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Abstract
Applying a transfer-learning technique for generative deep neural networks, we demonstrate
a very time-efficient inverse design framework for photonic integrated circuit devices, when
there are new demands for structural/material parameters from an existing device library.
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Abstract: Applying a transfer-learning technique for generative deep neural networks, we
demonstrate a very time-efficient inverse design framework for photonic integrated circuit
devices, when there are new demands for structural/material parameters from an existing
device library. © 2022 The Author(s)

1. Introduction: In recent years, generative deep neural networks (DNN) have been successfully applied to
time-efficient inverse design of photonic devices [1,2]. For example, a DNN model optimized for a discrete set of
parameters can generate devices with arbitrary parameters analogous to interpolation. When the DNN is trained
with a sufficient dataset (device topologies and corresponding transmission spectra), high-performance device
topologies are generated given a target spectrum. However, if the process or material parameters are changed, the
DNN will often fail to generate high-quality device topologies appropriate for the new domain. Transfer learning
addresses this domain shift issue [3]. The DNN can adapt to the new domain (e.g., different waveguide thickness)
by updating a set of layers of network using a small amount of training data from the new domain. In this work,
we take nanophotonic wavelength splitters as an example, and apply transfer learning to accommodate a different
waveguide thickness. With a small number of additional training data, the updated DNN generates better devices
achieving higher extinction ratios (ER).

2. Wavelength Splitter: Our target device structure is based on the compact on-chip wavelength de-multiplexer
(1 input and 2 output ports) as shown in Fig. 1 (a). This is a silicon-on-insulator (SOI) structure, with a Si
waveguide thickness of 220 nm. The optimization area is a 4.5 × 4.5 µm2 square, represented by 181 × 181
pixels. Using the LumOpt numerical package [4] provided by Lumerical, we first perform the adjoint optimization
method [5] for the following target responses: T1(λ1) = T2(λ2) = Thigh and T1(λ2) = T2(λ1) = Tlow, where T1/2 is
the transmission of the waveguide mode from the input port to the output ports 1/2. Ideally, Thigh = 1 and Tlow = 0
are desired for the best performance. All transmission values are averaged over 5nm bandwidth around the target
wavelengths λ1,2 ± 2.5nm. Fig. 1(a) shows an example device topology for λ̄ = (λ1 + λ2)/2 = 1550nm and
∆λ = |λ1 −λ2|= 50nm, and the resulting device response is drawn in Fig. 1(b). The ER is defined as the average
of the extinction ratios at two wavelength bands.

3. DNN Model: The goal of the inverse design in this device is to generate a useful device topology (denoted
as T ), given a desired device performance, e.g., transmission spectra (denoted as S). The network is called
an ACVAE (Adversarial Conditional Variational Encoder) [1], which is an extension of the well-established
CVAE [6]. Since we treat the input topology as an image (i.e. pixels), we use convolutional neural networks
(CNNs) for the encoder and the decoder. Further, cycle consistency was added to improve the inverse design
capability [7].

Fig. 1. (A) Optimized device topology (black: silicon oxide background, white: silicon waveguide,
box: optimization area of 4.5× 4.5 µm2) and (B) transmission spectra of an example device gen-
erated by DNN. (C) Performance of densely generated topologies (red squares) from DNN trained
with a sparse set of topologies optimized for 220 nm-thick devices (green dots).



Fig. 2. Average extinction ratio vs. center wavelength λ̄ . Green dots and blue triangles show the
training topologies for h = 220 nm and h = 200 nm, respectively, purple plus signs and red squares
indicate the generated devices with the DNN trained with the data for h = 220 nm and h = 200 nm,
respectively. The black starts are the generated devices using the transfer learning. (A) contains three
series and (B) contains two series of the training data for h = 200 nm. All the ERs are evaluated with
FDTD for h = 200 nm.

4. Baseline Training Data and Validation: The baseline DNN training dataset was prepared by the following
procedure: (1) optimize a device topology targeted for λ̄ = 1550nm starting from a random initial condition, given
a separation ∆λ = 50 nm and waveguide thickness h = 220 nm; (2) take the topology optimized at λ̄ = 1550nm
as the initial condition for the optimization targeting for λ̄ = 1575nm; and (3) cascade the previous step for every
25nm of target λ̄ values. The steps (1)–(3) ensure smoothness in T across varying S′ within a series of such
cascades. The adjoint optimization produces many (∼100) intermediate sub-optimal results en route to the final
optimal design. Using these training data, the DNN was trained, and by sweeping the target center wavelength λ̄

from 1475nm to 1625nm, we generate 91 devices and validate by finite-difference time-domain (FDTD) simu-
lations, demonstrating that they are filling the gap and generally exceeding the training data, as shown in Fig. 1 (c).

5. Transfer Learning: We now consider to design devices for a new domain with h = 200 nm, by transferring
the knowledge at h = 220 nm. The green dots in Fig. 2 shows the previous baseline training set evaluated at
h = 200 nm. The center wavelength is shifted towards the shorter wavelength, and ER is generally degraded. The
generated devices from the DNN using only the baseline training data are shown as red squares, also showing
shifted and degraded performances. The blue triangles show new training data for the 200 nm thickness at
λ̄ = 1475 nm, 1550 nm, and 1625 nm for Fig. 2 (a) and λ̄ = 1475 nm and 1625 nm for Fig. 2 (b). The purple
plus sign makers show the generated devices when the DNN was using only the new training set, indicating
the limitation when the training data are sparse, especially at the longer wavelength region. Now, the transfer
learning is applied to the original DNN, with unfreezing all the layers while training only with the new training
data set. The validation results of the transfer learning are shown as the black starts. This clearly demonstrate
that transfer learning outperforms the DNN trained with the baseline training data, or with only the new training
data, which is especially clear at the longer wavelength. One FDTD simulation takes 1 minute, and one adjoint
method optimization run takes 2–3 hours using a cluster with 36 cores. So it takes one and a half day to collect
the baseline and additional training dataset, respectively. Once the training dataset are collected, to train the DNN
takes 6 minutes using a graphic processsing unit, and 1 second to generate the whole 91 devices.

6. Summary: In designing photonic devices, we often need to deviate from the original conditions, such as struc-
tural or material parameters. Focusing on nanophotonic wavelength splitters as an example, we demonstrated that
transfer learning can effectively adapt to the new waveguide thickness with fewer training data. This demonstrates
the versatility and the effectiveness of the DNN framework.
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