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Learning Optimization-based Control Policies Directly from
Digital Twin Simulations

Marcel Menner, Ankush Chakrabarty, Karl Berntorp, and Stefano Di Cairano

Abstract— This paper proposes to use a digital twin of a
dynamical system directly for optimization-based control. It
proposes an algorithm based on an Unscented Kalman Filter
(UKF) to solve optimization-based control problems, where the
system dynamics is encoded in the digital twin. The UKF-
based algorithm uses simulations of a digital twin directly
to optimize the control policy and does not require gradients
to be computed—making it suitable for differential-algebraic
constraints, where gradients may be inaccessible. The proposed
UKF-based algorithm does not require explicit knowledge of
the internal model of the digital twin, nor the control map;
that is, it is a purely simulation data-driven approach. The
main advantage is that a high-precision simulation-oriented
digital twin can approximate the physical dynamical system
more accurately than an analytical control-oriented model and
thus, can improve the performance of the controller. The digital
twin-based optimal control approach is evaluated on two case
studies. First, a pendulum on a cart is optimized to swing up
and stabilize. Second, a crane controller is optimized to avoid
oscillations of the load.

I. INTRODUCTION

Model-based control approaches, such as linear quadratic
regulator (LQR) or model predictive control (MPC), use a
mathematical model of a dynamical system to determine
actuator commands. Mathematical models of dynamical sys-
tems are often simplified to facilitate numerical optimization
methods; we refer to such simplified models as control-
oriented models. Such control-oriented models are often
designed using smooth analytical functions that are suited to
gradient-based optimization [1]. While these control-oriented
models have been demonstrably useful, modern control engi-
neering applications are becoming increasingly sophisticated,
and therefore, require significantly higher modeling com-
plexity to generate accurate predictions. Consequently, con-
troller design methodologies that rely on simplified control-
oriented models (e.g., linear state-space or transfer-function)
are becoming limited in applicability. With the advance-
ment of computational resources and simulation software,
there is a need to design controllers that can make use of
high-fidelity simulators. Such simulators can contain rule-
based/heuristic, neural network-based, and other non-smooth
underlying dynamical models to emulate the complexities of
contact dynamics, friction, inertia of complex shapes, flexible
bodies as in soft robotics, and human behaviors.

A. Contributions
Conceptual Idea: In this paper, we propose a simulation-

model-based optimal control approach that leverages pre-
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dictions made by a high-fidelity simulator, or digital twin,
rather than a simplified control-oriented model. The simu-
lation model implicitly represents the differential-algebraic
constraints, i.e., the system dynamics. It can have a very
general structure and can include discontinuities, friction
models, contact dynamics, and maps generated from data.
The fundamental idea is that a simulation model such as a
digital twin has the potential to approximate the physical
dynamical system more accurately than an analytical model,
and thus can improve the performance of a controller de-
signed using such a twin.

Algorithmic Realization: This paper proposes an algo-
rithm for digital twin-based optimal control using a gradient-
free implementation. The algorithm is based on an Unscented
Kalman Filter (UKF), which “estimates” the optimal input
sequence to the dynamical system. The UKF uses evaluations
of so-called sigma points [2], which are realizations of input
sequences to the dynamical system. The evaluations of the
sigma points are used to iteratively update the optimizer.
Hence, the algorithm does not rely on gradients, but on
evaluations of input sequences—the sigma points—making
it suitable for optimal control using a digital twin.

Results: We present two case studies. First, we use a
digital twin of a pendulum on a cart in order to control
the system to swing up the pendulum. Results show that the
proposed approach can control an unstable dynamical system
with high precision. Second, we use a digital twin of a crane
in order to control its motion to avoid oscillations of the
load/beam. Results show that the algorithm can effectively
improve the operation of a complex dynamical system.

B. Related Work

Digital twins are often utilized to improve processes
through simulation-based design [3]–[5]. A gradient-based
sequential quadratic programming method for set-point op-
timization is presented in [6], where a simulation model is
used to improve accuracy. In [7], data from a simulation
model are used to iteratively update the solution of the
Hamilton–Jacobi–Bellman equation. In [8], a digital twin
is utilized for design and evaluation. In [9], a digital twin
for thermal processes is developed and suggested for control
design. In [10], a digital twin is utilized for an automated
conveyer system. In [11], a data-driven approach is developed
to automate smart manufacturing systems. In [12], a digital
twin is used to optimize processes or controllers, which is
closely related to reinforcement learning. Compared to [3]–
[12], we propose a concept to directly use a digital twin for
optimal control as an encoding of the differential-algebraic



constraints, rather than using a digital twin indirectly by
calibrating a controller or optimizing a process.

In reinforcement learning (RL) [13] and Bayesian opti-
mization (BO) [14], [15], digital twins can be exploited to
calibrate controllers, i.e., a controller calibrated for a digital
twin may perform well for the dynamical system after which
the digital twin is modeled. In [16], RL is used to enhance
digital twins. Other works on RL are summarized in [17],
[18]. In [19], a framework for calibrating parameters using
BO is proposed. In [20], BO is used to learns failure regions
from simulation data. Methodologically, the proposed control
approach is related to RL and BO as it uses evaluations of
system performance. However, we do not rely on a trial-
and-error implementation or a surrogate function. Instead,
we propose to use an UKF to compute an update direction
for the optimizers. While [21], [22] use an UKF for controller
calibration, this paper uses an UKF to solve an optimization
problem with a simulation model as differential-algebraic
constraints, i.e., model for the system dynamics.

C. Notation

We define ∥x∥Σ := xTΣx, I as an identity matrix of
appropriate dimension, and 0 as an all-zero vector or matrix
of appropriate dimension. Further, N (µ,Σ) is the Gaussian
distribution with mean vector µ and covariance matrix Σ,
and x ∼ N (µ,Σ) implies that x is sampled from N (µ,Σ).
The conditional probability density function of a vector x,
conditioned on y is p(x|y).

II. DIGITAL TWIN-BASED OPTIMAL CONTROL

A. Problem Statement

This section presents a framework for designing optimal
control policies/laws that uses a digital twin as a predictive
system model. We reiterate that such a digital twin may
comprise software components that do not necessarily have
closed-form analytical representations. The objective of the
control policy/law is to manipulate a dynamical system,

0 = ftrue(z(t), ż(t), u(t), t), z(0) = z0 (1)

to satisfy certain specifications expressed by a cost function,
∥yref − htrue(z(t), u(t))∥Q with Q ≻ 0 and Q ∈ Rnh×nh ,
where z(t)∈Rnz denotes the state of the dynamical system,
u(t)∈Rm denotes the controllable input, ftrue represents the
dynamics, and htrue is a specification function with desired
values yref . To achieve this objective, this paper uses a digital
twin/simulation model of the dynamical system in (1) with

0 = ftwin(x(t), ẋ(t), u(t), t), x(0) = x0 (2)

to obtain an optimal input sequence, u(t), where x(t)∈Rnx

is the state of the simulation model and ftwin denotes a
function defining a simulation environment of the dynamical
system. Here, x(t) may be a subset of the states z(t), which
is common practice in control design to reduce complexity.
The simulation environment in (2) may be a simple linear
system, 0=ftwin(x(t), ẋ(t), u(t), t)= ẋ(t)−(Ax(t)+Bu(t)),
or a complex multibody simulation model/digital twin.

Our proposed control policy/law actuates the dynamical
system in (1) using the simulation model (2) in order to
optimize the surrogate cost function ∥yref−h(x(t), u(t))∥Q
over a prediction horizon Thor, i.e.,

min
u(t)

∥yref − h(x(t), u(t))∥Q (3a)

s.t. 0 = ftwin(x(t), ẋ(t), u(t)) for t ∈ [0, Thor]. (3b)

B. Algorithm for Digital Twin-based Optimal Control

In the following, we present an iterative algorithm to
solve (3) in order to find an optimal input sequence. First, we
parametrize the input sequence using parameters θ ∈ Rnθ ,

u(t) = ϕ(θ, t) for t ∈ [0, Thor]. (4)

Note that we do not require a functional form for ϕ, instead
we treat ϕ as an oracle, where providing some θ yields a
control policy.

Remark 1 (Examples for parametrization): In (4), ϕ(θ, t)
can be a function that uses discretized values and a zero-
order hold implementation with u(t)=ϕ(θ, t)=uk for k≤
t≤ k+Ts and θ=

[
u0 uTs . . . uThor−Ts

]T
; ϕ(θ, t) can

use discretized values and a first-order hold implementation
u(t) = ϕ(θ, t) = uk+Ts

t
Ts

+uk(1− t
Ts
) for k ≤ t ≤ k+Ts;

ϕ(θ, t) can be a linear combination of basis functions, χ,
with weights θ and u(t)=ϕ(θ, t)=θTχ(t); etc.

1) Digital Twin-based Optimal Control as Stochastic Es-
timation Problem: Let θi be the parameters of the algorithm
at iteration i. The iterative algorithm uses

θi+1 = θi +∆θi, (5)

where ∆θi is the parameter update. The basic idea is to cast
the optimization problem of solving for θ as an estimation
problem where θ is obtained by unscented Kalman filtering.
In particular, we model the parameter update and the cost
function as having prior distributions with

∆θpriori ∼ N (0, R), (6a)

h(x(t), u(t)) ∼ N (yref , Q
−1). (6b)

The prior on h(x(t), u(t)) is naturally given by the cost
function in (3). The prior covariance R is a design
choice for the algorithm and can be interpreted as be-
ing related to a gradient-step size. Hence, the parame-
ters of the input sequence are obtained from the poste-
rior distribution p(θi+1|θ0, θ1, ...θi, h(x(t), u(t))). Eq. (6b)
relates to (3a) as N (yref , Q

−1), which is proportional to
exp (− 1

2∥yref − h(x(t), u(t))∥Q). Thus, maximizing its log-
arithm, − 1

2∥yref−h(x(t), u(t))∥Q, is equivalent to minimiz-
ing the cost function in (3a).

2) Unscented Kalman Filter (UKF): The UKF uses de-
terministic samples—called sigma points—around the mean,
which are propagated and used to update the mean and
covariance estimates [2]. In the following, we use super-
scripts, spj, to index sigma points, as opposed to the
subscripts indicating iterations of the optimal control algo-
rithm, i. The sigma points, θspji , are generated using the pos-
terior distribution defined by the posterior mean, θi, and the



posterior covariance, Pi. The sigma points, θspji , correspond
to an input sequence through (4), uspji (t)=ϕ(θspji , t), and to
a state sequence through (2), xspji (t). Hence, we can evaluate
the sigma points, θspji , through simulations and obtain

hspji := h(xspji (t), uspji (t)), uspji (t) = ϕ(θspji , t). (7)

The UKF recursion uses the evaluations of the sigma points
in (7) to update its mean and covariance estimate. Then, the
parameter update in (5) is given by

∆θi = Ki(yref − ĥi) (8)

with the Kalman gain, Ki, and

θ̂i =
∑2nθ

j=0 w
a,jθspji , (9a)

ĥi =
∑2nθ

j=0 w
a,jhspji , (9b)

Si = Q−1 +
∑2nθ

j=0 w
c,j(hspji − ĥi)(h

spj
i − ĥi)

T , (9c)

Ci =
∑2nθ

j=0 w
c,j(θspji − θ̂)(hspji − ĥi)

T , (9d)

Ki = CiS
−1
i , (9e)

where wc,i and wa,i are weights of the sigma points, Ci is the
cross-covariance matrix, and Si is the innovation covariance.
The covariance matrix for computing the sigma points is
updated as

P̃i+1 = R+
∑2nθ

j=0 w
c,j(θspji − θ̂)(θspji − θ̂)T , (9f)

Pi+1 = P̃i+1 −KiSiK
T
i . (9g)

In this paper, we choose

θsp0i = θi,

θspji = θi +
√
nθ/(1− w0)[Ai]

j j = 1, ..., nθ,

θspji = θi −
√
nθ/(1− w0)[Ai]

j j = nθ+1, ..., 2nθ,

with weights wa,i=wc,i=(1−w0)/(2nθ), wa,0=wc,0=w0=
0, and [Ai]

j being the jth column of the square matrix Ai

with Pi = AiA
T
i , i.e., Ai is calculated using the Cholesky

decomposition. This choice is motivated by its simplicity.
Remark 2: The UKF is agnostic to the posterior induced

by h(x(t), u(t)), and therefore suitable to digital twins where
h(x(t), u(t)) may be non-differentiable resulting in non-
Gaussian posteriors.

3) Overall Algorithm: Algorithm 1 summarizes the pro-
posed UKF implementation for digital twin-based optimal
control at time . In each iteration of the algorithm, 2nθ+1
sigma points, θspji , are generated (Line 4). Then, for each
sigma point, the corresponding input sequence is computed
(Line 8), the simulation is executed to get the state sequence
(Line 10), and the evaluation function is computed (Line 12).
The 2nθ + 1 evaluations are used in the UKF recursion
(Line 15). Finally, the mean estimate is updated (Line 15).
A stopping criterion based on cost convergence may also
be added, similar to standard gradient descent algorithms
(Line 19). Algorithm 1 relies neither on gradients nor on
a strict cost decrease between iterations. This favorable
property can lead to a temporary cost increase between
iterations if that is necessary to reach a region with lower

value of the cost function faster. Section III-A shows an
example of this property. Further, the algorithm is less prone
to “get stuck” in local minima compared to gradient-based
optimization, by using sigma points.

Remark 3: The algorithm also optimizes the covariance
matrix Pi, which defines an estimated “spread” of θi and
provides information on the correlations of the elements in
θi. The covariance matrix Pi speeds up the convergence of
the algorithm as the sigma points are becoming more and
more refined for increasing iterations.

Algorithm 1: UKF for Optimal Control
1 Initialize θ0, P0;
2 for i = 0, ..., imax do
3 %% generate sigma points;
4 θspji = genSigmaPoints(θi, Pi);
5 %% iterations over sigma points;
6 for j = 0, ..., 2nθ do
7 %% get input from sigma point;
8 uspj

i (t) = ϕ(θspji , t);
9 %% simulate system using input;

10 solve 0 = ftwin(x(t), ẋ(t), u
spj
i (t), t) with

x(0) = x0 for t ∈ [0, Thor] to get xspji (t);
11 %% evaluate system performance;
12 compute hspj

i = h(xspji (t), uspj
i (t));

13 end
14 %% apply UKF recursion;
15 compute (9) to get Ki, ĥi and Pi;
16 %% update optimizer;
17 θi+1 = θi +Ki(yref − ĥi);
18 %% check stopping criterion;
19 evaluate stopping criterion;
20 end

III. RESULTS

A. Swing Up of Inverted Pendulum on Cart

First, we study the control of an inverted pendulum on a
cart using a digital twin, which is constructed using a multi-
body simulation model. Fig. 1 shows the simulation model
implemented in Simscape Multibody and Table I summarizes
its parameters. The input is a horizontal force applied to the
cart. The objective is to swing up the pendulum to the upright
position ψ(t) = π at the cart position p(t) = 0 from the
initial values ψ(0) = 0 and p(0) = 0. The simulation time
is Thor = 0.6s. The cost function ∥yref − h(x(t), u(t))∥Q as
in (3) is chosen with yref = 0,

h(x(t), u(t)) =


h0s
h0.01s

...
h0.6s

 , ht =


10 · (ψ(t)− π)

ψ̇(t)
100 · p(t)
ṗ(t)
u(t)

 ,
and Q = I . The input sequence of the horizontal force is
given by a first-order hold with u(t)=uk+Ts

t
Ts

+uk(1− t
Ts
)

for k ≤ t < k + Ts for all k = 0s, Ts, 2Ts, ..., 0.6s
with Ts = 0.025s, i.e., u(t) is parametrized with θ =
[u0 u0.025s . . . u0.6s]

T ∈R25. Further, R=0.01·I and θi=0.



TABLE I
PENDULUM ON A CART PARAMETERS

Group Parameter Value

Cart
Solid brick length 6cm
Solid brick width 3cm
Solid brick height 2cm

Cart friction
Breakaway friction force 0.02N
Breakaway friction velocity 0.002m/s
Coulomb friction force 0.018N
Viscous friction coefficient 0.04N/(m/s)

Pendulum
Solid rod radius 0.5cm
Solid rod length 20cm
Solid ball radius 2cm

Joint friction
Breakaway friction torque 0.01Nm
Breakaway friction velocity 0.001rad/s
Coulomb friction torque 0.008Nm
Viscous friction coefficient 0.0001Nm/(rad/s)

Density of all materials 1000kg/m3

0s 0.1s 0.2s

0.3s 0.4s 0.5s
Fig. 1. Swing up of inverted pendulum on cart. The figure shows
screenshots of the pendulum’s motion using an input sequence computed
using the optimizers at iteration 20 of the algorithm. The input sequence
starts by moving the cart quickly to the left in order to gain momentum of
the pendulum. Then, the input sequence waits to move back to the center
position to lose momentum and move the cart underneath the pendulum.

Fig. 1 illustrates the motion of the pendulum on the
cart example at iteration i = 20 of the optimal control
algorithm. It shows that the optimal control requires only a
few iterations to successfully swing up the pendulum. Fig. 2
shows the cost decrease of the optimal control algorithm. At
i=8, a sharp increase in cost can be observed. This increase
is caused by the nature of the UKF algorithm that does not
rely on gradients and does not provide/need a strict cost
decrease between iterations. Instead, the gradient-free nature
allows the algorithm to “move through” regions with higher
cost to reach regions with smaller cost. In this particular case,
the algorithm overshoots the upright position, which causes
the pendulum to continue the rotation. However, at iteration
i=9, the algorithm found an input sequence that slows down
the rotation after having reached the upright position. Fig. 2
also shows the angle of the pendulum and the cart position
over time at the final iteration i= 100. Around i= 80, the
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Fig. 2. Results of pendulum on a cart study. Top: Cost decrease of
optimal controller as function of the algorithm’s iterations. Middle: Angle
of pendulum for iteration i = 100. At time t = 0s, the pendulum is in its
stable equilibrium position (hanging down). At around time t = 0.3s, the
pendulum reached its target state (upright position). Bottom: Cart position
for iteration i = 100. While the cart at time t = 0s is initially at its target
position, it quickly moves to a position of around p(t) = −0.3m in order
to gain momentum and swing up the pendulum.

optimal controller has found an input sequence that keeps the
pendulum relatively steady around the unstable equilibrium,
see only minor corrections of the cart position for t>0.3s.

B. Oscillations of Crane Load

Second, we study the control of a crane as illustrated in
Fig 3. The Simscape simulation model used as digital twin
illustrated in Fig 4 is open access and provided by Math-
works [23], i.e., all simulation parameters and dimensions
can be accessed. The crane is controlled through a hoist
drum, a trolley drum, and a jib. The hoist drum is modeled
to roll up/unroll a wire rope in order to raise and lower a
load. The trolley drum moves the load towards and away
from the crane tower. The jib moves the load horizontally
by rotating around the crane tower. The inputs to the crane
are the three position commands of the revolute joints for
the hoist drum, the trolley drum, and the jib. The position
commands are tracked by an internal controller, i.e., the crane
provided in [23] is a closed-loop model with a pre-stabilizing
position controller. Hence, here we show that the proposed
digital twin-based optimal control can use a closed-loop plant
to compute position commands. This example illustrates
that the UKF is agnostic to the posterior induced by the
simulations and that the control map, ϕ, can be unknown.

The goal of the optimal controller is to minimize the
oscillations of the crane’s load in reference to the jib. Thus,



Fig. 3. Digital twin visualization of a crane (open access model, provided
by Mathworks [23]).

the cost function ∥yref−h(x(t), u(t))∥Q in (3) is defined as

h(x(t), u(t)) =


h0s
h0.1s

...
h54.9s
h55s

 with ht =


∆px(t)
∆py(t)

100 ·∆ωx(t)
100 ·∆ωy(t)
100 ·∆ωz(t)

 ,
and yref = 0, Q = I , and Thor = 55s. Here, ∆px(t) and
∆py(t) are the relative positions of the load measured in
the coordinate frame that moves with the trolley attached to
the jib, i.e., ∆px(t) = ∆py(t) = 0 indicates that the center
of gravity of the load is straight below the trolley. Further,
∆ωx(t), ∆ωy(t), and ∆ωz(t) are the relative rotations of the
load measured in the coordinate frame that moves with the
trolley attached to the jib, i.e., ∆ωx(t) = ∆ωy(t) = ∆ωz =
0 indicates that the load rotates only due to the jib rotation.

The input commands of the three actuators are computed
using a first-order hold with sampling period Ts = 5s, where

V jib =


vjib5s
vjib10s

...
vjib50s

 V hoist =


vhoist5s

vhoist10s
...

vhoist50s

 V trolley =


vtrolley5s

vtrolley10s
...

vtrolley50s

 ,
and hence,

θ =

 V jib

V hoist

V trolley

 ∈ R30.

The initial input command values vjib0s =90, vhoist0s =0, and
vtrolley0s =−25, and the terminal values vjib55s =150, vhoist55s =
−60, and vtrolley55s =−50 are fixed. In other words, the crane is
moved from a position defined by v0s to a position defined by
v55s, while minimizing oscillations. All velocity and angular
velocity states are initialized to be zero at time t=0s. The
parameters, θ0, are initialized to linearly interpolate between
v0s and v55s, and we choose R = 0.01 · I .

Fig. 5 shows the cost decrease of the optimal control
algorithm from iterations i=0 to i=150. It shows that the

Fig. 4. Simscape model. The simulation model is used in order to determine
the three optimal input sequences to the system, given by the three position
commands of the hoist drum, the trolley drum, and the jib. The goal of the
optimal controller is to minimize oscillations of the load.

algorithm can quickly reduce the cost due to the oscillations
of the beam. E.g., at iteration i=32, the cost decreased to
below 20 from an initial cost of 109. At iteration i=150, the
cost decreased to 14.8. Fig. 5 also illustrates a comparison
between the oscillations before and after optimizing using
the digital twin. The relative rotational velocities of the beam
are reduced to remain within 0.5rad/s for all rotation axes,
whereas the relative rotational velocities for the initial inputs
using the linear position commands have higher frequency
and exceed amplitudes of 1rad/s. The position errors for
the optimized input sequences remain within 0.2m from
the reference point of the jib, whereas the linear position
commands yield higher oscillations and larger deviations
from the reference point, see amplitude of −0.38m at 7s.

IV. EXTENDED DISCUSSION AND CONCLUSION

We proposed to use a digital twin as implicit model of
the system dynamics. The approach is based on propagating
and evaluating sigma points of an UKF rather than using
gradients to iteratively update the control policy. Thus, this
approach is generally useful when propagating/simulating
a dynamical system model or solving differential-algebraic
constraints is easier than computing gradients. Further, as
the approach does not require the explicit computation of
gradients, it is applicable to cost functions that are nondif-
ferentiable or with a motion constraint defined by nondiffer-
entiable functions such as for switched systems. Advantages
of the proposed control approach include that neither the
control map nor the digital twin need to be known explicitly
and that the digital twin approximates the physical dynamical
system “more closely” than a control-oriented model, and
thus improves the control performance.

Open problems associated with this methodology can
be the computational burden that requires simulations to
update the optimizer, which may be costly depending on



0 30 60 90 120 150

20

40

60
80

100
120

iteration i = 0, cost = 109

iteration i = 150, cost = 14.8

Iteration of optimal controller

Cost ∥yref − h(x(t), ϕ(θi, t))∥Q

-0.01

0

0.01

0.02

0.03

R
el

at
iv

e
ro

ta
tio

n
[r

ad
/s

] ∆ωi=0
x ∆ωi=0

y ∆ωi=0
z

∆ωi=150
x ∆ωi=150

y ∆ωi=150
z

0 5 10 15 20 25 30 35 40 45 50 55
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time [s]

R
el

at
iv

e
po

si
tio

n
[m

]

∆pi=0
x ∆pi=0

y

∆pi=150
x ∆pi=150

y

Fig. 5. Results of crane controller using a digital twin. Top: Cost decrease
over iterations of optimal controller. Middle: Load rotations in reference to
jib. At iteration i = 150, the rotations (dashed purple, magenta, and yellow)
are minimized with values less than 0.005rad/s, whereas at iteration i = 0,
rotations (solid purple, magenta, and yellow) are of higher frequency and
higher amplitude. Bottom: Position error in reference to jib.

the fidelity of the simulation environment. However, future
work may focus, e.g., on parallelizing the simulations within
an iteration of the UKF-based optimal control algorithm.
Alternatively or additionally, a smart parametrization of the
input sequence, e.g., using a number of basis functions
rather than zero/first-order hold with discretized values, can
reduce the computation time of the algorithm. Finally, warm-
starting the algorithm, i.e., initalizing the optimizer θ0 and its
covariance P0, can significantly reduce the iterations needed,
e.g., as in [24] using Bayesian principles.

This paper presented initial findings and two preliminary
case studies, where digital twins were constructed and uti-
lized to compute optimal input sequences. The case studies
showed that the algorithm can control an unstable dynamical
system with high precision and can effectively improve the
operation of a complex dynamical system. Future work
could aim at alleviating the computational burden of the
proposed control algorithm, investigate theoretical properties
and systematic design choices of the algorithm, and on
alternative algorithms to UKF.
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