be executed effectively.

Furthermore, the measurement error along z-axis in Figure 6 is significantly higher than the error
along the other two axes. This is partly due to the fact that the boresight direction of the spacecraft
camera is closely aligned with the z-axis for a significant duration in each revolution of the NRHO, in
particular when the spacecraft is close to apolune and perilune. It is well-known that in horizon-based
OPNAV there is larger measurement uncertainty in the camera boresight direction.38

Given the sensitivity of the spacecraft dynamics, it is possible for the estimated and true states
to diverge away after a large delta-v correction (∼ 5 cm s−1) if the filter trusts the predicted state
too much without accounting for the discontinuous change in state after the impulse. Therefore,
we re-initialize the state covariance matrix to the value at the start of the simulation each time the
magnitude of the computed delta-v correction exceeds a specified threshold (1 cm s−1).

Figure 8 shows the states estimates and OPNAV measurements for a 1-year station-keeping
simulation obtained using Algorithm 1. The OPNAV measurements are obtained at 6 hr intervals.
The tolerance ϵ on the target perilune x-axis velocity is 20 m s−1. The estimation error at the apolune
region (where the maneuvers are applied) is roughly 1 km in position and 1 cm s−1 in velocity. The
annual station-keeping cost for this simulation is 114.06 cm s−1. Repeating the simulation with
variations in the initial state estimate given to the the filter results in similar station-keeping cost. In
comparison to the relevant NRHO station-keeping result with OPNAV reported for the medium-error
quiet spacecraft case in [12, Table 7], the result from the proposed approach requires significantly
lower annual delta-v. The cumulative delta-v as a function of time, shown in Figure 8a, increases
gradually without large jumps, which is desirable for the reliability and safety of the approach.

CONCLUSION

We proposed a targeting-based approach for station keeping on the near rectilinear halo orbit
(NRHO) chosen for the Lunar Gateway and demonstrated it in a closed-loop simulation with a state
estimator which receives spacecraft position measurement from horizon-based optical navigation
(OPNAV). We use the astrodynamics simulation and visualization software Basilisk and Vizard for
generating realistic OPNAV measurements from synthetic images of Moon which accurately show
the limb formed on the Moon horizon due to illumination from the Sun. The proposed approach is
able to deliver an annual station-keeping cost close to 1.14 m s−1, and it is robust to measurement
uncertainty of about 10 km observed with OPNAV measurements on the NRHO trajectory.
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Figure 6: EKF state estimation error with OPNAV measurements provided at 3 hour intervals for a
spacecraft that follows a NRHO baseline solution for 26 days. The 2σ bands for the OPNAV position
measurement (red) and state estimate (blue) are shown.

Figure 7: The state estimation error for a 1-year closed-loop station-keeping simulation with OPNAV
measurements. The 2σ bands for the OPNAV position measurement (red) and state estimate (blue)
are shown.
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(a) Cumulative delta-v = 114.06 cm s−1. (b) Position trajectory.

Figure 8: Station keeping with OPNAV measurements.

Future work will improve the simulator to make the computation of OPNAV measurement co-
variance more reliable, and specialize the design of the filter to exploit the dynamical features of a
high-fidelity NRHO solution to reduce the state estimation error at perilune, which will potentially
contribute to a reduction in the annual station-keeping cost. The robustness and efficiency of the
station-keeping approach with DSN and OPNAV measurements will be compared. In addition, the
performance of the proposed approach adapted with short-horizon maneuvers will be examined.

NOTATION

In n× n identity matrix
x[j] jth entry of vector x

x[j:k] vector formed by jth through kth entries of vector x
Y [i,j:k] vector formed by entries from columns j through k of the ith row of matrix Y
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