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Abstract
Safety and robustness are two desired properties for any reinforcement learning algorithm.
Constrained Markov Decision Processes (CMDPs) can handle additional safety constraints
and Robust Markov Decision Processes (RMDPs) can perform well under model uncertain-
ties. In this chapter, we propose to unify these two frameworks resulting in Robust Con-
strained MDPs (RCMDPs). The motivation is to develop a framework that can satisfy safety
constraints while also simultaneously offer robustness to model uncertainties. We develop
the RCMDP objective, derive gradient update formula to optimize this objective and then
propose policy gradient based algorithms. We also independently propose Lyapunov-based
reward shaping for RCMDPs, yielding better stability and convergence properties.
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Abstract—End-to-end automatic speech recognition (ASR) has
become a popular alternative to traditional module-based sys-
tems, simplifying the model-building process with a single deep
neural network architecture. However, the training of end-to-
end ASR systems is generally data-hungry: a large amount
of labeled data (speech-text pairs) is necessary to learn direct
speech-to-text conversion effectively. To make the training less
dependent on labeled data, pseudo-labeling, a semi-supervised
learning approach, has been successfully introduced to end-to-
end ASR, where a seed model is self-trained with pseudo-labels
generated from unlabeled (speech-only) data. Here, we propose
momentum pseudo-labeling (MPL), a simple yet effective strategy
for semi-supervised ASR. MPL consists of a pair of online and
offline models that interact and learn from each other, inspired
by the mean teacher method. The online model is trained to
predict pseudo-labels generated on the fly by the offline model.
The offline model maintains an exponential moving average of the
online model parameters. The interaction between the two models
allows better ASR training on unlabeled data by continuously
improving the quality of pseudo-labels. We apply MPL to a
connectionist temporal classification-based model and evaluate
it on various semi-supervised scenarios with varying amounts of
data or domain mismatch. The results demonstrate that MPL
significantly improves the seed model by stabilizing the training
on unlabeled data. Moreover, we present additional techniques,
e.g., the use of Conformer and an external language model, to
further enhance MPL, which leads to better performance than
other semi-supervised methods based on pseudo-labeling.

Index Terms—pseudo-labeling, self-training, semi-supervised
learning, end-to-end speech recognition, deep learning.

I. INTRODUCTION

THE field of automatic speech recognition (ASR) has wit-
nessed remarkable improvements in performance thanks

to the advances in deep learning-based techniques [1], [2].
Much of the recent progress in ASR lies in the end-to-
end framework [3]–[5], which directly models speech-to-text
conversion using a single deep neural network. With well-
established sequence-to-sequence modeling techniques [6]–[9]
and sophisticated neural network architectures [10]–[12], end-
to-end ASR has demonstrated promising results on various
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benchmarks [13]–[15]. However, the performance often de-
pends on the availability of a large quantity of labeled data
(speech-text pairs) [16], which requires great annotation costs
and is not always achievable.

To alleviate the heavy requirement for labeled data, semi-
supervised learning [17] has been attracting increasing atten-
tion for improving end-to-end ASR. Semi-supervised learning
utilizes labeled data as well as unlabeled (or unpaired) data
during model training, where the amount of labeled data is
in general much smaller than that of unlabeled data. Some
early works for semi-supervised end-to-end ASR are based
on a reconstruction framework, including approaches based
on a text-to-speech model [18]–[20] or a sequential auto-
encoder [21]–[23]. Others adopted self-supervised pre-training
techniques, such as BERT-like mask prediction [24]–[26],
contrastive learning [27]–[29], and feature clustering [30],
[31], to boost the performance of downstream ASR tasks.

We focus on self-training [32] or pseudo-labeling [33],
which has recently been adopted for semi-supervised end-to-
end ASR and shown to be effective [34]–[44]. In pseudo-
labeling, a teacher model is first trained on labeled data
and used to transcribe unlabeled (speech-only) data to obtain
pseudo-labels. A student model is then trained using both the
labeled and pseudo-labeled data to achieve better performance
than the teacher. Assuming external text data is accessible,
external language models (LMs) and beam-search decoding
are often incorporated into the labeling process to generate
higher-quality pseudo-labels [35], [38]. Data augmentation is
also important for assisting a student model with training on
pseudo-labels [36], [37], [40]. In addition to these techniques,
ASR performance can be further improved by iterating the
pseudo-labeling steps [39]–[43]. In [40], a model is contin-
uously trained on pseudo-labels, which are generated on the
fly by the model itself. Pseudo-labels are refined as the model
learns, and the model benefits from training on the refined
labels. However, we observed that this frequent update of
pseudo-labels can easily cause unstable training, especially
when there is a large amount of unlabeled data or domain
mismatch between labeled and unlabeled data, which is likely
to be the case in real-world scenarios.

In this paper, we present a semi-supervised learning frame-
work for end-to-end ASR, referred to as momentum pseudo-
labeling (MPL). In MPL, the pseudo-labels are iteratively
updated based on an ensemble of models at different time steps
within a single training process [45]. MPL consists of online
and offline models that interact and learn from each other,
similar to the teacher-student framework in the mean teacher
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method [46]. The online model is trained to predict pseudo-
labels generated on the fly by the offline model. The offline
model maintains an exponential moving average of the weights
of the online model, which can be regarded as an ensemble
of the online models at different training steps. Through the
interaction between the two models, MPL effectively stabilizes
the training with unlabeled data and handles the constant
change in pseudo-labels.

The contributions of this paper are summarized as follows:
• We propose MPL and show its advantages over other

semi-supervised approaches based on pseudo-labeling.
• We present an effective way for controlling the MPL

training, which reduces the burden for heuristic tuning.
• We evaluate MPL in various semi-supervised scenarios,

which demonstrates its robustness against variations in
the amount of data, variations in domain mismatch sever-
ity, and over-fitting to LM knowledge.

• We perform thorough analyses to confirm the effective-
ness of MPL and propose several methods to further
improve ASR performance.

This paper summarizes our previous studies on MPL [47],
[48] with the following extensions: we provide more detailed
explanations of relationship to prior works (Section II) and
precise formulations of end-to-end ASR and pseudo-labeling
(Section III); we present a consistent description of [47]
and [48], with more specific implementations (Section IV);
we conduct experiments on a variety of semi-supervised
scenarios, including additional experiments on smaller and
larger amounts of labeled data (Section V); and we further
demonstrate the effectiveness of MPL through more detailed
experimental results and discussions (Section VI).

II. RELATED WORK

A. Self-ensembling for semi-supervised learning

Self-ensembling [45] is a semi-supervised learning frame-
work, where a target of an unlabeled sample is obtained by
a consensus of predictions from models at different train-
ing steps or different models. This prediction ensembling
is expected to produce a more accurate pseudo-label than
the most recent model prediction. Several approaches have
been proposed to implement self-ensembling; we here refer to
techniques based on an exponential moving average (EMA).
Temporal ensembling [45] maintains an EMA of label pre-
dictions from different models, which is used as a target
for model training at the current step. The mean teacher
method [46] improves temporal ensembling by calculating an
EMA of model weights and generating a pseudo-label using
the averaged model. This can avoid sudden changes in pseudo-
labels and enable the model to learn from unlabeled samples
stably. The concept of EMA-based weight averaging has also
been shown to be effective for stabilizing self-supervised
representation learning [49], [50].

MPL is inspired by and similar to the mean teacher frame-
work. However, we differentiate MPL from prior work in the
following perspectives. 1) MPL is a semi-supervised learning
framework for end-to-end ASR: while most previous studies
focus on classification problems (e.g., image classification),

few have introduced self-ensembling techniques to sequence-
to-sequence mapping objectives, here connectionist temporal
classification (CTC) [6]. 2) MPL uses hard (pseudo-)labels
for training with unlabeled data: while soft labels generally
contain richer information for promoting a model training [51],
applying a distillation loss to CTC-based ASR systems is
known to be problematic [52]; as CTC models emit spiky
posterior distributions and predictions are naturally high-
confidence, we consider hard labels more suitable for MPL.1

3) MPL applies data augmentation (i.e., SpecAugment [55]) to
the input only for training the online model, while the offline
model generates pseudo-labels in inference mode: since we do
not use soft labels in MPL, it is preferable for pseudo-labels to
be accurate; moreover, the online model can learn to robustly
predict pseudo-labels from noisy input, an effective approach
known as consistency training [36], [40], [56].

B. Pseudo-labeling with multiple iterations

A simple extension for enhancing the pseudo-labeling-
based method is to conduct multiple rounds of the pseudo-
label generation and model training processes, demonstrating
promising results in various fields [57], [58] including end-
to-end ASR [39]–[43]. Iterative pseudo-labeling (IPL) [39],
an iterative version of [35], continuously trains a single
ASR model with periodic regeneration of pseudo-labels. Here,
the labeling process is performed via beam-search decoding
with an external LM, which makes the pseudo-labels biased
toward LM training texts and the model over-fit to the LM
knowledge [42], [43]. In [40], an ASR model is trained on
pseudo-labels generated without using an LM, where the
pseudo-labels are updated on the fly after every training
iteration. However, this frequent relabeling is likely to make
pseudo-labels unstable and thus cause the model training to
diverge. slimIPL [42] mitigates this problem by introducing
a dynamic cache mechanism, which stores and uses pseudo-
labels generated from the previous model states instead of
regenerating them with the most recent model every iteration.

MPL is another direction for improving pseudo-labeling
with multiple iterations, which can be considered as a general
framework extending [35] and [40] (see Section IV-B). In each
iteration of MPL training, pseudo-labels are generated on the
fly from the offline model without an LM and used as targets to
train the online model. The offline model maintains an EMA of
the online model weights to stabilize pseudo-labels. This can
be seen as alternative caching mechanism to [42] for exploiting
older models. A similar approach to MPL was proposed in
[59], which focused on lower-resource settings and conducted
experiments on a hybrid ASR system in addition to a CTC-
based end-to-end system. This paper thoroughly investigates
MPL on its robustness against variations in domain mismatch
severity and over-fitting to LM knowledge.

1Several works have proposed practical approaches for distilling frame-level
knowledge between CTC-based models [53], [54]. As in TutorNet [54], we
tried MPL training with the l2 loss between the online and offline models,
but we did not observe a significant improvement. Hence in this work, we
only focus on using hard (pseudo-)labels for simplicity.
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III. BACKGROUND

In this section, we review a formulation of CTC-based end-
to-end ASR [3] and semi-supervised ASR based on pseudo-
labeling [35]. Let X = (xt ∈ RD|t = 1, . . . , T ′) be an input
sequence of length T ′, and Y = (yl ∈ V|l = 1, . . . , L) be the
corresponding output sequence of length L. Here, xt is a D-
dimensional acoustic feature at frame t, yl is an output token
at position l, and V is a vocabulary. Note that, in general,
the output length is much shorter than the input length (i.e.,
L≪ T ′).

A. Network architecture

1) Transformer encoder: For converting an audio sequence
X into a sequence of hidden representations, we build a
Transformer-based encoder model [60] consisting of a stack
of Nenc identical blocks:

H = TransformerEncoder(X), (1)

where H = (ht ∈ Rdmodel |t = 1, . . . , T ), and ht is a dmodel-
dimensional hidden representation at index t.

Given an audio sequence X , the encoder first applies 2D
convolution Conv2D(·) to down-sample the input sequence
length from T ′ to T (= T ′/4) [61]. Positional encodings
PosEnc(·) are then added to each frame of the down-sampled
sequence, which results in an initial hidden sequence:

H(0) = Conv2D(X) + PosEnc(T ). (2)

The i-th encoder block outputs a sequence of hidden repre-
sentations H(i) = (h

(i)
t ∈ Rdmodel |t = 1, . . . , T ) as

H̄(i) = LayerNorm(H(i−1)), (3)

H̃(i) = H(i−1) + SelfAttention(H̄(i)), (4)

H(i) = H̃(i) + FeedForward(LayerNorm(H̃(i))), (5)

where i ∈ {1, . . . , Nenc}, and LayerNorm(·),
SelfAttention(·), and FeedForward(·) indicate layer
normalization, multi-head self-attention, and feed-forward
network, respectively. The final sequence H is obtained
by normalizing the output of the last encoder block, i.e.,
H = LayerNorm(H(Nenc)).

2) Conformer encoder: Besides the Transformer encoder,
we construct a model based on the Conformer-based en-
coder [12] consisting of a stack of Nenc identical blocks:

H = ConformerEncoder(X). (6)

Conformer is a variant of Transformer-based encoder architec-
ture augmented with convolution to increase the capability for
capturing local feature patterns [12], which has been shown
to be more effective than standard Transformers on various
speech processing tasks [62].

The computation in each Conformer encoder block can be
defined by modifying the encoder steps in Transformer, where
Eqs. (4) and (5) are replaced with

¯̄H(i) = H(i−1) +
1

2
FeedForward(H̄(i)), (7)

H̃(i) = ¯̄H(i) + SelfAttention(LayerNorm( ¯̄H(i))), (8)
˜̃H(i) = H̃(i) +Conv(LayerNorm(H̃(i))), (9)

H(i) = ˜̃H(i) +
1

2
FeedForward(LayerNorm( ˜̃H(i))). (10)

In addition to the self-attention layer, Conformer introduces
a module Conv(·) based on depthwise separable convolu-
tion [63]. The convolution module consists of point-wise
convolution, gated linear unit activation, 1D depth-wise con-
volution, batch normalization, Swish activation, and point-
wise convolution. Unlike Transformer, each Conformer block
adopts relative positional encoding [64] for the self-attention
layer, which enables the model to increase the robustness
against different input lengths. Moreover, Conformer employs
the Macaron Net-style structure [65], where the original feed-
forward layer (Eq. (5)) is replaced with two half-step feed-
forward layers (Eqs. (7) and (10)).

B. Connectionist temporal classification (CTC)

CTC [3], [6] optimizes end-to-end ASR by training a model
to find monotonic alignments between an input sequence X
and target sequence Y . To align the sequences at the frame
level, Y is augmented by adding an additional blank token ϵ
and allowing repetitions of the same token, which results in a
CTC alignment Z = (zt ∈ V ∪ {ϵ}|t = 1, . . . , T ). Assuming
the conditional independence of frame-wise token predictions,
CTC models the probability P (Z|X) as the product of token
emission probabilities:

P (Z|X) =

T∏
t=1

P (zt|z1, . . . , zt−1, X), (11)

≈
T∏

t=1

P (zt|X), (12)

where P (zt|X) is a probability density function of the tokens
and is obtained by applying a linear projection layer and a
softmax layer to the encoded sequence H from Eq. (1) or (6).

For a given target sequence, there exist several possible
alignments, depending on the position of the blank tokens and
the number of repeated tokens. Let B be a collapsing function
that maps a CTC alignment Z to a target sequence Y , which
is performed by suppressing repeated tokens and removing
blank tokens. With the collapsing function, CTC calculates
the probability P (Y |X) by marginalizing Eq. (12) over CTC
alignments as

P (Y |X) =
∑

Z∈B−1(Y )

P (Z|X), (13)

where the inverse function B−1(Y ) returns a set of CTC
alignments that are compatible with Y . While Eq. (13) has to
deal with all possible Z, it is efficiently computed via dynamic
programming (e.g., forward-backward algorithm) [6].
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Given a pair of input and output sequences (X,Y ), a model
is trained to minimize the CTC loss defined by the negative
log-likelihood of Eq. (13):

L = − logP (Y |X). (14)

C. Semi-supervised ASR with pseudo-labeling

The goal of semi-supervised ASR, in this work, is to exploit
a large amount of unlabeled (audio-only) data to enhance a
pre-trained ASR model in a self-training manner. To this end,
we focus on an approach based on pseudo-labeling [33], [35],
which is described in two steps: 1) the supervised training
of a seed end-to-end ASR model, and 2) the semi-supervised
training of the seed model using unlabeled data.

1) Supervised training of a seed model: A seed model
Pθ with parameters θ is first trained on labeled data Dlab =
{(Xn, Yn)|n = 1, . . . , N}, using the CTC loss from Eq. (14):

Llab(θ) = − logPθ(Yn|A(Xn)), (15)

where A(·) denotes a data augmentation for improving gener-
alization of the model, here SpecAugment [55].

2) Semi-supervised training with pseudo-labels: The seed
model is then used to generate pseudo-labels for unlabeled
data Dunlab = {XN+m|m = 1, . . . ,M}.2 For each unlabeled
sample, pseudo-labels ŶN+m are generated as

ŶN+m = argmax
Y ∈V∗

{logPθ(Y |XN+m) + γ logPlm(Y )}, (16)

where argmax is performed using an external LM Plm and
beam-search decoding, and γ is the LM weight. With the
pseudo-labels from Eq. (16), the loss for the unlabeled data is
calculated in the same manner as Eq. (15):

Lunlab(θ) = − logPθ(ŶN+m|A(XN+m)). (17)

Finally, using both Dlab and Dunlab, the seed model is further
trained on the combined objective of Llab and Lunlab.

IV. MOMENTUM PSEUDO-LABELING

In this section, we explain our momentum pseudo-labeling
(MPL) for semi-supervised ASR [47], [48]. The overall pro-
cess of MPL is shown in Algorithm 1, which trains a pair
of online and offline models that interact and learn from each
other. Let us define the online and offline models as Pξ and Pϕ,
with model parameters ξ and ϕ, respectively. Both models are
initialized with the seed model Pθ trained as in Section III-C1.

2Filtering out pseudo-labels of low quality is an effective technique for
semi-supervised ASR [41], [43]. It is particularly important for sequence-
to-sequence models, where their autoregressive structure is prone to looping
and early stopping issues during inference [35], [66] and likely to generate
severely erroneous pseudo-labels. As CTC-based models are known to be
robust against length issues [67], we do not perform any label filtering in this
work.

Algorithm 1 Momentum pseudo-labeling
Input:
Dlab,Dunlab ▷ labeled and unlabeled data
A ▷ an ASR model architecture
α ▷ a momentum coefficient

1: Train a seed model Pθ with architecture A on Dlab using Eq. (15)
2: Initialize an online model Pξ and an offline model Pϕ with Pθ

3: for epoch = 1, . . . , Empl do
4: for all S ∈ Dlab ∪ Dunlab do
5: Obtain X ∼ S

6: Obtain Y =

{
Y ∼ S (S ∈ Dlab)

Ŷ ∼ Pϕ(Y |X) (S ∈ Dunlab)

7: Compute loss L for Pξ(Y |X) as in Eq. (15)
8: Update ξ using ∇ξL
9: Update ϕ← αϕ+ (1− α)ξ

10: end for
11: end for
12: return Pξ ▷ online model is returned for final evaluation

A. Online model training

On unlabeled sample XN+m ∈ Dunlab, the online model is
trained using pseudo-labels ŶN+m generated on the fly by the
offline model:

ŶN+m = argmax
Y ∈V∗

Pϕ(Y |XN+m), (18)

where argmax is performed based on the best path decoding of
CTC [6]. Specifically, the most probable tokens Ẑ are selected
at each frame, and an output sequence is obtained using the
collapsing function, i.e., Ŷ = B(Ẑ). Note that Eq. (18) differs
from Eq. (16) in that we use neither LM nor beam-search
decoding.

With unlabeled data XN+m ∈ Dunlab and the corresponding
pseudo-labels from Eq. (18), the semi-supervised loss of the
online model is defined in the same manner as Eq. (17):

Lunlab(ξ) = − logPξ(ŶN+m|A(XN+m)), (19)

which is maximized via a gradient descent optimization. In
Eq. (19), we apply the data augmentation to an unlabeled in-
put, aiming to provide the online model with training signals to
learn robustly from the noisy input [36], [40]. In Section VI-D,
we show that data augmentation is an important factor of MPL.

Assuming labeled data Dlab is available during the semi-
supervised process, we also use the supervised loss Llab(ξ)
calculated similarly as in Eq. (15), which helps to stabilize
the online model training as it learns from unlabeled data.
Using Dlab and Dunlab, the online model is trained using the
combined objective of Llab(ξ) and Lunlab(ξ). Note that in
Section VI-B, we demonstrate that MPL is yet stable and
effective even when trained solely on unlabeled data, i.e.,
trained only with Lunlab(ξ).

B. Offline model training

After every update of the online model, the offline model
accumulates parameters of the online model via

ϕ← αϕ+ (1− α)ξ, (20)

an exponential moving average with a momentum coefficient
α ∈ [0, 1]. This momentum update makes the offline model
evolve more smoothly than the online model. We can thus



5

control the change in pseudo-labels generated on the fly by the
offline model at each training step. This is important to prevent
pseudo-labels from deviating too quickly from the initial labels
generated by the seed model and to avoid collapsing to a trivial
solution. Indeed, we empirically observe that training is prone
to collapse (emitting only blank tokens for unlabeled data) for
α = 0.0, in which case the online and offline models share
parameters and the online model is trained with self-generated
pseudo-labels as in [40]. The problem is prominent when there
is a domain mismatch between labeled and unlabeled data, as
is often the case in real-world deployment. At the other end of
the spectrum, when α = 1.0, this approach becomes similar
to standard pseudo-labeling [35] as described in Section III-C,
where the offline model is never updated, and the online
model is trained on fixed pseudo-labels generated from the
seed model. This can stabilize the semi-supervised training, at
the cost of leaving no room for improving pseudo-labels and
limiting the improvement of the online model. We demonstrate
the effectiveness of the momentum update in Section VI-B.

After training with MPL, both the online and offline models
can be used for evaluation, although we use the online model
as our default. We compare and analyze the performance of
these models in Section VI-C.

C. Tuning the momentum coefficient

Instead of directly tuning α in Eq. (20), we design a more
intuitive method for deriving an appropriate value of α. Based
on Eq. (20), the parameters of the offline model after K
iterations can be written as

ϕ(K) = αKϕ(0) + (1− α)

K∑
k=1

αK−kξ(k), (21)

where ϕ(k) and ξ(k) denote the parameters of each model at
the k-th iteration, and ϕ(0) = ξ(0) = θ. We here assume that
it is important to retain some influence of the seed model
to stabilize the pseudo-label generation. As a measure of this
influence, we focus on the term αKϕ(0) in Eq. (21) and define
a weight w of the seed model in ϕ(K) as

w = αK , (22)

where we consider K as the number of iterations (i.e., mini-
batches) in a training epoch. As K can often be in the
thousands, small changes in α lead to huge differences in w
(e.g., 0.9993000 ≪ 0.99973000), requiring small adjustments
on α for different amounts of training data. Instead of directly
tuning α for the momentum update, we propose to tune the
weight w, which can be regarded as the proportion of the seed
model parameters retained after a training epoch. Given w and
K, α is calculated as

α = e(1/K) logw. (23)

By controlling the update through w, we expect MPL to be
less affected by the amount of training data, which we examine
in Section VI-B.

D. Adopting Conformer for MPL training

To further enhance the MPL performance, we investigate
utilizing the Conformer-based architecture [12], which is ex-
pected to improve overall ASR performance and thus enable a
model to generate accurate pseudo-labels. While Conformer-
based models have achieved outstanding ASR performance
compared with standard Transformers [62], we empirically
observe that Conformer suffers from poor generalization from
labeled data to unlabeled data. A similar issue has been
reported in other ASR tasks [68]–[70]. Simply adopting Con-
former for MPL makes the training become unstable and
diverge easily, especially when a domain mismatch exists
between labeled and unlabeled data.

We assume that such a problem comes from unreliable
statistics computed and used by batch normalization (BN) [71]
in the convolution module (in Eq. (9)). As the seed model
is first trained on labeled data only, the mean and variance
estimated in BN are fitted to the statistics of Dlab. When
the model is then further trained on the combined Dlab and
Dunlab via MPL, the data variation becomes large among mini-
batches, which leads to making BN unstable [72]. Hence, we
consider replacing BN with group normalization (GN) [73]
in the convolution module, as it has been shown effective
for Conformer-based streaming ASR [68]. GN divides feature
maps into groups and normalizes the features within each
group, which makes the training less dependent on the varia-
tions across mini-batches. This is found critical for stabilizing
the Conformer-based MPL training, as carefully investigated
in Section VI-E1.

E. Exploiting LM knowledge for MPL training

While using an external LM and beam-search decoding
has been shown to be effective for generating pseudo-labels
with high-quality [35], [38], [40], it is too computationally
intensive to be adopted for MPL due to the on-the-fly label
generation. To mitigate this limitation, we consider performing
the standard pseudo-labeling (PL) training (as described in
Section III-C2) prior to MPL. With this combination of PL
and MPL, LM knowledge is implicitly transferred to the seed
model, providing the MPL training with a better initializa-
tion for generating higher-quality pseudo-labels. Moreover,
by avoiding the explicit LM usage during the MPL training,
we can prevent the ASR model from over-fitting to the LM
training text data, which often degrades the generalization
capability of the model [42], [43]. In addition to PL, we inves-
tigate iterative pseudo-labeling (IPL) [39], which extends PL
by continuously training a model with periodic regeneration
of pseudo-labels.

Algorithm 2 shows the proposed MPL training with the
initialization strategy based on PL or IPL. In the beginning, a
seed model is trained using a labeled set as in Section III-C1
(line 1). Then, the seed model is further trained via PL or IPL
with LM and beam-search decoding (lines 3–11). Here, we
denote Iipl as the number of iterations (pseudo-label updates),
and Eipl as the number of epochs trained in each iteration.
Note that this process becomes PL [35] when Iipl = 1 and
IPL [39] when Iipl > 1. Finally, the enhanced seed model is
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Algorithm 2 Incorporating LM knowledge into MPL
Input:
Dlab,Dunlab ▷ labeled and unlabeled data
A ▷ an ASR model architecture
α ▷ a momentum coefficient

1: Train a seed model Pθ with architecture A on Dlab using Eq. (15)
2: # Iterative pseudo-labeling
3: for i = 1, . . . , Iipl do
4: Generate D̂unlab = {(XN+m, ŶN+m)|XN+m ∈ Dunlab},

using Eq. (16)
5: for epoch = 1, . . . , Eipl do
6: for all (X,Y ) ∈ Dlab ∪ D̂unlab do
7: Compute loss L for Pθ(Y |X) with Eq. (15)
8: Update θ using ∇θL
9: end for

10: end for
11: end for
12: # Momentum pseudo-labeling
13: Initialize an online model Pξ and an offline model Pϕ with Pθ

14: for epoch = 1, . . . , Empl do
15: for all S ∈ Dlab ∪ Dunlab do
16: Obtain X ∼ S

17: Obtain Y =

{
Y ∼ S (S ∈ Dlab)

Ŷ ∼ Pϕ(Y |X) (S ∈ Dunlab)

18: Compute loss L for Pξ(Y |X) as in Eq. (15)
19: Update ξ using ∇ξL
20: Update ϕ← αϕ+ (1− α)ξ
21: end for
22: end for
23: return Pξ ▷ online model is returned for final evaluation

used to initialize the online and offline models for MPL (lines
13–22). The MPL training lasts Empl epochs.

V. EXPERIMENTAL SETTING

A. Data

The experiments were carried out using the LibriSpeech
(LS) [74] and TEDLIUM3 (TED3) [75] datasets. LS is a
corpus of read English speech, containing 960 hours of
training data (split into train-clean-100, train-clean-360, and
train-other-500). We also used the 10-hour Libri-Light (LL)
training data (train-10h) [16], which is a low-resource subset
extracted from the LS training data. TED3 is a corpus of
English Ted Talks consisting of 450 hours of training data
(train-ted3). For each dataset, we used the standard validation
and test sets for tuning hyper-parameters and evaluating perfor-
mance, respectively. As input speech features, we extracted 80
mel-scale filterbank coefficients with three-dimensional pitch
features using Kaldi [76]. For text tokenization, we used
SentencePiece [77] to construct a 1k subword vocabulary,
which was extracted from either train-clean-100 or train-10h
transcriptions, depending on the semi-supervised setting.

B. Semi-supervised settings

We simulated several semi-supervised settings, where either
the train-clean-100 (LS-100), train-10h (LL-10), or train-
clean-460 (LS-460) set is regarded as labeled. With a seed
model trained on LS-100, we considered three settings with
different unlabeled sets:

• LS-100/LS-360, an in-domain setting with train-clean-
360 (LS-360);

TABLE I
NUMBER OF MINI-BATCHES K AND MOMENTUM COEFFICIENT α IN EACH

SETTING. GIVEN w = 0.5 AND K , α IS CALCULATED FROM EQ. (23)

Setting K α

LS-100/LS-360 1528 0.99955
LS-100/LS-860 3175 0.99978
LS-100/TED3 2077 0.99967

LL-10/LS-360 1230 0.99943
LL-10/LS-960 3207 0.99978
LL-10/TED3 1779 0.99961

LS-460/LS-500 3175 0.99978
LS-460/TED3 3274 0.99979

• LS-100/LS-860, an in-domain setting with train-clean-
360 and train-other-500 (LS-860); and

• LS-100/TED3, an out-of-domain setting with train-ted3.
In addition, with a seed model trained on LL-10, we consid-
ered three low-resource settings with different unlabeled sets:

• LL-10/LS-360, an in-domain setting with train-clean-360
(LS-360);

• LL-10/LS-9603, an in-domain setting with train-clean-
100, train-clean-360, and train-other-500 (LS-960); and

• LL-10/TED3, an out-of-domain setting with train-ted3.
We also considered two settings with more labeled data, using
LS-100 and LS-360 (LS-460) for training a seed model:

• LS-460/LS-500, an in-domain setting with unlabeled
train-other-500 (LS-500); and

• LS-460/TED3, an out-of-domain setting with unlabeled
train-ted3.

C. Model architecture

As an ASR model, we trained the Transformer [60] or
Conformer [12]-based encoder architecture described in Sec-
tion III-A1 or III-A2, implemented in ESPnet [78]. The model
consisted of the Conv2D layer (in Eq. (2)) followed by a
stack of 12 encoder blocks (Nenc = 12). The Conv2D layer
down-samples the input length by a factor of 4, using two
2D convolution layers with 256 channels, a kernel size of
3 × 3, and a stride size of 2. In the multi-head self-attention
module (in Eqs. (4) and (8)), the number of heads dh and
dimension of a self-attention layer dmodel were set to 4 and
256, respectively. The dimension of the feed-forward network
dff (in Eqs. (5), (7), and (10)) was set to 2048. For the
convolution module of Conformer (in Eq. (9)), we used a
kernel size of 31. The number of groups was set to 8 for
group normalization when it was used as a replacement for
batch normalization in the convolution module.

D. Training configuration

The seed model was trained for 150 epochs using the Adam
optimizer [79] with β1 = 0.9, β2 = 0.98, and ϵ = 10−9. We
used Noam learning rate scheduling [60] with 25k warmup

3Note that LS-960 contains the LL-10 audios, so the LL-10 utterances are
included both as labeled and unlabeled samples, and only the LS-960 data
other than LL-10 should be considered as truly unlabeled.
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steps and a learning rate factor of 5.0. The semi-supervised
training lasted up to 200 epochs, where the gradient-based
optimization was done by using the Adam optimizer with an
initial learning rate of 10−3, β1 = 0.9, β2 = 0.999, and
ϵ = 10−8. IPL was performed by iterating PL for a maximum
of 8 times (Iipl ≤ 8), where the model was trained for 25
epochs (Eipl = 25) in each iteration. After each iteration of
IPL, we averaged model parameters over the last 5 checkpoints
to stabilize the pseudo-label generation. For the momentum
update of MPL (in Eq. (20)), we used w = 0.5 for all the
semi-supervised settings, and Table I lists an actual value of
the momentum coefficient α used in each setting. For the
training of all models, we used SpecAugment [55] as data
augmentation.

E. Decoding configuration

For evaluation, a final model was obtained by averaging
model parameters over 10 checkpoints with the best validation
performance [60]. We trained an LM consisting of 4 long
short-term memory (LSTM) layers with 2048 units, using the
LS-100 or LL-10 transcriptions combined with the external
text data provided by LibriSpeech [74]. For decoding with
the LM, we adopted a frame-synchronous CTC prefix beam
search algorithm [80], [81], where we used a beam-size of 20,
a score-based pruning threshold of 14.0, an LM weight of 1.0,
and an insertion bonus factor of 2.0. For decoding without the
LM, we performed the best path decoding of CTC [6].

F. Evaluation metrics

We used the word error rate (WER) to measure the ASR per-
formance. For evaluating the performance of semi-supervised
training, we measured the WER recovery rate (WRR) [35],
[82]. WRR compares WERs of the oracle model (trained using
ground-truth transcriptions for the unlabeled data as well) and
the semi-supervised model by calculating the ratio between
their absolute reductions from the seed model’s WER:

WRR[%] =
WERseed −WERsemi-supervised

WERseed −WERoracle
, (24)

where WER∗ denotes WER for each model.

VI. RESULTS AND DISCUSSION

In this section, we report and discuss results obtained from
our semi-supervised ASR experiments. First, to verify the
effectiveness of the proposed MPL, we perform some basic
analyses based on the Transformer-based models. Then, we
show results for further improving MPL, using the Conformer
architecture and additional training/decoding techniques.

A. MPL results using Transformer

1) In-domain settings: Table II shows results on the in-
domain LS settings, comparing PL [35] (from Section III-C)
and the proposed MPL. Note that the MPL results also appear
in our previous paper [48]. The oracle results were obtained
by fine-tuning the seed model using ground-truth labels for
both the labeled source and target training sets. Looking at
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Fig. 1. Influence of momentum update weight w on WER.

results in the LS-360 setting (A*), both PL and MPL led to
a significant improvement over the seed model (A1,A2 vs.
S1). When decoded without the external LM, PL resulted in
better performance than MPL (A1 vs. A2), benefiting from
high-quality pseudo-labels generated using the LM. However,
when decoded with the LM, the performance gain was larger
for MPL, achieving much lower WERs on the other sets
with similar WRRs to those obtained by decoding without the
LM. PL, in contrast, had smaller improvement with degraded
WRRs, which indicates PL is likely to fit to LM knowledge,
as reported in [42], [43], and have less variations in the
hypotheses during the beam-search decoding.

In the LS-860 setting (B*) with more unlabeled data, MPL
again outperformed the seed model with the same range of
WRR as was observed in the LS-360 setting (A2 vs. B2),
demonstrating its scalability with respect to the amount of
unlabeled data. While PL was also effective in this setting, the
gain from the seed model was smaller than that obtained from
the LS-360 setting (A1 vs. B1); on the other sets, especially,
the WRRs of PL dropped by an absolute difference of over
10%. MPL was capable of keeping high WRRs on the other
sets, successfully increasing the generalization ability of the
model. MPL greatly benefited from decoding with the external
LM and achieved better results than those obtained with PL.

2) Out-of-domain setting: Table III lists results on the
out-of-domain TED3 setting. Note that the MPL results also
appear in our previous paper [48]. PL resulted in a modest
improvement over the seed model, while the gain was more
substantial for MPL (C1 vs. C2). As there is a domain
mismatch between the LM training text and the actual TED3
transcriptions, PL was less effective at learning from the out-
of-domain unlabeled data. Moreover, the LM decoding led to
lowering the WRR of PL, indicating that the model was prone
to over-fitting to LM knowledge. MPL, on the other hand, took
great advantage of decoding with the LM while achieving as
high a WRR as the result decoded without the LM.

B. Effectiveness of w for tuning the momentum update

Figure 1 shows the performance of MPL depending on
the weight w (defined in Eq. (22)) used to derive α in the
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TABLE II
WERS [%] AND WRRS [%] ON IN-DOMAIN LIBRISPEECH (LS) SETTINGS. ALL MODELS WERE TRAINED USING TRANSFORMER (TRF) ENCODER. THE

RESULTS ARE DIVIDED INTO TWO SECTIONS: WHETHER THE LM WITH BEAM-SEARCH DECODING WAS APPLIED IN THE FINAL EVALUATION OR NOT.

Decoding without LM Decoding with LM

Dev WER Test WER Test WRR Dev WER Test WER Test WRR

Setting Method Init. clean other clean other clean other clean other clean other clean other

LS-100 S1 seed (Trf) – 12.2 30.0 12.9 31.1 0.0 0.0 5.8 17.8 6.3 18.9 0.0 0.0

LS-100
/ LS-360

A1 PL S1 7.6 20.8 8.0 21.1 77.1 82.9 4.6 13.7 5.0 13.9 48.4 64.3
A2 MPL S1 8.7 21.4 9.0 21.7 61.5 77.9 4.8 13.0 5.1 13.1 42.5 74.9

A3 oracle S1 6.2 19.2 6.5 19.1 100.0 100.0 3.3 10.9 3.6 11.1 100.0 100.0

LS-100
/ LS-860

B1 PL S1 7.1 17.9 7.2 18.4 74.0 71.4 4.4 12.6 4.8 13.3 46.1 50.3
B2 MPL S1 8.1 16.5 8.3 16.8 59.9 80.2 4.6 9.7 4.8 10.1 46.5 78.8

B3 oracle S1 5.1 13.1 5.2 13.3 100.0 100.0 2.8 7.5 3.0 7.8 100.0 100.0

TABLE III
WERS [%] AND WRRS [%] ON OUT-OF-DOMAIN TEDLIUM3 (TED3) SETTING. ALL MODELS WERE TRAINED USING TRANSFORMER (TRF) ENCODER.

Decoding without LM Decoding with LM

Setting Method Init. Dev WER Test WER Test WRR Dev WER Test WER Test WRR

LS-100 S1 seed (Trf) – 31.2 32.0 0.0 23.4 23.2 0.0

LS-100
/ TED3

C1 PL S1 21.1 20.6 59.2 18.6 18.6 33.6
C2 MPL S1 18.4 17.0 78.0 14.9 13.3 73.1

C3 oracle S1 12.7 12.8 100.0 10.1 9.6 100.0

momentum update (in Eq. (20)). Note that the figures are
reproduced from our previous paper [47]. We observed a
similar trend among the curves in different semi-supervised
settings (Figs. 1(a), 1(b), and 1(c)). WERs increased as w
was set closer to 0.0. When w = 0.0, which is a similar
approach to [40], the training was likely to be unstable and
failed under the LS-360 and TED3 conditions, as illustrated
by the learning curves shown in Fig. 2. This indicates the
importance of retaining the influence of the seed model to
stabilize learning from unlabeled data. However, depending
too much on the seed model (i.e., setting w closer to 1.0)
also worsened WERs. Larger w slows down the progress of
the offline model, causing MPL to become more like standard
PL [35] but without an LM.

Figure 1(d) shows results under an extreme condition,
where not only a domain mismatch exists between the seed
model and unlabeled data, but labeled data is not used during
the semi-supervised process (i.e., training the online model
with Lunlab(ξ) only). Compared to the other settings, the
performance was more sensitive to the change in w, but the
overall trend was similar.

In general, the proposed tuning method with w effectively
controlled the momentum update in all settings. It provides a
more intuitive guide for tuning α, taking the amount of data
into account. Based on the validation results mainly on the
LS-860 and TED3 settings, we set w = 0.5 for all the semi-
supervised settings.

C. Online model vs. offline model

Table IV compares results obtained from the online and
offline models after the MPL training in LS-100/LS-360. Here,
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Fig. 2. Learning curves of MPL with different weights w in LS-100/LS-360.

TABLE IV
WERS [%] OF ONLINE AND OFFLINE MODELS IN LS-100/LS-360

SETTING. DECODED WITHOUT LM.

Avg. metric Model Dev WER Test WER

last1 online 9.2 / 22.6 9.4 / 22.8
offline 8.7 / 21.7 9.1 / 22.1

val10 online 8.7 / 21.4 9.0 / 21.7
offline 8.7 / 21.6 9.0 / 21.7

last1 indicates evaluating each model from the last check-
point and val10 from averaging model parameters over 10
checkpoints with the best validation performance. Without the
checkpoint averaging technique, the offline model gave better
performance than the online model. Being an exponential
moving average of the online model parameters over the MPL
training (cf. Eq. (20)), the offline model naturally benefited
from the model ensembling, as it has been shown effective
in [83]. However, with checkpoint averaging, the performance
of both models improved and the gap was reduced to almost
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TABLE V
WERS [%] AND WRRS [%] FOR MPL WITHOUT DATA AUGMENTATION.
† INDICATES WITHOUT SPECAUGMENT. DECODED WITHOUT LM.

Setting Method Dev WER Test WER Test WRR

LS-100
/ LS-360

MPL (A2) 8.7 / 21.4 9.0 / 21.7 61.5 / 77.9
MPL† 10.6 / 27.2 11.0 / 28.2 37.9 / 43.3

oracle† 7.5 / 23.8 7.8 / 24.3 100.0 / 100.0

LS-100
/ LS-860

MPL (B2) 8.1 / 16.5 8.3 / 16.8 59.9 / 80.2
MPL† 10.2 / 23.2 10.3 / 23.8 36.4 / 48.7

oracle† 5.8 / 15.8 5.8 / 16.1 100.0 / 100.0

LS-100
/ TED3

MPL (C2) 18.4 17.0 78.0
MPL† 22.8 22.2 55.5

oracle† 13.0 12.6 100.0

TABLE VI
VALIDATION WERS [%] OF SEED MODELS TRAINED ON LABELED
LS-100. FOR THE CONFORMER-BASED MODELS, WE EXPLORED

DIFFERENT NORMALIZATION METHODS FOR THE CONVOLUTION MODULE.

LibriSpeech TED3

Model Norm. type dev-clean dev-other Dev

Transformer (S1) – 12.2 30.0 31.2

Conformer

Batch 8.6 23.1 27.3
Instance 8.9 23.5 27.1
Group 8.4 22.5 26.4
Layer 8.4 22.9 26.9

none. As the online model was slightly better on the develop-
ment sets, we used it as our default for evaluation, which is
contrary to previous work [46].

D. Importance of data augmentation

In Table V, we investigate the importance of applying
SpecAugment during the MPL training (cf. Eq. (19)). Even
without the augmentation, MPL led to a decent improvement
over the seed model (S1 in Table II). However, WRRs
significantly dropped compared to the results with SpecAug-
ment (A2,B2,C2). Note that, for the models trained without
the augmentation, we computed the WRR against an oracle
model without the augmentation. Without SpecAugment, we
observed that the training converged earlier, and MPL was less
effective.

E. MPL results using Conformer

1) Investigation on normalization method: In Table VI, we
compare WERs of seed models trained using the Transformer
or the Conformer architecture. Note that similar results also
appear in our previous paper [48]. For Conformer-based
models, we investigated different normalization methods for
the convolution module (in Eq. (9)), including {batch [71],
instance [84], group [73], layer [85]} normalization ({BN, IN,
GN, LN}). Note that IN and LN are the same as GN with
group sizes 1 and 256 (= dmodel), respectively. Comparing the
two architectures, the Conformer-based models significantly
improved over the Transformer-based model (S1 in Table II).
Within the Conformer-based models, GN resulted in the best
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Fig. 3. Validation token error rate [%] of MPL training using Conformer with
batch (dotted line) or group (solid line) normalization.

performance on both LS and TED3, and the 100-hour training
data seemed to be too small to take advantage of BN. As nor-
malizing across feature maps (i.e., IN, GN, and LN) achieved
better performance than BN on the out-of-domain TED3 set,
this indicates that BN led to lower generalization capability
with unreliable statistics. Note that in [11], BN achieved better
performance than the other normalization methods when an-
other ASR model based on depth-wise separable convolution
was trained on the labeled full 960-hour set of LS.

Figure 3 shows learning curves from MPL training using
Conformer with BN or GN. The figure is reproduced from
our previous paper [48]. In all semi-supervised settings, BN
caused the training to become unstable. This was especially the
case in the out-of-domain setting with TED3, where the model
diverged more quickly than in the other settings. In contrast,
GN successfully stabilized the MPL training with Conformer.

2) In-domain setting: Table VII lists results on the in-
domain LS settings, comparing PL [35], IPL [39], and the
proposed MPL. Note that similar results also appear in our pre-
vious paper [48]. Looking at the MPL results (X3,Y3), MPL
led to a substantial improvement over the seed model (S2),
effectively learning from unlabeled data using Conformer
with GN. These Conformer results significantly outperformed
those of Transformer-based MPL (A2,B2 from Table II). With
pseudo-labels generated using the LM, PL [35] and IPL [39]
achieved lower WERs on the clean sets than those obtained
from MPL, and IPL resulted in better performance than MPL
on the other sets as well (*1,*2 vs. *3). However, when
decoded with the LM, the performance gain was larger for
MPL with only a slight decrease in WRRs compared with
the decoding without LM, and MPL achieved much lower
WERs on the other sets. PL and IPL, in contrast, had smaller
improvement with degraded WRRs, as was observed in the
Transformer results (Table II).

3) Out-of-domain setting: Table VIII shows MPL results
on the TED3 setting. Note that similar results also appear
in our previous paper [48]. Conformer with GN significantly
improved MPL over the seed model and Transformer-based
MPL (Z3 vs. S2,C2), successfully stabilizing training on
the out-of-domain unlabeled data. PL and IPL led to decent
improvements over the seed model, but the gain was more
substantial for MPL (C1 vs. C2), which is consistent with the
Transformer results (Table III). Moreover, PL and IPL had
little gain from decoding with the LM, indicating the model
was too fitted to the LM knowledge.
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TABLE VII
WERS [%] AND WRRS [%] ON IN-DOMAIN LIBRISPEECH (LS) SETTINGS. ALL MODELS WERE TRAINED USING CONFORMER (CFM) ENCODER.

‡ INDICATES TRAINED FOR 100 EPOCHS.

Decoding without LM Decoding with LM

Dev WER Test WER Test WRR Dev WER Test WER Test WRR

Setting Method Init. clean other clean other clean other clean other clean other clean other

LS-100 S2 seed (Cfm) – 8.4 22.5 8.6 23.3 0.0 0.0 5.2 15.2 5.5 16.0 0.0 0.0

LS-100
/ LS-360

X1 PL S2 5.7 15.9 6.1 15.8 64.6 76.0 4.3 11.4 4.5 11.8 40.6 62.2
X2 IPL S2 5.4 15.1 5.7 15.3 73.3 81.5 4.2 11.5 4.5 11.7 42.2 62.5
X3 MPL S2 6.1 16.0 6.6 15.8 52.3 76.4 4.5 11.2 4.7 11.1 34.7 71.7
X4 MPL‡ X1@ep100 5.7 15.5 6.1 15.6 64.8 77.8 4.2 11.1 4.5 11.3 44.0 69.3
X5 MPL‡ X2@ep100 5.5 15.0 5.6 15.1 75.1 83.3 4.1 10.8 4.3 11.1 51.4 72.7

X6 oracle S2 4.1 13.6 4.7 13.4 100.0 100.0 2.9 9.4 3.2 9.2 100.0 100.0

LS-100
/ LS-860

Y1 PL S2 5.4 13.9 5.7 14.2 57.8 62.3 4.0 10.5 4.2 10.7 43.0 53.7
Y2 IPL S2 4.7 11.5 5.0 11.7 71.0 79.3 4.1 9.7 4.4 10.2 36.2 58.9
Y3 MPL S2 5.7 12.2 6.2 12.2 48.1 76.4 4.1 8.5 4.4 8.7 36.5 74.6
Y4 MPL‡ Y1@ep100 5.1 12.1 5.3 12.4 64.0 75.1 3.7 8.4 3.9 8.8 51.0 73.3
Y5 MPL‡ Y2@ep100 4.7 11.0 5.0 11.1 70.0 83.9 3.6 7.8 3.8 8.2 54.0 79.6

Y6 oracle S2 3.3 9.0 3.5 8.7 100.0 100.0 2.4 6.1 2.5 6.2 100.0 100.0

TABLE VIII
WERS [%] AND WRRS [%] ON OUT-OF-DOMAIN TEDLIUM3 (TED3) SETTING. ALL MODELS WERE TRAINED USING CONFORMER (CFM) ENCODER.

Decoding without LM Decoding with LM

Setting Method Init. Dev WER Test WER Test WRR Dev WER Test WER Test WRR

LS-100 S2 seed (Cfm) – 26.4 26.5 0.0 21.3 21.1 0.0

LS-100
/ TED3

Z1 PL S2 18.9 18.5 51.3 16.9 17.0 33.5
Z2 IPL S2 16.8 16.8 62.2 16.6 16.9 34.2
Z3 MPL S2 15.1 13.9 81.0 12.7 11.6 77.3
Z4 MPL‡ Z1@ep100 15.5 15.0 73.9 13.4 12.8 67.9
Z5 MPL‡ Z2@ep100 14.6 13.8 81.1 12.4 12.0 73.8

Z6 oracle S2 10.4 10.9 100.0 8.6 8.8 100.0

F. Exploiting LM knowledge in MPL via PL or IPL

In Tables VII and VIII, *4 and *5 show results for applying
MPL training after enhancing the seed model using PL and
IPL, respectively (cf. Section IV-E). Note that we performed
PL or IPL for 100 epochs and MPL for another 100 epochs
to match the total training epochs of the other methods.

In the in-domain settings (Table VII), this initialization
strategy provided MPL with distinct improvements (X3 vs.
X4,X5 and Y3 vs. Y4,Y5). With the IPL-based initialization,
MPL achieved the best overall performance on both of the
settings with different amounts of unlabeled data (X5,Y5).
When decoded with the LM, the improved MPL achieved
higher WRRs than those obtained from PL and IPL (e.g.,
X2 vs. X5), preventing the model from over-fitting to LM
knowledge but exploiting it to improve ASR performance.

In the out-of-domain setting (Table VIII), MPL further
reduced WERs by using the initialization based on IPL (Z3
vs. Z5). However, the improvement was much smaller than
those observed in the in-domain settings, and the standard
MPL performed sufficiently well by decoding with the LM.

G. Adapting language model

To further improve the MPL result in the out-of-domain
setting, we explore adapting the LM to the target domain

TABLE IX
TEST WERS [%] AND WRRS [%] ON LS-100/TED3. DIFFERENT LMS

WERE USED DURING DECODING.

Source LM Adapted LM Target LM

Method WER WRR WER WRR WER WRR

seed (S2) 21.1 0.0 20.8 0.0 19.1 0.0
MPL (Z3) 11.6 77.3 11.5 75.3 10.6 75.8

oracle (Z6) 8.8 100.0 8.4 100.0 7.9 100.0

(i.e., TED3). To this end, we made an attempt to make
use of pseudo-labels, which were generated from train-ted3
using the model obtained from MPL (Z3). The pseudo-labels
were simply mixed with the LS training text for training an
adapted LM. Table IX shows results decoded with different
LMs, where a source LM is trained on the LS training text
(the same LM used in the other experiments), and a target
LM is trained on the external text-only data provided by
TED3 [75]. With the adapted LM, MPL slightly improved
over decoding with the source LM. The seed and oracle
models also benefited from decoding with the adapted LM,
where the gain was much larger than that of MPL. As the
pseudo-labels are obtained as a result of MPL training, the
adapted LM was less effective for MPL with the already-
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TABLE X
WERS [%] AND WRRS [%] ON LOWER-RESOURCE IN-DOMAIN LS SETTINGS. ALL MODELS WERE TRAINED USING CONFORMER (CFM) ENCODER.

‡ INDICATES TRAINED FOR 100 EPOCHS.

Decoding without LM Decoding with LM

Dev WER Test WER Test WRR Dev WER Test WER Test WRR

Setting Method Init. clean other clean other clean other clean other clean other clean other

LL-10 S3 seed (Cfm) – 34.3 50.6 34.8 51.3 0.0 0.0 22.4 38.1 22.2 39.2 0.0 0.0

LL-10
/ LS-360

I1 PL S3 21.4 35.4 21.7 36.1 44.9 42.4 15.2 28.1 15.4 29.3 36.6 34.3
I2 MPL S3 19.0 28.5 19.3 28.7 53.1 62.9 14.8 21.0 14.8 21.3 39.8 62.0
I3 MPL‡ I1@ep100 16.2 27.7 16.3 27.9 63.1 65.2 12.0 20.3 12.1 20.8 54.6 63.5

I4 oracle S3 5.1 15.9 5.5 15.4 100.0 100.0 3.3 10.2 3.6 10.3 100.0 100.0

LL-10
/ LS-960

J1 PL S3 20.2 33.5 20.5 34.4 46.0 40.3 14.7 27.0 14.8 28.2 38.1 33.7
J2 MPL S3 17.9 23.6 18.1 24.3 53.7 64.5 14.5 17.6 14.4 18.1 40.0 64.7
J3 MPL‡ J1@ep100 13.0 20.1 13.2 20.3 69.3 74.1 10.2 14.7 10.5 15.1 60.1 74.0

J4 oracle S3 3.5 9.3 3.7 9.5 100.0 100.0 2.4 6.1 2.7 6.6 100.0 100.0

TABLE XI
WERS [%] AND WRRS [%] ON LOWER-RESOURCE OUT-OF-DOMAIN TED3 SETTING. ALL MODELS WERE TRAINED USING CONFORMER (CFM)

ENCODER.

Decoding without LM Decoding with LM

Setting Method Init. Dev WER Test WER Test WRR Dev WER Test WER Test WRR

LL-10 S3 seed (Cfm) – 54.9 56.6 0.0 45.4 47.5 0.0

LL-10
/ TED3

K1 PL S3 42.1 42.8 29.2 38.1 39.6 20.1
K2 MPL S3 31.0 28.6 59.5 26.2 24.1 59.6
K3 MPL‡ K1@ep100 29.4 27.6 61.7 25.1 23.3 61.5

K4 oracle S3 9.4 9.5 100.0 8.2 8.1 100.0

acquired knowledge. Regarding LM training on pseudo-labels
(uncertain ASR hypotheses), an effective approach has been
proposed in [86], which trains a Transformer or LSTM-LM by
calculating a Kullback–Leibler divergence loss against token-
wise predictions of ASR confusion networks. We found this
method challenging to apply to our framework, as this work
focused on a CTC-based model with frame-wise predictions.
Hence, future work should consider a better way for training
an LM using pseudo-labels from a CTC-based ASR model.

H. MPL results in lower-resource settings

1) In-domain setting: Table X lists in-domain results where
Conformer-based PL and MPL are applied to the LL-10
settings. With a fewer amount of labeled data, the seed model
was inferior in quality, compared to the one trained on LS-100
(S2 vs. S3). In both of the settings, PL and MPL successfully
improved the seed model (*1,*2 vs. S3). Even without using
the LM, MPL achieved much lower WERs than PL (*1 vs.
*2), and PL resulted in a significant drop in WRRs compared
to the previous experiments with more labeled data (I1 vs.
X1 and J1 vs. Y1). While PL-based approaches often depend
on the quality of a seed model, MPL managed to alleviate the
problem by continuously improving the pseudo-label quality
via the interaction between the online and offline models.
Using PL as an initialization, MPL further improved the
performance by exploiting the LM knowledge effectively.

2) Out-of-domain setting: Table XI shows results on the
out-of-domain setting. While PL improved over the seed

model, the gain was smaller when compared to the results from
the in-domain settings (I1,J1 vs. K1). On the other hand,
MPL performed better than PL and kept WRRs as high as the
in-domain results (I2,J2 vs. K2). Even with the low-quality
seed model, MPL enabled the model to train stably on the
out-of-domain data, and the tuning of the momentum update
(Section IV-C) worked robustly to the amount of labeled data.
The PL-based initialization was also effective for improving
MPL performance while maintaining the high WRRs when
decoded with the LM (K3).

I. MPL results in higher-resource settings

1) In-domain setting: Table XII lists in-domain results
where Conformer-based PL and MPL are evaluated on the LS-
460 settings. With a larger amount of labeled data, the seed
model had better quality than the models trained on less data
(S2,S3 vs. S4). In both settings, PL and MPL improved over
the seed model (L1,L2 vs. S4), and the higher-quality seed
model led to better overall results compared to the LS-100
settings (Table VII). When decoded without the LM, MPL
achieved similar results to those obtained from PL on both
the clean and other sets (L1 vs. L2). This is different from
our previous observations in Table VII, where PL performed
better than MPL by using pseudo-labels generated with the
LM. With the better seed model trained on more labeled data,
the LM was less effective in helping generate pseudo-labels,
which is consistent with the findings in [42]. When decoded
with the LM, MPL achieved lower WERs on the other sets
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TABLE XII
WERS [%] AND WRRS [%] ON HIGHER-RESOURCE IN-DOMAIN LS SETTINGS. ALL MODELS WERE TRAINED USING CONFORMER (CFM) ENCODER.

‡ INDICATES TRAINED FOR 100 EPOCHS.

Decoding without LM Decoding with LM

Dev WER Test WER Test WRR Dev WER Test WER Test WRR

Setting Method Init. clean other clean other clean other clean other clean other clean other

LS-460 S4 seed (Cfm) – 4.3 14.0 4.6 13.5 0.0 0.0 2.9 9.4 3.2 9.0 0.0 0.0

LS-460
/ LS-500

L1 PL S4 3.6 10.1 3.8 10.0 69.4 76.3 2.7 7.2 2.9 7.4 52.6 57.3
L2 MPL S4 3.6 10.1 4.0 9.8 52.3 80.5 2.6 6.8 3.0 7.0 37.9 70.9
L3 MPL‡ L1@ep100 3.6 9.8 3.9 9.6 62.8 85.3 2.6 6.6 2.8 6.9 66.2 75.9

L4 oracle S4 3.3 8.9 3.5 8.9 100.0 100.0 2.4 6.0 2.6 6.2 100.0 100.0

TABLE XIII
WERS [%] AND WRRS [%] ON HIGHER-RESOURCE OUT-OF-DOMAIN TED3 SETTING. ALL MODELS WERE TRAINED USING CONFORMER (CFM)

ENCODER.

Decoding without LM Decoding with LM

Setting Method Init. Dev WER Test WER Test WRR Dev WER Test WER Test WRR

LS-460 S4 seed (Cfm) – 17.7 18.2 0.0 14.7 15.0 0.0

LS-460
/ TED3

M1 PL S4 13.1 13.1 63.9 12.2 12.8 34.8
M2 MPL S4 11.8 11.2 86.6 9.9 9.5 83.7
M3 MPL‡ M1@ep100 11.6 10.9 91.0 9.8 9.5 84.7

M4 oracle S4 9.8 10.2 100.0 8.6 8.5 100.0

than PL while keeping WRRs high. Overall, the PL-based
initialization (L3) resulted in the best result, but it was less
effective on the clean sets compared to those in the LS-100
settings (Table VII).

2) Out-of-domain setting: Table XIII shows results on the
out-of-domain setting. The seed model trained on LS-460 was
also effective for the TED3 setting, achieving much lower
WERs than the models trained on less data (S2,S3 vs. S4).
The overall trend was consistent with what we observed in
Tables III, VIII, and XI, with MPL achieving higher WRRs.

VII. CONCLUSION AND FUTURE WORKS

We proposed momentum pseudo-labeling (MPL), a semi-
supervised learning framework for end-to-end ASR. MPL
consists of a pair of online and offline models that interact
and learn from each other. The online model is trained to
predict pseudo-labels generated by the offline model. The
offline model maintains an exponential moving average of
the online model weights. The interaction between the two
models continuously improves the quality of pseudo-labels and
permits stabilizing ASR training on unlabeled data. We applied
MPL to a CTC-based end-to-end ASR model and conducted
experiments on various semi-supervised settings based on
LibriSpeech, Libri-Light, and TEDLIUM3. The results demon-
strated that MPL significantly improves the seed model and
is robust against variations in the amount of labeled/unlabeled
data, variations in domain mismatch severity, and over-fitting
to LM knowledge. With additional enhancements, e.g., Con-
former with group normalization and integration of LM knowl-
edge via IPL, MPL achieved superior performance compared
to other pseudo-labeling-based approaches.

Future work should consider introducing filtering [35], [41],
[43] as well as other data augmentation techniques [87], [88]
into the MPL framework. We also plan to apply MPL to
other sequence-to-sequence architectures, such as the attention
models [4], [5] and Transducers [7]. Combining MPL with
recent powerful pre-trained acoustic models [31], [89] can be
another promising direction.
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