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Abstract— In recent years significant progress has been made
in optimization-based planning and control for automated
vehicle operation. For heavy-duty vehicles, the research focus
has been on platooning and control of articulated vehicles
especially when cruising on the highway. This paper proposes
an integrated system using a motion planning algorithm and a
real-time reference tracking controller, tailored to the task of
automated tractor-trailer hitching which is a critical maneuver
in heavy-duty vehicle operations, due to requiring a very high
precision. The motion planner is based on a bi-directional A-
search guided tree algorithm and the tracking controller is im-
plemented using nonlinear model predictive control. To validate
the proposed approach, we present results from hardware-in-
the-loop simulations on a dSPACE Scalexio real-time computing
unit and extensive Monte Carlo closed-loop simulations.

I. INTRODUCTION

Automated transportation systems, even in the case of
partial automation, can lead to reduced accidents and more
efficient usage of the vehicles and infrastructure. Connected
and automated vehicles (CAVs) show large promises for
improving safety and traffic flow, and as a consequence for
reducing congestion, travel time, emissions and energy con-
sumption [1], [2]. Commercial heavy-duty vehicles (HDV)
such as trucks are an important use case of vehicle automa-
tion, as trucks cover a higher mileage, in average about
100, 000 km/year, compared to passenger vehicles, in average
14, 000 km/year [3]. In particular, considering the increas-
ingly high complexity of supply chain management [4],
automated trucks can provide considerable advantages with
respect to economic, environmental, and social factors [3].

Optimization-based motion planning and control tech-
niques have been investigated for automation of HDVs dif-
ferent tasks, such as platooning during highway driving [5].
A different and challenging maneuver for HDVs, which
requires extensive and expensive labor training, is tractor-
trailer hitching. During the hitching maneuver, the driver
needs to accurately control the position and orientation of
a truck while executing a sequence of forward and reverse
motions to connect the truck with a trailer standing still, see
Fig. 1. During the process, the driver may have a limited
vision of the area around the target hitching point.
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Most prior works focus on articulated tractor-trailer oper-
ation, while ignoring the hitching maneuver that may seem
easier but requires a comparably higher precision and is a key
task in HDV operation. In regards to tractor-trailer motion
planning, different techniques have been proposed, such as
sampling-based, lattice-based or combined algorithms [6]–
[8]. Different control algorithms have been proposed to track
the resulting motion plan for a tractor-trailer system, e.g.,
sliding mode control [9], input-state linearization [10], and
model predictive control [11].

Instead, the present paper proposes an integrated system
using a tree-based motion planning algorithm and a real-
time reference tracking controller, tailored to the task of
automated tractor-trailer hitching. In particular, we present
a modified variant of the bi-directional A-search guided
tree (BIAGT) path and motion planning algorithm that was
originally proposed in [12]. For tracking the obtained refer-
ence trajectory from the BIAGT algorithm so to successfully
complete the hitching maneuver, we develop a real-time
feasible implementation of a nonlinear model predictive
controller (NMPC) for the combined lateral and longitudinal
dynamics of the tractor. The contributions of this work
include: (i) tailored modifications of the BIAGT algorithm
for motion planning of the tractor-trailer hitching maneuver;
(ii) an NMPC design for reference tracking that is offset-free
to meet the stringent precision requirements of the hitching
maneuver; (iii) a software implementation of the integrated
system that is real-time feasible on a dSPACE Scalexio unit;
(iv) hardware-in-the-loop (HIL) validation results of planner
and controller for automated tractor-trailer hitching.

The rest of the paper is organized as follows. Section II
describes the problem statement, Section III presents the
BIAGT motion planner, and Section IV describes the NMPC.
Section V discusses the tailored integration of the planning
and control algorithms, and Section VI presents the HIL
validation results. Finally, Section VII concludes this paper.

II. PROBLEM STATEMENT AND MOTIVATION

The tractor-trailer hitching maneuver investigated in this
work is illustrated in Fig. 1. The truck tractor, hereafter
often referred to simply as “truck”, maneuvers in forward
and reverse consecutively while steering towards the hitching
point, where the tractor’s hitching mechanism, the so-called
“fifth wheel”, connects to the trailer standing still. Unlike
typical automated driving on highways or urban environ-
ments, the hitching maneuver is more lenient to the path
tracking errors when the tractor is far from the hitching point,



Fig. 1. Illustration of a tractor-trailer hitching maneuver.

but is very stringent in both lateral position and heading
error requirements in a neighborhood of the hitching point,
in order not to damage the hitching mechanism and to
successfully connect to the trailer. The requirements for the
automated hitching system are as follows.

Problem 1 (Automated Tractor-Trailer Hitching): Let the
set of tractor poses be defined as P ⊂ R3 and Pfree ⊂ P
denotes the set of collision-free poses. Starting from an initial
pose p0 ∈ Pfree with zero velocity, and given a hitching pose
pf ∈ Pfree, the proposed system computes a trajectory and
controls the tractor (or truck) to execute a maneuver that
meets the following requirements:

1) the vehicle operation during hitching maneuver is
automated without human intervention;

2) a kinematically feasible reference trajectory is com-
puted online, starting from p0 and ending in pf , while
avoiding collisions between the tractor and any static
obstacles in the environment;

3) for successful hitching and for the safety of the hitch-
ing mechanism, a lateral position error |eY| < 0.1 m
and a heading error |eψ| < 10 deg with respect to
the preferred hitching orientation, is required, in a set
Pf ⊂ Pfree around the hitching pose pf ∈ Pf ;

4) if a dynamic obstacle enters a safety region around the
current or predicted tractor positions, trajectory track-
ing is interrupted by an emergency braking system, and
tracking is resumed after the obstacle moves away.

In addition, the planning and control algorithms need to run
on an automotive grade embedded system platform and meet
the real-time requirements:

1) motion planning is executed once at standstill, and
computed within a maximum time of 2− 5 seconds;

2) trajectory tracking is executed continuously while the
tractor is moving with sampling time of Ts = 50 ms.

A. Vehicle Kinematic Model

Under the assumption of normal driving conditions, i.e.,
not at-the-limit maneuvers, we use a single-track vehicle
model in which the two wheels on each axle are lumped
together. If the tractor is equipped with multiple rear axes,
see Fig. 1 for an example, those are lumped together resulting
in a model with only two wheels, one at the front and one

at the rear. Summarizing, we use the kinematic single-track
vehicle model

ṗX = v cos (ψ) , ṗY = v sin (ψ) ,

ψ̇ = v tan (δf) /L, δ̇f = (δ − δf) /τ,
(1)

where (pX, pY, ψ) ∈ P denotes the tractor’s pose, pX, pY

is the longitudinal-lateral position, ψ is the heading angle
and ψ̇ the heading rate, v is the longitudinal velocity of the
tractor, δ and δf are the commanded and actual front wheel
steering angle, respectively, L is the wheel base of the tractor
and τ is the time constant of the steering actuator.

We further assume that the current state of the vehicle
is estimated by on-board sensor fusion, and the errors are
sufficiently small to be compensated by the feedback con-
troller (see results in Section VI). Obstacles in the environ-
ment can be detected by on-board sensors or using commu-
nication with sensing infrastructure as described in [13].

III. PATH AND MOTION PLANNING FOR
TRACTOR-TRAILER HITCHING MANEUVER

This section describes the bi-directional A-search guided
tree (BIAGT) path and motion planning algorithm initially
presented in [12]. BIAGT can efficiently compute kinemati-
cally feasible solutions for automated vehicle parking tasks.
The tractor-trailer hitching maneuver described in Problem 1
may be considered a special parking task with very stringent
requirements on the terminal phase of the maneuver in terms
of lateral position and heading angle errors.

A. Bi-Directional A-Search Guided Tree (BIAGT)

BIAGT improves the hybrid A* algorithm [14] in two
aspects. Given the configuration space P of truck poses,
including position and heading, first, it prioritizes the control
actions at each node to balance optimality of the computed
path and computational efficiency. Second, it simultaneously
expands two trees, i.e., the start tree from the starting config-
uration of the tractor and the goal tree from the hitching point
configuration at the trailer. Particularly, one tree leverages
the arrival cost of the other tree to estimate the cost-to-go
of its own nodes. An implementation of the BIAGT planner
is described in Algorithm 1 and more details can be found
in [12]. Once a feasible path is found, BIAGT executes a
motion planning step to determine the velocity profile along
the path, and outputs a motion plan.

We define a tree T = (V, E) as a union of a node set
V ⊂ Pfree and an edge set E , where E(Xi, Xj) ∈ E
is a feasible, collision-free, trajectory between state values
Xi and Xj and Pfree is implicitly obtained by checking
collisions with static obstacles in the environment, see Fig. 1.
Let M denote a finite set of motion primitives precomputed
from the available control actions, and Vmax the allowed
maximum number of nodes. BIAGT constructs a start tree
Ts rooted at X0 (Line 13 in Alg. 1) and a goal tree Tg

rooted at Xf (Line 16), and it expands each tree according
to a cost function F (·) that sums a heuristic value h(·) and
arrival cost g(·). The heuristics in BIAGT are calculated
based on the Reeds-Shepp (RS) path length [15] towards



Algorithm 1: BIAGT Path and Motion Planning
1 input Pfree, X0, Xf , Vmax, M, ε
2 Ts ← (X0, ∅), Tg ← (Xf , ∅)
3 F (X0)← g(X0) + h(X0), F (Xf)← g(Xf) + h(Xf)
4 Qs ← (X0, F (X0)), Qg ← (Xf , F (Xf))
5 k ← 2, success← false
6 while k ≤ Vmax and not success do
7 Xs

best = Qs.Pop where F (Xs
best) ≤ F (X), ∀X ∈ Qs

8 Xg
best = Qg.Pop where F (Xg

best) ≤ F (X), ∀X ∈ Qg

9 if d(Xs
best, Xf) ≤ ε or d(Xg

best, X0) ≤ ε then
10 success← true

11 else if dist(Ts, Tg) ≤ ε then Connect(Ts, Tg) ;
12 else
13 (success, ns)← Expand(Ts,Pfree, X

s
best,M)

14 Compute F for new nodes and append to Qs

15 if not success then
16 (success, ng)← Expand(Tg,Pfree, X

g
best,M)

17 Compute F for new nodes and append toQg

18 k ← k + ns + ng

19 return Tplan = FeasiblePath(Ts, Tg, success)

the tree corresponding goal while ignoring the obstacles.
If either tree gets close to the corresponding goal or the
distance between the two trees is smaller than or equal to
a threshold ε, then BIAGT will connect the two trees with
a dynamically feasible path according to model (1). If the
connection succeeds (Line 11), all parents of the connected
nodes are added to the other tree resulting in a feasible path,
thus planning is successful. If the total number of nodes on
both trees reaches Vmax and a solution trajectory has not yet
been found, planning fails.

B. BIAGT Adaptation to Tractor-Trailer Hitching Maneuver

To further enhance the performance of the BIAGT al-
gorithm for path and motion planning in the proposed
automated tractor-trailer hitching system, and to improve the
performance of the NMPC controller that is described in the
next section for tracking the resulting reference trajectory,
we propose the following tailored modifications.

First, instead of starting the goal tree exactly from the
hitching point, we place the root of the goal tree a user-
defined distance of, e.g., 10 m away from the hitching point,
in the preferred hitching direction away from the trailer, and
we connect the hitching point and this actual goal tree root
with a straight line. This ensures that the BIAGT computes a
motion plan that ends with a straight line segment before the
tractor is arriving in the neighborhood of the hitching point,
in order not to damage the hitching mechanism and to meet
the strict requirements as described in Problem 1.

Second, the path quality, such as the number of motion
cusps, can be an important factor for accuracy of the tractor-
trailer hitching maneuver. Thus, we customize the BIAGT
to search for a path with a minimum number of motion
cusps. Various options can be attempted to achieve this
behavior, e.g., by penalizing the change of velocity direction
in the arrival cost. In order to balance the completeness,
computational efficiency, and path quality, we propose the

following two-step process. The first step ensures feasibility
by executing the original BIAGT to find a path as quick as
possible. The second step improves path quality by imposing
the desired maximum amount of motion cusps as a hard
constraint during the node selection. Particularly, for any
node in the priority queue, if the segment between the node
and the root node of the corresponding tree contains more
motion cusps than the allowed amount, the node will be
removed from the queue without further expansion. The
path quality improvement step keeps running until either the
planner times out or such a desirable path is found.

Finally, since BIAGT computes a motion plan for tractor-
trailer hitching that typically includes one or multiple motion
cusps, i.e., switches between forward and backward tractor
driving direction. For this purpose, the generated motion
trajectories include a pause, e.g., of 2 s at each motion
cusp. This allows to accommodate the physical time for gear
shifting, as it will be discussed later and also improves the
tracking performance when a predictive controller is used.

IV. NONLINEAR MODEL PREDICTIVE CONTROL
FOR TRAJECTORY TRACKING

Next, we design the nonlinear model predictive con-
troller (NMPC) for accurately tracking the planned trajectory
(pref

X (ti), p
ref
Y (ti), ψ

ref(ti), v
ref(ti))i=0,...,M , given a grid of

time points t0 < t1 < . . . < ti < . . . < tM over the planning
horizon for the tractor-trailer hitching maneuver.

A. Extended Vehicle Kinematics Model

First, we augment the vehicle model (1) by including the
acceleration a and rate of change δrate for the commanded
front wheel steering angle

v̇ = a, δ̇ = δrate. (2)

Even though the vehicle speed, v, and front wheel steering
angle, δ, are control commands that are typically sent to a
low-level control-by-wire system, Eq. (2) enables introducing
the acceleration and steering angle rate of change in the
objective function and constraints of the NMPC problem.

We model the lateral position error with respect to the
planned reference trajectory by

eY = cos
(
ψref

) (
pY − pref

Y

)
− sin

(
ψref

) (
pX − pref

X

)
. (3)

To achieve an offset-free design [16], we add integral action
to the NMPC formulation by including in the vehicle model
the error integrator ėint

Y = eY.
The resulting augmented vehicle prediction model is

ṗX = v cos (ψ) , ṗY = v sin (ψ) ,

ψ̇ = v tan (δf) /L, δ̇f = (δ − δf) /τ,
v̇ = a, δ̇ = δrate,

ėint
Y = cos

(
ψref

) (
pY − pref

Y

)
− sin

(
ψref

) (
pX − pref

X

)
,

(4)

with nx = 7 states, x =
[
pX pY ψ δf v δ e

int
Y

]>
, and nu =

2 control inputs, u = [a δrate]
>.



B. Direct Multiple Shooting Discretization

The NMPC minimizes the vehicle’s tracking er-
rors with respect to the planned reference trajectory
(pref

X (ti), p
ref
Y (ti), ψ

ref(ti), v
ref(ti))i=0,...,M , while satisfying

constraints on longitudinal speed, acceleration, front wheel
steering angle and its change rate. We formulate the con-
strained optimal control problem (OCP) using direct multiple
shooting. At each control time step ti, based on a time grid of
equidistant time points tk for k = 0, . . . , N , tk+1− tk = T

N ,
where T is the horizon length and N is the number of
control intervals, we apply a piecewise constant control
parameterization u(ti + τ |ti) = ui,k for τ ∈ [tk, tk+1),
where ui,k is the predicted control input for τ ∈ [tk, tk+1),
computed at time step ti. For simplicity, the equidistant time
grid is aligned with the discrete time points of the planned
reference trajectory, xref

i,k = xref(ti + tk). Alternatively, a
polynomial interpolation could be used.

Given a state estimate x̂i,0 at time step ti and the piecewise
constant control parameterization, we discretize the dynamics
in (4) by a numerical integration method, resulting in the
discrete-time prediction model

xi,k+1 = f(xi,k, ui,k), k = 0, . . . , N − 1. (5)

We apply the explicit 4th order Runge-Kutta method, but also
other integration schemes can achieve the desired accuracy.

C. Constrained Optimal Control Problem Formulation

The NMPC cost function is based on the least squares
tracking formulation

J (Xi, Ui, Si) =
1

2

N−1∑
k=0

(∥∥xi,k − xref
i,k

∥∥2

Q
+ ‖ui,k‖2R

)
(6a)

+
1

2

∥∥xi,N − xref
i,N

∥∥2

P
+

N∑
k=0

ρ si,k, (6b)

where Q � 0, P � 0 are positive semi-definite, R � 0
is positive definite, the reference state vector is xref =[
pref

X , pref
Y , ψref , 0, vref , 0, 0

]
, and si,k are non-negative slack

variables that soften the constraints to ensure recursive
feasibility, and are penalized in a linear term in (6b). We
denote Xi = [x>i,0, . . . , x

>
i,N ]>, Ui = [u>i,0, . . . , u

>
i,N−1]>

and slack variables Si = [s>i,0, . . . , s
>
i,N ]>.

Given the cost function (6), we formulate the OCP

min
Xi,Ui,Si

J (Xi, Ui, Si) (7a)

s.t. xi,0 = x̂i,0, (7b)

xi,k+1 = f(xi,k, ui,k), ∀k ∈ ZN−1
0 , (7c)

− δmax
f − si,k ≤ δfi,k ≤ δmax

f + si,k, ∀k ∈ ZN0 , (7d)

vmin − si,k ≤ vi,k ≤ vmax + si,k, ∀k ∈ ZN0 , (7e)

− δmax ≤ δi,k ≤ δmax, ∀k ∈ ZN0 , (7f)

amin ≤ ai,k ≤ amax, ∀k ∈ ZN−1
0 , (7g)

− δmax
rate ≤ δratei,k ≤ δmax

rate , ∀k ∈ ZN−1
0 , (7h)

0 ≤ si,k, ∀k ∈ ZN0 , (7i)

where Zba denotes the range of integers a, a + 1, . . . , b,
eqs. (7d)-(7i) impose inequality constraints on the steering
angle, velocity, steering command, acceleration, steering rate
and on the slack variable, respectively. A sufficiently large
weight value ρ > 0 in the cost function (6) ensures that
si,k = 0, k ∈ ZN0 whenever the constraints can be satisfied.

Remark 1: The quadratic penalty on the integrated error
eint

Y in (6) determines how offset-free tracking control eY →
0 is achieved, to meet hitching requirements at the end of
the maneuver. To avoid oscillations, the integrated error eint

Y

can be reset whenever its value grows too large or when the
lateral position error eY is sufficiently close to zero.

D. Real-time NMPC Implementation

We implement the NMPC with a sampling period of Ts =
T
N = 50 ms. At each control time step ti, given the current
velocity v̂i,0 and steering angle δ̂i,0, we compute the velocity
and steering commands for the control-by-wire system from
the solution U?i of the optimal control problem (7),

vMPC(ti) = v̂i,0+Ts a
?
i,0, δMPC(ti) = δ̂i,0+Ts δ

?
ratei,0 . (8)

In case of a time delay, e.g., due to the vehicle network
communication and/or actuator interface, a prediction-based
time delay compensation can be used [17].

We solve the nonlinear program in (7) within the sam-
pling time of Ts = 50 ms by a tailored implementation
of sequential quadratic programming (SQP) known as the
real-time iterations (RTI) scheme [18]. The RTI algorithm
performs a single SQP iteration per control time step, and
uses a continuation-based warm starting of the state and
control trajectories (Xi, Ui, Si) from one time step ti to
the next ti+1. The nonlinear functions and their first order
derivatives are evaluated efficiently using C code generation
in CasADi [19]. We use the QP solver PRESAS [20],
which applies block-structured factorization techniques with
low-rank updates to preconditioning of an iterative solver
within a primal active-set algorithm. In combination with the
CasADi generated C code, this results in an efficient NMPC
solver that is suitable for embedded system platforms.

V. INTEGRATED SYSTEM FOR AUTOMATED
TRACTOR-TRAILER HITCHING

Next, we discuss the integration of the BIAGT motion
planning algorithm from Section III and the NMPC tracking
controller from Section IV for tractor-trailer hitching.

A. Automatic Emergency Braking (AEB)

As stated in Problem 1, the BIAGT motion planning
algorithm computes a kinematically feasible trajectory that
avoids collisions between the tractor and any static obstacles
in the environment. Regarding other dynamic obstacles, we
make the following assumptions:
• The tractor-trailer hitching maneuver is carried out in

a mostly closed environment, i.e., without pedestrians,
cyclists, or passenger vehicles, and with only sporadic
appearances of dynamic obstacles in the area of interest.



• If a dynamic obstacle appears while performing the
hitching maneuver, the system stops by performing
an automatic emergency braking (AEB), and resumes
execution of the maneuver after the dynamic obstacle
has moved outside of a predefined safety region.

AEB is initiated if a dynamic obstacle is detected, using
on-board sensors or by communication, and if the obstacle
is within the union of safety regions around the current or
predicted positions of the truck. While AEB is engaged,
the NMPC tracking controller is interrupted and a braking
maneuver is executed. When the obstacle moves outside the
union of safety regions, the NMPC tracking controller is re-
initialized and the automated hitching maneuver continues.

In most cases, due to the low speeds at which the tractor
executes the hitching maneuver, the same motion plan can be
reused to complete the maneuver and the BIAGT algorithm
does not need to be executed after such an interruption. The
proposed method can be extended to include fast re-planning
of the motion plan [21] and obstacle avoidance constraints
in the NMPC problem formulation [22].

B. Motion Planning and NMPC for Gear Shifting

As mentioned in Section III, the BIAGT motion planning
algorithm is modified to introduce a pause at each cusp, i.e.,
at each switch between forward and backward motion of the
truck to reach the hitching point at the end of the maneuver.
In the pause period ∆tpause, during which the tractor is
planned to be at standstill, a gear shift is initiated with a
preview ∆tpre before the tractor starts moving in the opposite
direction. The preview period is chosen to be larger than the
average time it takes for the tractor to switch between gears,
∆tpre > ∆tgear. The longitudinal velocity bounds in (7e),
vmin, vmax, change according to the current gear, v ≥ 0 when
the tractor is in Drive, and v ≤ 0 when it is in Reverse.

VI. CLOSED-LOOP SIMULATIONS
AND HIL VALIDATION

We validate the performance of the automated tractor-
trailer hitching system, consisting of motion planner and
tracking controller, based on closed-loop Matlab simulations
and HIL validations on a dSPACE Scalexio unit. The pa-
rameter values are based on a real truck. For the NMPC
controller, in (6) we use the parameters: Ts = 0.05 s,
N = 40, Q = diag

([
1, 1, 1, 10−4, 10−1, 10−4, 10−2

])
, R =

diag
([

10−2, 10−3
])

, and ρ = 10. The bounds in (7) are
δmax
f = δmax = 36 deg, δmax

rate = 30 deg/s, amax = 1 m/s2,
amin = −4 m/s2. The speed limits are vmin = 0 m/s and
vmax = 2 m/s if the gear is Drive, or vmin = −2 m/s and
vmax = 0 m/s if the gear is Reverse.

A. Vehicle Model Mismatch and Sensor Noise Levels

The closed-loop simulations are executed with the vehicle
kinematics model in (1). Therefore, the system states include
pX, pY, ψ and δf , and the control inputs are v and δ and they
are provided directly by the NMPC controller as in Eq. (8).
The NMPC model in (4) uses the nominal parameter values

L0 = 5.52 m and τ0 = 0.2 s. However, to validate robust-
ness of the proposed integrated automated hitching system,
an unknown mismatch is included between the simulation
model and the NMPC prediction model. Specifically, the
parameter values for the simulation model are chosen to be
L = L0 + 0.1 m and τ = τ0 + 0.1 s. In addition, we include
a constant offset for the front wheel steering angle, i.e.,

δ̇f = (δ + δoffset − δf) /τ, (9)

where the offset value δoffset = 1 deg. The state vector, which
provides the initial value x̂i,0 to NMPC problem at each
time step ti, is measured, and we add sensor noise as a
zero-mean Gaussian random vector with covariance matrix
diag

(
[4.5, 4.5, 18, 4.5]× 10−5

)
.

B. Closed-loop Performance of Automated Hitching System

Fig. 2 shows closed-loop simulations of the tractor-trailer
hitching maneuver using the BIAGT motion planner and the
NMPC tracking controller for a fixed hitching point at the
trailer and three different initial tractor positions, resulting
in paths with one (red), two (purple), and three (green)
motion cusps. The dashed lines are the planned path and
the dotted lines are the closed-loop simulated trajectories
using NMPC. The bottom three plots in Fig. 2 show the
error values between planned and simulated trajectories for
the lateral position, heading angle and velocity, respectively.

Fig. 2 shows that the BIAGT algorithm may compute
a motion plan with a different number of motion cusps,
depending on the initial starting point of the tractor. Fig. 2
also shows that, for each of the three initial conditions,
the terminal position and heading errors with respect to the
hitching point are within the requirements in Problem 1, i.e.,
|eY| < 0.1 m and |eψ| < 10 deg. The BIAGT’s motion plan
straight segment near the hitching point helps the NMPC
integral action in achieving a closed-loop trajectory that
converges to the reference trajectory.

The behavior of the motion planner and tracking controller
with gear shifts is illustrated in Fig. 3. The gear positions
4 and 2 correspond to the Drive and Reverse, respectively.
Fig. 3 shows the two cases when there is no dynamic
obstacle, and when a dynamic obstacle is detected around
t = 55 s so that the AEB system is activated. In both cases,
the gear shifts from Drive to the Reverse before the tractor
is expected to start driving backwards, as required.

C. Real-time Validation on dSPACE Scalexio

The HIL simulations are executed on a dSPACE Scalexio
DS6001 computing unit. To guarantee real-time execution,
the NMPC turnaround time (TAT) must be less than the
sampling period Ts = 50 ms. As shown in Fig. 4, the TATs
for the NMPC tracking controller are typically below 10 ms,
well below 50 ms. Fig. 4 also shows the TATs for the BIAGT
motion planner, which is executed only once at the beginning
of the automated tractor-trailer hitching maneuver, as per the
specifications in Problem 1. After the reference trajectory is
computed, which takes less than 1 s in Fig. 4, the NMPC
tracking controller is activated to accurately steer the tractor
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Fig. 2. Closed-loop simulation results from the BIAGT motion planner and NMPC tracking controller, for a fixed hitching point and three different initial
positions of the tractor, resulting in paths with one (red), two (purple), or three (green) cusps to complete the hitching maneuver.

Fig. 3. Reference and achieved tractor velocity with gear shift commands
and gear shift delays, without (left) and with (right) a dynamic obstacle,
causing temporary AEB activation for safety.

along the motion plan. The BIAGT algorithm requires a
computational effort only at the first time step to compute
the reference. However, TATs for the planner in Fig. 4 are
nonzero at all time steps, because the NMPC and BIAGT
algorithms are executed on a single core of the dSPACE
Scalexio unit and the NMPC task has the highest priority.

D. Monte Carlo Simulations with Random Initial Conditions

As shown in Fig. 2, the BIAGT planner may compute
a motion plan with a different number of motion cusps,
depending on the initial pose of the tractor. Therefore, we
execute Monte Carlo simulations in Matlab with randomized
initial positions and heading angles. We randomly sample
2000 initial conditions from the state space region defined
by 14 ≤ pX ≤ 28 m, −17 ≤ pY ≤ −1 m, and 115 ≤ ψ ≤
172 deg. The performance of the BIAGT motion planner for
the 2000 simulations is summarized as shown in Fig. 5.

Fig. 5 shows that for all the 2000 cases, the BIAGT
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Fig. 4. Turnaround times (TATs) for the BIAGT and the NMPC tasks in
the dSPACE Scalexio real-time computing unit.

motion planner can always compute a feasible trajectory,
from the initial condition to the hitching point. As discussed
in Section V, reducing the number of motion cusps in the
motion plan usually improves the tracking performance. In
the 2000 simulations, 76%, 9% and 15% of the plans have 1,
2 and 3 motion cusps, respectively. Fig. 5 also shows the time
to compute the motion plan in the Monte Carlo simulations,
which shows that BIAGT can compute the motion plan
within 1 s for 79% of the cases. As discussed in Section III,
the tailored BIAGT algorithm aims to reduce the number
of motion cusps in the plan, after a trajectory with a larger
number of motion cusps has already been found. Therefore,
even though the motion planner reached the maximum time
limit of 5 s in 15% of the cases, a motion plan with 3 motion
cusps was already found earlier.

Fig. 6 summarizes the closed-loop NMPC performance
in the 2000 Monte Carlo simulations, in terms of position



Fig. 5. BIAGT planner performance results for 2000 Monte Carlo
simulations: number of motion cusps (left) and computation time (right).

Fig. 6. Terminal position and heading angle errors of NMPC for the
automated hitching maneuver in 2000 closed-loop Monte Carlo simulations.

and heading angle error at the terminal point of the auto-
mated tractor-trailer hitching maneuver. The histograms of
the terminal errors in Fig. 6 confirm that the specifications
of Problem 1, |eY| < 0.1 m and |eψ| < 10 deg are satisfied
in all the 2000 simulation scenarios.

VII. CONCLUSIONS

We have proposed a system for integrated motion plan-
ning and control for automated tractor-trailer hitching. The
BIAGT planner yields a kinematically feasible and safe
trajectory from the initial point to the hitching point. An
NMPC accurately tracks the reference path while satisfy-
ing the system constraints. Safety with respect to dynamic
obstacles is provided by an automatic emergency braking
system, and gear shifting is taken into account. Hardware-in-
the-loop simulations on a dSPACE Scalexio unit demonstrate
the feasibility and effectiveness of the planning and control
system. The requirements on the lateral position and heading
angle errors with respect to the hitching point are satisfied.
Validation of the proposed framework in real tractor-trailer
hitching experiments is ongoing.
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