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Abstract
Many finite-element simulations are required to fully evaluate the performance of a motor
design candidate at different operating points. In this work, we investigate deep learning based
surrogate modeling technique for motor design optimization to reduce simulations required.
In particular, we introduce topological data analysis to electric machine design, which extracts
topological features from motor design images for the training of machine learning models.
We introduce the process of computing persistence homology and Betti sequences, which
serve as vectorized input data for machine learning models. We propose two-channel deep
learning models, with one convolutional network branch built for motor image data, and
another multi-layer perceptron branch for Betti sequences. We show with numerical tests
that two-channel models perform better in prediction accuracy and generalization capability
compared with models without topological feature input. The results show that the proposed
strategy is effective for image- based deep learning problems.
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Abstract—Many finite-element simulations are required to
fully evaluate the performance of a motor design candidate at
different operating points. In this work, we investigate deep
learning based surrogate modeling technique for motor design
optimization to reduce simulations required. In particular, we
introduce topological data analysis to electric machine design,
which extracts topological features from motor design images
for the training of machine learning models. We introduce the
process of computing persistence homology and Betti sequences,
which serve as vectorized input data for machine learning
models. We propose two-channel deep learning models, with
one convolutional network branch built for motor image data,
and another multi-layer perceptron branch for Betti sequences.
We show with numerical tests that two-channel models perform
better in prediction accuracy and generalization capability
compared with models without topological feature input. The
results show that the proposed strategy is effective for image-
based deep learning problems.

Index Terms—Design optimization, Electric Machines, Ma-
chine Learning, Persistence Diagram, Surrogate Model, Topo-
logical Data Analysis

I. DESIGN OPTIMIZATION OF ELECTRIC MACHINES

Electric machines are widely used in many applications
including consumer appliances, industrial appliances, and
transportation. Power dense, energy efficient, and cost effec-
tive electric machines are highly desirable across all these
application domains. While electric machine technologies are
well established, the ever increasing requirements for electric
machines especially in new application fronts of the modern
society, such as electric vehicles and aircraft, pose new
challenges for electric machine design. While there are many
aspects in improving the performance of electric machines in-
cluding advanced materials and manufacturing technologies,
the design optimization of electric machines is an effective
tool that motor designers can utilize toward these design
goals. Bramerdorfer et al. reviewed techniques to optimize
electric machines in [1], Most of which use a parameterized
geometry linked to population-based optimization algorithms,
such as genetic algorithms (GA). However, parameterized
geometry limits the design space since the components
can only take shapes within the specified parameter range.
Topology optimization, on the other hand, can overcome this
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limitation of parametric optimization by allowing a free form
exploration of the design space. Recently, some topology
optimization techniques have been adapted for the design
optimization of electric machines [2]–[5].

For the accurate analysis of electric machine perfor-
mances, finite-element method (FEM) based numerical sim-
ulations are utilized by motor designers. However, such
simulations can be time-consuming, especially when many
different operating points need to be evaluated for a design
candidate. For the topology optimization of electric machines,
the long simulation time poses even larger challenge, due to
the expanded design space, and the much increased number
of design candidates to be evaluated as compared with con-
ventional parametric optimization. Therefore, it is desirable
to seek for alternative modeling and analysis methods other
than FEM that can make fast predictions to the motor
performance at different operating points. Surrogate model
based optimization has been investigated to speed up the
process [6]. However, due to the highly nonlinear nature, it
is difficult for a surrogate model to determine the machine
efficiency at different locations of the efficiency map with
respect to a design parameter.

Recently, data-driven approaches have been proposed to
address the problem, by developing machine learning and
deep learning models for the estimation of output perfor-
mances of an electric machine that are conventionally derived
from FEM simulations [7]–[10]. For motor optimization
problems, the cross section of each motor design candidate
is often described by a two-dimensional image, which is
fed to the trained machine learning model, which quickly
provides predictions to the desired performance metrics,
such as average torque, torque ripple, and efficiency. While
many machine learning and deep learning models can be
utilized, such as support vector regression models, Gaus-
sian process regression models, and multi-layer perceptrons
(MLPs), convolutions neural networks (CNNs) have proven
to be very effective for image analysis and recognition.
Through the application of relevant filters in convolution
layers, a CNN is capable of capturing the spatial and temporal
dependencies in an image, performing improved fitting to
the image dataset over conventional methods. Many deep
learning models have been proposed based on CNN for
various applications. Developed for image recognition and
trained with ImageNet [11], very deep convolutional net-
works, such as VGGNet [12] and ResNet [13], have achieved
superior classification accuracy. CNN based models have
also been applied to facilitate electric machine optimization



problems [7]–[10]. However, deep networks often have a
huge number of parameters, in the order of millions, which
require a large amount of data to train. In addition, they are
susceptible to noisy data and tend to overfit with training
data, and can have difficulty in generalizing over unseen data.
Recently, transfer learning technique is applied to reduce
the amount of training data needed, which adapts a VGG16
network pre-trained on ImageNet to the cross section images
of electric motors, and tunes only a small part of the network
for the prediction of motor performance metrics including
average torque and torque ripple [14]. This is advantageous
in reducing the amount of training data and the effort of
retraining the network, as the model weights have already
been trained on a huge dataset in ImageNet, which includes
over 1.2 million images [11]. While one main advantage
of CNN based network is the capability of extract features
automatically through the training process, it falls short in the
explainability as to what features are exactly learned, and the
generalization capability to unseen data.

Topological data analysis (TDA), on the other hand,
offers a mathematically rigorous way of extracting the shape
information, or topological features of the data. Topology is
a branch of mathematics to deal with qualitative geometric
information [15], which studies the connected components
of a space, such as the classification of loops and higher
dimensional surfaces within the space. Compared with other
straightforward geometric methods, which quantitatively de-
scribe geometric properties such as curvatures, topology
describes geometric properties in a much less sensitive way to
the choice of metrics. Topology is coordinate-free, and only
extract intrinsic geometric properties of geometric objects.
These features are attractive for addressing the challenges
in many data analysis problems, such as the extraction of
information from high-dimensional, incomplete, and often
noisy datasets. Therefore, TDA, which develops and utilizes
topological methods in data analysis, has been emerging in
recent years, and seen applications in image analysis [16],
time-series data analysis [17], sensor networks [18], chem-
istry [19], and material science [20], etc.

In this work, we explore TDA for deep learning based
models for electric machine analysis and design optimization.
We extract topological features, in particular, persistence
diagrams and Betti sequences, from cross section images
of electric machine design candidates, and together with the
cross section images, to train a deep learning model for the
prediction of two-dimensional flux map of a motor design. In
particular, a multi-channel architecture is utilized for the deep
learning model, with images fed into one branch of CNN
based model, topological features extracted from the images
fed into the other branch of MLP model, and the output of
the two branches is then fed into a common set of dense
layers before finally connecting to the flux map parameters
to be calculated. We show that the prediction accuracy using
topological features combined with cross section images is
consistently better compared with models using motor cross
section images only, indicating that the model generalizes

better with unseen data with TDA.
The rest of the paper is organized as follows. In Section II

we define the multi-output regression problem in motor anal-
ysis; in Section III, we introduce persistence homology and
Betti sequence, the calculation process, and the analysis of
obtained Betti sequences from motor images; in Section IV,
we introduce the proposed deep learning model architecture
and the set up of the training process; in Section V, we
present the results of the numerical tests and discuss the
effectiveness of the proposed method; in Section VI we
conclude the paper.

II. PROBLEM DEFINITION

Figure 1. The cross-section image of an interior permanent magnet motor
for the study.

In this study, we deal with the design optimization of
an interior permanent magnet synchronous motor (IPMSM).
The motor has 48 slots in the stator, 8 poles in the rotor
with V-shaped permanent magnets embedded , and the whole
rotor core region is subject to optimization. During the
optimization process using GA and Normalized Gaussian
network (NGnet) method, which is described in details in
Ref. [8], a total of 27,949 design candidates are generated
and evaluated using FEM simulations. A quarter of the cross-
section of these design candidates are stored in the form of
RGB images, with size 224 × 224 × 3, a few examples of
which are shown in Fig. 1. Across all the design candidates,
all other design parameters are kept the same, except for
the shape of rotor core region. These images are collected
and served as input data of the dataset for machine learning
purposes.

For each motor design, magneto-static simulations are
conducted at 100 operating points of d-axis current Id and
q-axis current Iq . The magnetic flux linkage ϕd and ϕq are
obtained in each condition, in order to construct the 2D flux
maps ϕd(Id, Iq) and ϕq(Id, Iq). Such 2D flux maps can be
approximated described using the quadratic functions:

ϕq = βq0i
2
d + βq1i

2
q + βq2idiq + βq3id + βq4iq + βq5, (1)

ϕd = βd0i
2
d + βd1i

2
q + βd2idiq + βd3id + βd4iq + βd5. (2)



The 12 coefficients, βq0 through βd5, in the quadratic equa-
tions are obtained through least-square fitting of simulation
results for each design, and stored in the form a 12 ×
1 vector. Fig. 2 shows the comparison of the q-axis flux
map constructed directly from the FEM simulations, and
the one generated from the fitted quadratic function for
one design candidate, which matches well with the original.
These coefficients in the vector form serve as the output
data of the dataset. The goal in this work is to develop
machine learning models to have good prediction of the 12
flux map coefficients for a new design candidate, such that
the normalized root-mean-square error (RMSE) between the
prediction and the ground truth values is as small as possible.

With the flux map, motor torque can be calculated with
T (id, iq) = ϕ × i = ϕdiq −ϕqid. In recent study [21], CNN
models have been developed to learn such current-dependent
torque characteristics of motors.

Figure 2. The comparison of q-axis flux map (a) obtained directly from
FEM simulations, and (b) from fitted quadratic function.

III. TOPOLOGICAL FEATURE EXTRACTION

In this section, we give a brief introduction to topological
data analysis method with persistent homology and the pro-
cess of generating persistence diagram and Betti sequence
from an input image, and discuss on the obtained Betti
sequences from motor images.

Persistent homology is a powerful mathematical tool to
compute the topological features of a space that persist across
multiple scales. An important enabler for TDA, it is pioneered
by Edelsbrunner [22], and Zomorodian and Carlsson [23],
and gained popularity largely after the seminal paper by
Carlsson in 2009 [15]. The key idea is to represent the
data points (point clouds), sampled from the space, by a
parameterized family of simplicial complexes. The homology
of the data space can then be computed algorithmically
through filtration of nested families of simplcial complexes,
to not only obtain information about the topological features,
but also encode their evolution across the scales, such as the
birth and death of edges and holes.

A simplicial complex can be roughly considered as a
union of points, edges, triangles, tetrahedrons, and polytopes
in higher dimensions. A filtration of a simplicial complex K
is a nested family of sub-complexes (Kr)r∈T , where T ⊆ R,
such that for any r, r′ ∈ T , if r ≤ r′ then Kr ⊆ Kr′ , and
K = ∪r∈TKr [24]. If f : K → R is a function, then the
family Kr = f−1((−∞, r]), r ∈ R defines a filtration called
the sublevel set filtration of f .

In practice, the parameter r can be interpreted as the
radius of the point clouds in the data. During the construction
of filtration, some features may appear and then disappear
and the persistence of these homological features can be
considered as the features of the dataset. In a filtration, one
can record the birth, which is the time a feature appears, and
death, which is the time it disappears as it gets filled in with
a lower dimensional simplex. The essence of the persistent
homology is to track the birth and death of these homological
features in K = ∪r∈TKr for different r values, which can be
described by a persistence diagram. A persistence diagram is
a set of points (b, d)|b, d ∈ R2 and d > b, where each point
corresponds to the birth and death of topological feature in a
corresponding family of simplicial complexes. In particular,
each point (b, d) denoted a topological features being born
at radius b and “dying” at radius d.

There are different algorithms for the filtration of simpli-
cial complexes and the computation of persistence diagrams,
with implementations available by several software packages.
In this study, we use the python library Ripser.py for the com-
putation of persistence diagrams for all the rotor shapes [25].

(a) (b)

(c) (d)

Figure 3. Computed persistence diagrams for the four motor core designs
shown in Fig. 1

There is a persistence diagram Hk for each homological
dimension k, which can be combined into one single figure.
Fig. 3 shows examples of computed persistence diagrams
from the motor images corresponding those shown in Fig. 1,
where both H0 and H1 diagrams are plotted. As can be seen,
while these diagrams are distinct from each other, the number
of points in a persistence diagram is not fixed for different
input data. Since we want to use the topological features
for machine learning purposes, and most machine learning



models require input having the same length, we would hope
to represent the persistence diagrams of different input data
in a vectorized way. Betti sequence, or Betti curve, is an
effective way to achieve that [24], [26]. A Betti sequence
can be derived from a persistence digram. Assume D is
a persistence diagram with a finite number of off-diagonal
points, with α = (bα, dα) a point in the diagram, and
maximum filtration radius rmax > 0, let {ri}M0 be equally
spaced points within [0, rmax], the Betti sequence of D is a
vector of length M defined as β⃗ = (βi)

M
1 , with the entries

βi count the number of points in the persistence diagram at
filtration radius ri around the point clouds in the data space.
In other words, if we define the function:

fα(r) =

{
1, bα ≤ r ≤ dα

0, otherwise

Then the points on a Betti sequence is obtained from the
summation:

βi =
∑
α∈D

fα(ri).

(a) (b)

(c) (d)

Figure 4. Computed Betti sequences for the four motor core designs shown
in Fig. 1 and persistence diagrams shown in Fig. 3.

Fig. 4 show examples of computed Betti sequences from
motor core images. In the computation all the Betti sequences
have the same length of 1000, with the x-axis the index
of the sequence corresponding to filtration radius, and y-
axis the number of features corresponding to H1 persistence
homology. By comparing the figures we can see that the
different rotor designs can be described by distinctive Betti
curves.

IV. NETWORK ARCHITECTURE

In this study, a total of 12 flux map model coefficients
needs to be determined for a given motor design image,
which is essentially a multi-output regression problem. Many

machine learning algorithms are developed for single-output
regression, which predicts a single numeric value. While
some algorithms do support multi-output regression, such as
linear regression and decision trees, their performances for
highly nonlinear problems with high-dimensional input data
suffer. Deep neural network models are more commonly used
to tackle such problems.

Figure 5. The high-level network architecture with input image and Betti
sequences. When using only input image and CNN model, the steps with
dashed lines are not implemented.

In this work, we propose a multi-channel architecture to
utilize both the motor cross-section images and their extracted
topological features represented as Betti sequences for the
prediction of motor flux maps. The high-level structure is
shown in Fig. 5, with the images fed into the first branch of
deep convolutional network, while the corresponding Betti
sequences fed into the second branch of MLP network. The
output from the CNN model is flattened and connected to a
fully-connected layer of 512 nodes. The outputs of the two
branches are then concatenated together as the input of a
subsequent fully-connected layer, before connecting to the
output of 12 flux map coefficients. For comparison, when
using only the cross-section images without Betti sequences,
the second branch of the network (steps with dashed lines in
the diagram) is removed, leaving only the CNN branch. For
the Betti sequence branch, we vectorize the Betti sequences
of all design images with the same length of 1000, and feed
them into a MLP network of three dense layers of size 512,
384, and 256 nodes respectively.

For the CNN model structure, we tested two different
approach: a simple vanilla CNN with two convolution layers,
and a deeper model based on ResNet50 [27], which has 48
Convolution layers along with 2 Pooling layers, and their
model structures are shown in Fig. 6(a) and 6(b) respectively.
For the vanilla CNN model, we first extract the rotor shape
from the provided RGB images and reduce the size to 56×56
as input for the following layers, which include two convo-
lutional layers with number of filters 32 and 48 respectively,
and subsequent MaxPooling layers for feature extraction and
dimensionality reduction, as shown in Fig. 6(a).

The high-level architecture of the ResNet50 model is



(a)

(b)

Figure 6. Two CNN models corresponding to the gray box in Fig. 5: (a) A
vanilla CNN model; (b) ResNet50 model without subsequent dense layers.
With transfer learning, trained weights from ImageNet are used, with only
stage 4 and 5 weights retrained.

Table I
PARAMETERS FOR NUMERICAL TEST SETUP

Training data size 20124
Testing data size 7825
Traing/Testing split 72%/28%
Max. Number of epochs 200
Batch size 8

shown in Fig. 6(b). ResNet stands for residual network,
which enables the effective training of very deep neural
networks that were previously impossible to train due to
vanishing gradients [27]. A key feature of ResNet is the
“skip connections” in convolution blocks and identity blocks,
which adds the input x itself to the output F(x) of each
block including several convolution layers, so that the output
becomes F(x) + x. Skip connections set up a shortcut for
gradients to pass through, which mitigates the vanishing
gradient problem; they also allow the model to learn an
identity function to ensure the higher layers perform at least
as good as the lower layers.

For the ResNet50 model, we utilized two training method:
training all model weights from scratch, and transfer learn-
ing with weights pre-trained from ImageNet. When transfer
learning is utilized, we keep the model weights trained on
ImageNet up to the third stage, and only retrain the later
stages 4 and 5 using the motor dataset. Major parameters for
the set up of the numerical tests are listed in Table I.

V. RESULTS AND DISCUSSIONS

With data pre-processed and deep learning models set
up, we start the training process with each model. Due to
the shuffling of data during the training, 3 independent tests
are conducted for each model, and the convergence plots
are shown in Fig. 7. For the vanilla CNN based models, as
shown in Fig. 7(a), the two-channel model, which feeds the
Betti sequences extracted from motor images into the second
branch of MLP model, converges faster and performs better
with lower root-mean-square error (RMSE), as compared
with the single-channel model with CNN fed with motor
images only. The ResNet50 based model achieves lower

(a) (b)

Figure 7. The convergence plot of the training process of each CNN model,
and the corresponding multi-channel (MC) model with Betti sequences: (a)
A vanilla CNN structure; (b) ResNet50 model trained from scratch, and with
transfer learning (TL).

RMSE when trained from scratch using the motor dataset,
and even better performance with transfer learning from
ImageNet weights, as shown in Fig. 7(b). The training losses
for the multi-channel (MC) models with Betti sequences
included are consistently lower than their counterparts of
models without Betti sequences.

We then test the trained models on the testing dataset, and
the results are listed in Table II. For vanilla CNN, the MC
model has a lower normalized RMSE of 0.297 in prediction
for the 7825 testing data, as compared with 0.335 for single-
channel model. For the ResNet50 models, the MC model
has a lower RMSE of 0.242, as compared with 0.260 for
the single-channel model when trained from scratch, both
after 200 epochs of training. When transfer learning from
ImageNet is utilized, the model achieves better performance
with less number of epochs trained. The single-channel model
has prediction RMSE 0.261 after just 50 epochs of training,
and 0.218 after 100 epochs. With MC model, the RMSE is
reduced to 0.255 after 50 epochs, and 0.214 after 100 epochs.
The better results of deep ResNet50 based model show
the improved feature extraction capability from images with
more convolutional layers, and the effectiveness of transfer
learning strategy [14]. The corresponding MC models with
Betti sequences perform consistently better than CNN only
models for making predictions on unseen data, which shows
improved generalization capability. TDA provides a new tool
for feature engineering of data structures, especially image
data. Betti sequences extract topological features from the
motor cross section images, and improve the effectiveness of
the deep learning models.

To quantify the prediction error in more details, we plot in
Fig. 8 and Fig. 9 the prediction of each flux map coefficient
on all 7825 testing data, using the trained ResNet50 MC
model, together with ground truth generated from FEM
simulation. All coefficients agree very well with the ground
truth values, with correlation coefficients higher than 0.96.

We want to mention that, while the training process takes
hours, the prediction of the flux map using trained deep
learning model is almost instantaneous for a given motor
design. While the models were built for forward prediction
in this work, deep learning models can also be built for the



Table II
FLUX MAP COEFFICIENTS PREDICTION PERFORMANCE ON UNSEEN TEST DATA USING VARIOUS TRAINED MODELS.

(TL: TRANSFER LEARNING. MC: MULTI-CHANNEL MODEL WITH BETTI SEQUENCES)

Model Epochs trained RMSE: Test 1 RMSE: Test 2 RMSE: Test 3 RMSE: Average

Vanilla CNN 200 0.335 0.349 0.320 0.335
Vanilla CNN MC 200 0.301 0.299 0.292 0.297

ResNet50 200 0.251 0.277 0.251 0.260
ResNet50 MC 200 0.240 0.243 0.243 0.242

ResNet50 (TL) 50 0.263 0.260 0.261 0.261
ResNet50 (TL) MC 50 0.256 0.257 0.252 0.255

ResNet50 (TL) 100 0.217 0.219 0.217 0.218
ResNet50 (TL) MC 100 0.216 0.217 0.210 0.214

(a) (b)

(c) (d)

(e) (f)

Figure 8. Correlation plot of the predicted flux map coefficients using
ResNet50 two-channel model from βq0 through βq5, with correlation
coefficients between predicted value and ground truth listed for each plot.

inverse design of motors, to discover motor topology for
given design objectives.

VI. CONCLUSIONS

In this work, we investigated the surrogate modeling
technique using deep learning to facilitate the analysis and

(a) (b)

(c) (d)

(e) (f)

Figure 9. Correlation plot of the predicted flux map coefficients using
ResNet50 two-channel model from βd0 through βd5, with correlation
coefficients between predicted value and ground truth listed for each plot.

optimization of electric machines. Dozens of finite-element
method based numerical simulations are typically required
to obtain 2D flux map of a motor design under different
operating points. The task is especially challenging when
dealing with a large design space. We proposed to apply
topological data analysis for the feature engineering of motor



cross-section images, and use the vectorized Betti sequences
obtained from the images for the training of deep learning
models. Two-channel models with input data directly from
the motor cross-section images and the computed Betti se-
quences were constructed. Compared with conventional CNN
models using only the motor images, we show with numerical
tests that the two-channel models with topological features in
Betti sequences achieve lower RMSE and generalize better
to unseen data. The effectiveness of the proposed method
was validated with good accuracy in predicting the flux
map coefficients. We expect the strategy of using vectorized
topological features more broadly deployed to the feature
engineering and image based deep learning applications.
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