
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Deep Reinforcement Learning for Optimal Sailing Upwind
Suda, Takumi; Nikovski, Daniel

TR2022-102 September 17, 2022

Abstract
We describe the application of deep reinforcement learning (DRL) methods to determine
the optimal decision policy when sailing a sailboat towards a target point located upwind
from the boat’s current position, under the conditions of wind direction and speed that vary
according to an unknown stochastic process, as is typical in real sailing races. A model of
the dynamics of the sailboat is described together with a suitable choice of actions, in the
form of a Markov decision process (MDP), which allows the application of a wide variety of
DRL algorithms. Empirical results show that the learned policy outperforms baseline control
algorithms that do not take into consideration the variability in wind strength and direction,
and instead assume that the current wind conditions will persist indefinitel

IEEE International Joint Conference on Neural Networks IJCNN 2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Deep Reinforcement Learning for
Optimal Sailing Upwind

Takumi Suda
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: suda@merl.com

Daniel Nikovski
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: nikovski@merl.com

Abstract—We describe the application of deep reinforcement
learning (DRL) methods to determine the optimal decision policy
when sailing a sailboat towards a target point located upwind
from the boat’s current position, under the conditions of wind
direction and speed that vary according to an unknown stochastic
process, as is typical in real sailing races. A model of the dynamics
of the sailboat is described together with a suitable choice of
actions, in the form of a Markov decision process (MDP), which
allows the application of a wide variety of DRL algorithms.
Empirical results show that the learned policy outperforms
baseline control algorithms that do not take into consideration
the variability in wind strength and direction, and instead assume
that the current wind conditions will persist indefinitely.

Index Terms—Optimal control under uncertainty, stochastic
modeling

I. INTRODUCTION

Sailing a boat towards a point upwind in a minimum time
is a difficult optimal control problem due to the limitations
to the motion of the boat and the generally stochastic nature
of the velocity and direction of the wind that powers that
motion [1]–[3]. In the situation displayed in Fig. 1, typical
of the first and often subsequent legs of sailing races, the
boat starts from a position that is directly downwind from
the location of an upwind buoy, also called the windward
mark, and its objective is to reach and sail around that buoy
in a specified direction, usually counter-clockwise. As sailing
directly upwind is impossible for sailcraft, reaching the buoy
would require a series of maneuvers, where the boat sails as
close to the wind as possible without stalling or losing speed,
and changing its direction of motion at least once. It is the job
of the skipper of the boat to decide at what angle to the wind to
sail, as well as when to change directions (tack). This problem
is exacerbated by the generally variable direction of the wind,
which the skipper can observe and possibly predict, based on
past observations. A reasonable assumption is that within the
duration of a single leg of a sailing race, the wind direction
and speed will not be constant, but the stochastic process that
generates them will be constant, although generally unknown.
(The dominant direction of the wind is usually known with
some accuracy, as it determines the relative position of the
buoy and the start line of the race.) The uncertainty in the wind
direction (and to a lesser extend, speed) affects significantly
the decisions of the skipper. Although it is generally possible
to reach the goal mark with a single tack (blue trajectory in

Fig. 1), if the skipper tacks too early (red trajectory), the boat
might miss the mark, necessitating two more tacks to recover.
Each tack slows down the motion of the boat, because its
bow must go through the direction of the wind, at minimal
speed, thus losing time. On the other hand, if the skipper tacks
too late (green trajectory in Fig. 1), the boat will travel an
unnecessarily long distance, also losing some time.

wind

Fig. 1. Sailing course. The boat starts from a point directly downwind, and
must reach and round the upwind mark in a counter-clockwise direction by
executing a series of maneuvers.

The optimal control policy needed by the skipper will
consist of a mapping from the relative position of the boat with



respect to the goal mark and the current direction of the wind
to the desired point of sail (heading of the boat) and the asso-
ciated choice of whether to tack or stay on the current course.
The sequential nature of this decision problem, the hybrid form
of its decision variables, as well as its stochasticity, make it
very difficult to solve by means of classical optimal control
techniques, and suggest that it might be a good target for
solution by means of deep reinforcement learning algorithms
[4]. We present one such solution in the next sections. Section
II reviews several already proposed solutions to the problem
of optimal sailing upwind. Section III defines the particular
equations that we have chosen to model the motion of the
boat in variable wind conditions, and Section IV describes
how these equations, along with a suitable stochastic model
for the direction and speed of the wind, can be represented
as one of two suitable Markov decision processes (MDPs).
Section V presents empirical results from the application of
several well-known deep reinforcement learning algorithms to
the two MDPs, and compares them to two baseline model-
predictive controllers that do not take into consideration the
variability of the wind. Section VI concludes and proposes
several possible directions for future work.

II. RELATED WORK

Sailcraft sailing skills have been perfected over the cen-
turies, and are usually acquired by human sailors over a
long period of training and practice. In addition, recent ad-
vances in computational technology have led to the application
of advanced control and optimization algorithms to various
aspects of sailboat steering and navigation [5]. The basic
racing technique when sailing upwind usually consists of the
following elements. At any given moment, the highest-level
decision the skipper must make is whether to stay on the
current tack (port or starboard, meaning the wind comes over
the left or right board of the boat, respectively), or change tack.
Depending on this decision (change tack or stay the course),
the skipper must then determine what the desired new heading
of the boat should be. This is an intermediate-level decision,
also called a helming decision. Once the desired new heading
has been determined, the skipper must make the low-level
decision of what rudder angle and sail(s) position to choose
in order to get to the desired heading optimally. In the case
when the high-level decision has been to change tack, the
desired new heading will generally be very different from the
current heading, so a complex tacking maneuver might have
to be executed that requires exact coordination between the
rudder and sails of the boat. These three levels of decisions
are usually well separated, and on a large sailing boat might
be made and executed by three different sailors (certainly, in
coordination with one another). Similarly, on robotic sailing
boats, they are usually separated into three different layers of
the control system architecture [6], [7].

The lowest-level control of the rudder and sails can usually
be implemented by traditional control systems technology,
such as a proportional-derivative-integral (PID) controller for
the rudder angle, and a look-up table for the optimal trim of

the sails given a particular point of sail with respect to the wind
[5]. As such, these decisions are easy to automate, usually in a
boat-specific manner. The next level up, the helming decision
about what angle with respect to the wind to choose, has been
researched extensively by computational methods. Algorithms
and software that predict a particular boat’s speed given the
wind’s speed and angle with respect to the boat’s current
heading are called Velocity Prediction Programs (VPPs) [8].
VPPs have been used in boat design and racing for a number of
decades, and are part of the instrumentation of many modern
sailboats. Their output can be summarized in a so-called polar
diagram, an example of which is shown in Fig. 2. This polar
diagram, specific for each boat, reflects what the surface speed
of the boat will be if its heading is at an angle α with respect to
the true wind angle (TWA), and the current true wind speed
(TWS) is h. Fig. 2 shows this dependency for one specific
TWS. This speed is achievable under the assumption that
the sails are trimmed (adjusted) optimally with respect to the
wind’s direction by the lower-level controller. With the help of
the polar diagram, the optimal heading of the boat when sailing
upwind can be determined by projecting the boat’s velocity on
the vertical axis, and choosing the angle α∗ corresponding to
the largest projection, as shown in Fig. 2. By maximizing this
projection, also called Velocity Made Good (VMG), the boat
will make maximal progress against the wind, which is the
main objective when sailing upwind. So, if a polar diagram
of a boat is available, the intermediate helming decision can
be made with its help. One additional circumstance in this
calculation is whether the boat can reach the mark on the
current tack, or not. If it is not possible, the course maximizing
VMG is optimal. If, on the contrary, it is possible to reach the
mark, it is usually more advantageous to head directly for
the mark, as shown in the green trajectory in Fig. 1. However,
because an unfavorable later wind change might make the boat
miss the mark, unless it tacks two more times to gain distance
against the wind, it might still make sense to head to a point
windward of the mark, as a precaution.

To address the highest level of decision making, the course
planning part of the control problem, a number of com-
putational methods have been applied [5], [7]. Due to its
computational difficulty, this part of the problem is still far
from being solved optimally. The most important complicating
factor is the variability in the wind’s direction and speed.
If there were no such variability, the optimal path can be
computed easily by sailing consecutively on two opposite tacks
at the optimal angle to the wind, and transitioning between
the two by a single tacking maneuver, as shown in the blue
trajectory on Fig. 1. For the situation shown there, because
the mark needs to be rounded counter-clockwise, the boat will
need to be on a starboard tack when reaching it (that is, wind
coming over its right board). This means that it will have to sail
initially on the opposite, port tack (wind coming over its left
board), and tack to starboard at the right time. If the optimal
angle for sailing upwind is α∗, the right moment to change
tacks is when the boat crosses the straight line extending from
the mark at angle of α∗ to the TWD. This line is called the



0◦
30◦

60◦

90◦

120◦

150◦

180◦
210◦

240◦

270◦

300◦

330◦

0

2

4

6

8

α∗

[knots]

Fig. 2. Polar diagram.

layline, and is shown with a dotted line in Fig. 1. Stelzer and
Pröll describe the implementation of this sailing strategy on a
robotic boat, also accounting for the downwind drift the boat
will experience when sailing upwind [9].

However, when the wind direction shifts, the layline will
shift with it, and if the boat has already tacked based on the
previous layline, it might end up on a starboard point of sail
that will no longer reach the mark. In this case, the boat will
have to tack two more times to recover and regain distance
upwind. This sequence is shown in the red trajectory in Fig. 1,
for a boat that has already tacked, maybe because the direction
of the wind at a previous time was such that the boat had
crossed the layline at the time.

How to make the optimal decision about when to tack is
thus a difficult sequential decision problem that has been ad-
dressed by various optimization methods. Philpott and Mason
formulated the problem of optimizing sailboat routes under
uncertainty as a sequential decision making problem, and
proposed a solution method based on dynamic programming
(DP) [1]. They proposed a mean-reversal stochastic model for
wind speed and direction. However, because they employed
DP with a discrete state space, and arranged the discrete states
in stages according to their distance upwind to the mark, they
made several simplifications that might introduce inaccuracies.
First, they assumed that transitioning between stages takes
approximately a constant time, but this transition time clearly
depends on the speed of the boat and is variable. Furthermore,
this assumption did not let them account correctly for the time
it takes to execute a tacking maneuver, when the boat slows
down dramatically, so they had to add an extra penalty time
for each tack. In addition, they had to discretize the direction
of the wind into a relatively small number of bins, essentially
modeling it as a Markov chain. Although constrained by the
limitations imposed by the solution method (discrete-space

DP), their work was an early success of the sequential decision
making approach to solving the route planning problem for
sailboats. This work also pioneered the idea that the result
of the computation should not be merely a single optimal
trajectory, but an entire decision policy that can specify the
optimal action for every state the boat might find itself in.

Later on, Ferguson and Elinas built upon this work, model-
ing the problem as a Markov decision problem (MDP), but in
order to make its solution tractable, they discretized its state
space, too [2]. Moreover, they did not include the heading
angle of the boat in the state space, and instead assumed
that the boat could only be on exact close-hauled starboard or
port tacks (at angles +α∗ or −α∗ to the TWD, respectively).
Because the intermediate headings when tacking were not
included in the state space, it was assumed that the tacking
maneuver was performed in a single step, and a time penalty
for it was added to the cost function of the MDP. As the
wind shifts stochastically, the transitions of the MDP become
stochastic, too, which is reflected in the transition probabilities
of the MDP. The optimal policy for the resulting MDP was
computed by means of the value iteration (VI) algorithm [10].
Moreover, they allowed the MDP to have only two possible
actions: change tacks and stay on the current tack, respectively.
While this helps significantly as regards the computational
speed of the VI solver, it probably results in a sub-optimality of
the computed policy – as pointed above, sailing close-hauled
at an angle α∗ to the TWD is not necessarily always optimal
on the final starboard approach to the mark, where sailing
directly to the mark would be faster.

Feretti and Festa [3] formulated the route planning problem
as a hybrid optimal control problem, including in the state
vector of the system the tack of the boat (a discrete vari-
able) along with its coordinates (continuous variables). Wind
direction and speed were modeled by means of stochastic
differential equations (SDE). The resulting Hamilton-Jacobi-
Bellman (HJB) equations of optimal control were solved
numerically on a grid of discrete nodes in space and time.
A modified policy iteration scheme was used to speed up the
computation.

An additional aspect of route planning in sailboat racing is
the risk attitude of the skipper of the boat. Whereas the usual
sailing objective is to minimize the expected (average) time
to the mark, corresponding to a risk-neutral attitude towards
the actual probabilistic distribution of that time, in real races,
the risk attitude of skippers would change depending on their
relative position in the race. Skippers that are lagging would
usually try to choose a risky course with high variance of time
to mark in the hope that that would give them a chance to catch
up with the leaders and possibly win the race, whereas skippers
in the lead would rather choose a conservative strategy that
would help them preserve their lead with maximal probability.
Tagliaferry et al. [11] explored computational methods for
accounting for the risk attitude of the skipper, adopting the
discrete DP-based solution earlier proposed in [1] for route
planning under uncertainty.

In summary, researchers working on optimal route planning



for sailcraft have already been experimenting with MDP
formulations of the problem, but due to the limitations of
the previously dominant value-function-based approach to
solving MDPs (and other representations of RL problems),
these attempts have resorted to rather coarse discretizations of
the state and action spaces of the problem, leading to fairly
significant and probably quite sub-optimal approximations and
simplifications. In the meantime, after recognizing the need to
solve planning problems in physical systems with naturally
continuous state and action spaces, research in the field of
RL has also explored an alternative solution approach based
on policy gradients and optimization directly in policy space
that can handle continuous states and actions more easily
[12]. Combined with the unparalleled function approximation
power of deep neural networks, this approach has led to
the successful solution of a number of benchmark control
problems of significant complexity [13]. This suggests that
such algorithms might bear fruit on the problem of optimal
navigation of sailcraft under wind uncertainty, which is the
main idea investigated in this paper.

III. EQUATIONS OF MOTION OF A BOAT SAILING UPWIND

Any sailboat is a complex vessel with many moving parts,
each of which has its own dynamics of motion that interact
with the force and direction of the wind to produce motion.
Consequently, the dynamics of a sailboat can be modeled
at various levels of detail, depending on objectives. For our
purposes (computation of optimal navigation), a relatively
simple kinematic model will suffice, while still matching well
trajectories taken by real boats during races. In this model, the
boat is assumed to be a point with position coordinates (x, y)
and direction (heading) θ, controlled by means of a rudder
that can adjust the heading by an amount u every control step,
umin ≤ u ≤ umax, with umin = −umax. If the control time
step is of duration ∆t, this is equivalent to setting the rotational
velocity of the boat to u/∆t during a control step.

If xk, yk, θk, and uk are the position, direction, and control
variables at time tk

.
= k∆t, the state evolution of the boat

during discrete control steps k = 1,K can be obtained
by approximating its continuous-time motion by means of
forward Euler integration, to obtain the discrete-time equations

xk+1 = xk + cos θvk∆t

yk+1 = yk + sin θvk∆t

θk+1 = θk + uk

(1)

These equations of motion distill the complicated interplay
of all forces acting upon the hull and sails of the boat,
including effects such as heeling (leaning) of the boat sideways
in response to these forces, into the single variable vk that
describes the surface speed of the boat during control period
k. The velocity vk = vk(αk, hk) is a function of the difference
αk

.
= θk − ωk between the heading of the boat θk and the

current true wind direction (TWD) ωk, as well as the current
true wind speed (TWS) hk, and can be obtained directly from
the polar diagram of the boat. The direction of the wind ωk

is as it would be experienced by a stationary observer not in
the moving boat.

IV. REINFORCEMENT LEARNING PROBLEM FORMULATION

The objective of this paper is to formulate the problem of
optimal sailing upwind as a reinforcement learning problem,
and solve it by means of advanced RL algorithms. Since the
underlying mathematical formalism of most RL algorithms is
that of Markov decision processes (MDP), our problem needs
to be represented as an MDP [10]. As mentioned above, the
use of MDPs in optimal route planning for sailboats has been
proposed in the past [2], and our work builds upon this idea,
expanding the formulation into a form suitable for solution by
means of modern RL algorithms [4].

An MDP is a discrete-time stochastic control process that
is described by the tuple (S,A, Pa, Ra), where S is the state
space, A is the action space, Pa(s, s

′) = Pr(sk+1 = s′|sk =
s, ak = a) is the probability that taking action a in state s
at decision step k will lead to state s′ at the next time k +
1, and Pa(s, s

′) is the immediate reward, respectively cost,
resulting from transitioning from state s to state s′ due to
choosing action a [10]. The objective of the reinforcement
learning algorithm is to find an optimal policy π that selects
actions ak = π(sk) that maximize some cumulative measure
of reward, such as the expected discounted future reward for
tasks with infinite duration, or the average (or total) reward
per episode for episodic tasks of finite duration.

A. Continuous-Action MDP

The MDP in a RL problem includes the entire environment
that affects how rewards will be obtained as a result of action
choices. The sailboat, with its equations of motion (1), is
one component of the environment, represented by the three
variables x, y, and θ. Note than unlike in previous work
(e.g. [2]), where these state variables were discretized, in our
formulation they remain continuous, and we will rely on the
power of deep neural networks to represent policies and value
functions over them. In addition to these three state variables,
another necessary component of the environment, respectively
the MDP modeling it, is the wind, whose angle TWD and
speed TWS also need to be included in the environment.
Unlike the equations of motion of the sailboat, which are
assumed to be deterministic and are already in the format
needed for inclusion in the MDP, the dynamics of the wind
are generally stochastic, and a suitable model is necessary.

Wind modeling is an active area of research in its own right,
and for the purposes of this study, we need a wind model
that is reasonably detailed in order to capture the variability
typical during sailboat races, but is still compatible with the
MDP formalism. One such model is the Ornstein-Uhlenbeck
(OU) process, a stationary Gauss-Markov process that has
mean-reverting properties, that is, over time it tends to move
towards a central value [14]. This property matches quite well
the characteristics of the wind over the relatively short time
of a single leg in a boat race: the wind has a dominant
direction, along which the windward mark and the starting



0 10 20 30 40 50

80◦

100◦

step

an
gl

e
wind angle

ω0

Fig. 3. A realization of the stochastic process for wind direction.

position of the boat are located, but can often vary quite
significantly from this dominant direction over the duration
of the race, eventually and occasionally returning to it. This
return tends to be relatively gradual, because wind direction
tends to be determined by relatively large air masses that do
not change their direction very abruptly. The same argument
can be made for the wind velocity, too. This kind of mean-
reverting stochastic processes for the wind have already been
used in optimal sailboat planning [1].

Furthermore, the stationarity property of an OU process is
essential in an MDP, where it is assumed that the transition
probability function Pa(s, s

′) is constant over time. Moreover,
this process is first-order Markovian, making it particularly
easy to integrate into the transition function of an MDP.
In discrete time, it can be represented by an autoregressive
process of order 1 (AR(1)). For example, the wind direction
can be expressed by the equation

ωk+1 = c+ ϕωk + ϵk,

where c and ϕ are suitably chosen constants, and ϵk is a
random normally distributed variable that is uncorrelated with
any previous random values ϵk−1, ϵk−2, etc. The mean value
µ that ω tends to revert to will be c/(1−ϕ). We will also make
the assumption that the initial direction of the wind ω0 = µ,
as this is a condition that officials in sailboat races can ensure
by adjusting the starting position of the boats accordingly. An
example of a realization of the wind direction process is shown
in Fig.3. In this graph, ω0 is set to 90°, also c = 0.3ω0,
ϕ = 1 − 0.3 = 0.7 in order to ensure that µ will be equal to
the initial value ω0. As for ϵk, its standard deviation was set
to 10° and its mean was 0°.

If we combine the three state variables of the sailboat,
x, y, and θ, with the two state variables of the stochastic
process of the wind, ω and h, we will obtain a five-dimensional
continuous state space of a resulting MDP whose action set is
described by the single continuous variable u that expresses
the correction to the boat’s heading within a control step. The
reward function for this MDP could be defined as follows:
for every control step during which the boat has not reached
its goal state yet, it is given a reward of −1 units, with the
meaning of time cost. The goal is reached when the boat
crosses the line from the windward mark directly in windward

wk

hk

xk

yk

θk

uk

wk+1

hk+1

xk+1

yk+1

θk+1

Fig. 4. Environment dynamics represented as a dynamic Bayesian net-
work. Nodes represent variables, and edges represent dependencies between
variables. The lack of an edge between two variables indicates conditional
independence between them. The control variable uk for a particular period
k depends on all state variables at that time through the chosen control law
(now shown in the figure).

direction, in the clockwise direction (shown in a dashed line
in Fig. 1). (Although in races the finish line is usually oriented
perpendicular to the wind, we have chosen the finish line in
this problem to be parallel to the wind direction, because the
objective of the boat here is not only to reach the windward
mark, but also to round it.) If the boat crosses the finish
line, the episode terminates. If the boat cannot reach the goal
within K time steps, for some sufficiently high value of K, the
episode terminates and the cumulative reward is set to −K.
Thus, essentially, we are treating this problem as episodic RL,
and the negative cumulative reward of an episode is equal to
the time it would take the boat to reach the goal line.

The dynamics of the environment of the MDP defined in
this manner can be represented by the dynamic Bayesian
network (DBN) shown in Fig. 4. The state of a DBN is
represented by a collection of random variables, and two
consecutive states sk and sk+1 are shown along with the
effect each of these components of the state vector has on
all components at the next time step [15]. An edge between
two variables shows conditional dependency, and the lack of an
edge shows independence. Note that, in principle, higher-order
dependencies can be expressed by introducing edges from time
steps before the immediately preceding one. For example, an
autoregressive process AR(p) of arbitrary order p for the wind
can be expressed this way. What is not shown in this diagram
is the dependency of the control variable u on all components
of the state vector; it is the job of the boat controller to decide
what this dependency should be, in the form of a control law.



B. Discrete-Action MDP

Although the MDP described above is of the form that
modern RL algorithms can attempt to solve, knowledge of
maritime navigation accumulated over the centuries, as well
as previous research in the area highlighted above, suggest an
additional MDP formulation based on the way human skippers
sail upwind that can reduce the state space of the problem
and simplify its decision variable. The idea is to restrict the
action space of the problem to only the choice of tack on
which the boat will be sailing upwind, similar to the approach
taken by Ferguson and Elinas [2]. This is equivalent to making
a high-level decision only about the sailboat’s tack (port or
starboard), and then assuming a default point of sail for that
tack determined by the intermediate-level helming controller.

As noted above, when sailing upwind, the usual practice
is to always keep the boat heading at the optimal angle α∗

with respect to the TWD that maximizes the VMG, and thus
progress towards the goal. That is, if the TWD at time period
tk is wk and the TWS is hk, the helming controller will first
need to find the optimal angle α∗

k = argmaxα[v(α, hk) cosα],
where v(α, h) is the velocity for TWA α and TWS h as
represented by the polar diagram of the boat. After that, if
the decision is to sail on starboard tack, the optimal heading
of the boat is computed as θ∗k = ωk + α∗

k, and if the decision
is to sail on a port tack, the optimal heading of the boat is
chosen to be θ∗k = ωk − α∗

k. After that, the desired optimal
heading θ∗k is given to the low-level steering controller, which
will take corrective action to bring the current heading θk to
the desired heading θ∗k. One possible choice for the steering
controller is to simply command the change in direction to be
uk = θ∗k − θk, if −umax ≤ θ∗k − θk ≤ umax, or the respective
extreme changes, −umax or umax, otherwise.

Note that although we are using the same two actions as
in [2], our discrete-action MDP is not the same as theirs. The
first big difference is that whereas their Markov model had
a discrete state space, following an explicit discretizaton of
the position and wind variables, our MDP has a completely
continuous state space, and only its actions are discrete.
Second, it does include the boat’s heading as a state variable.
Moreover, whereas their Markov model performed a tacking
maneuver in one time step, and required an extra time penalty
to be assessed for tacking, in our case a tacking maneuver
naturally takes as many steps as it needs for the low-level
steering controller to bring the boat from its current heading
θk to the desired heading θ∗k, subject to the limitations of the
rudder angle. When changing tacks, this would be a relatively
large change, on the order of 2α∗

k, that might take several time
steps. The motion of the boat at that time will slow down
accordingly, so by simply assessing a reward (negative cost)
of −1 for each time step, as in the continuous-action MDP,
the slowdown due to tacking will be correctly accounted for.
Another benefit of using our formulation is that the trajectory
of the boat will curve naturally, similar to that of real boats,
as opposed to doing sharp turns in place that are not realistic.

V. EMPIRICAL VERIFICATION

A. Experimental Set-up
The MDPs described in the previous section, which repre-

sent the sequential decision making problem of route selection
when sailing upwind, were encoded as two OpenAI Gym
environments [16], one with discrete and the other one with
continuous actions. Leveraging the standard format of these
two OpenAI Gym environments, several algorithms from the
RLlib library for reinforcement learning were used on them:
Proximal Policy Optimization (PPO, [17]), Soft Actor Critic
(SAC, [18]) and Augmented Random Search (ARS, [19]).
PPO is an algorithm that updates its network parameters in
certain range by restricting the amount of update. SAC is
a modification to the Deep Deterministic Policy Gradient
algorithm (DDPG, [13]). SAC provides better exploratory
learning compared to DDPG by including an entropy term
in its objective function. ARS is a model-free algorithm
and one of random search algorithms which achieved good
performance with discrete actions.

In the simulation environment, the same course was raced
again and again for varying wind patterns generated from
the same stochastic process that is unknown to the learning
algorithm. The goal location was located 5 nautical miles
directly upwind from the starting location. Both locations were
kept constant. The time step of the simulation was set to 1
minute. The polar diagram used in simulation was that of the
Bavaria Cruiser 32 sailboat, and the wind speed was assumed
to be constant at 10 knots. (Variations in wind speed affect
the speed of the boat, but their impact on sailing strategy is
not so large, so in this study, we ignored them.) The standard
deviation of the random deviations in the AR(1) process of
the wind was 10°, and c = 0.3ω0, ϕ = 1− 0.3 = 0.7.

During learning, each RL algorithm repeatedly sampled the
Gym environment over and over again, each time testing its
control policy over a new realization of the wind process.
However, once training has finished, for the sake of fair
comparison between all controllers, we evaluated all of them
on the exact same 1, 000 wind patterns, and report their
average cumulative rewards (respectively, their average time
to reach the goal).

B. Certainty Equivalence Model Predictive Controller
As a baseline for comparison, we implemented two basic

model predictive controllers that ignore the variability of the
wind, and always plan the future course of the boat as if the
current direction of the wind will persist until the end of the
course. For this reason, we call them certainty equivalence
MPC controllers. They can still reach the mark successfully
because, following the principle of model predictive control
(MPC), at each step, they re-plan the control and state se-
quence to the mark from the boat’s current position, take
the first action, and if the next position does not match its
original expectation, they still get to re-plan from the actual
next position on the next control step.

The two MPC controllers use the same logic about when
to change tack, and the only difference between them is how



they choose the boat heading when on starboard tack. The
tack-selection logic follows the general strategy when sailing
upwind that was already described above. If the wind will
remain constant in speed and direction, the boat can reach the
mark in minimal time by first sailing on a port tack until it
reaches the layline, then tacking to starboard, and then sailing
on starboard tack. Of course, while sailing on starboard, the
wind might shift, and the boat might find itself on a course
that will no longer round the mark on the right side. In that
case, it will need to tack back to port, and sail on port tack
until it crosses the layline again, so that it can go back on
starboard tack.

This suggests the following rules for deciding when to
change tack or stay on the current one. First, the current angle
to the mark is computed as βk = arctan[(y(m)−yk)/(x

(m)−
xk)], where (xk, yk) is the current position of the boat, and
(x(m), y(m)) is the position of the mark. Then, when on port
tack, the boat should tack to starboard if β ≥ ωk + α∗

k, that
is, if it would fetch (manage to round) the mark on starboard
tack from the current position. If it cannot fetch the mark, the
boat should stay on port. Conversely, when the boat is sailing
on a starboard tack, if the same condition β ≥ ωk+α∗

k is true,
the boat can stay on starboard, expecting to fetch the mark,
and tack to port, if the condition is not true.

Both versions of the MPC controller use the same logic for
changing tack described above, and also both of them always
steer on course θ∗k = ωk − α∗

k when on port tack, as it is
the course with the greatest VMG, that is, making the most
progress upwind. Where the two MPC controllers differ is
in the chosen heading when on starboard tack. One of the
controllers chooses the symmetric heading θ∗k = ωk + α∗

k, on
the logic that it, too, will make the most progress upwind. We
call this controller MPCd (for discrete), as its behavior matches
that of the discrete MDP described above: it only chooses the
tack, and the heading is chosen for it automatically by the
helming controller in the MDP.

The other MPC controller recognizes the fact that the boat
would be sailing on starboard tack only if it can fetch the
mark from the current position with the current wind direction
(β ≥ ωk + α∗

k), so it can succeed in rounding the mark on
any heading in the interval [ωk + α∗

k, β]. Choosing the lower
end of the interval, ωk + α∗

k, as the MPCd controller does, is
probably not going to be optimal, because the boat will sail at
a lower speed, and travel a longer distance to the finish line
(the orange trajectory in Fig. 1) . If the wind direction will
remain constant, as the certainty-equivalent controller believes
it will, the optimal choice will be to head directly for the goal,
that is, select a target heading equal to β. The command uk to
the low-level controller can be computed then as uk = β−θk,
subject to its lower and upper limits. The resulting trajectory,
for constant wind direction after the tack to starboard, is shown
in green in Fig. 1.

We will call this controller MPCc (for continuous), because
it computes directly the continuous control signal u, as op-
posed to only the desired tack, as MPCd does. It will be
our primary choice for a baseline controller for comparison,

TABLE I
TRAINING TIME OF RL ALGORITHMS.

Discrete Continuous
PPO ARS PPO SAC

hours 26.0 6.6 20.6 17.7

because its operation matches closely how the vast majority
of sailors would sail upwind, particularly in non-competitive
situations. However, even though the MPCc controller is likely
to be more optimal than the MPCd controller, it is easy to
see why it would not be completely optimal. When sailing
on starboard tack, going straight for the mark is somewhat
risky, because the boat would sacrifice progress against the
wind for faster speed. Later, an unfavorable change of wind
direction towards the bow of the boat (known as a header),
might make it no longer possible to fetch the mark on the
current starboard tack, and the boat might have to tack to
port and then later back to starboard, thus losing time. So, it
might be advantageous to sail on a course somewhat higher
upwind, but it is not clear what the optimal angle might
be. Moreover, this angle would depend on the boat’s current
position and the difference between the current wind direction
and its predominant direction. Choosing this angle optimally
could be done by means of a more advanced sailing strategy,
of the kind an RL algorithm might learn. Another source of
suboptimality for both the MPCd and MPCc controllers is the
decision logic about when to tack. When sailing on port tack,
if the current direction of the wind has resulted from a header,
waiting to tack to starboard on the current layline might be too
late; if the wind returns to its predominant direction, the boat
would end up too far upwind. (That is one way for the boat to
find itself on the green trajectory in Fig. 1.) In this situation,
it might be advantageous to tack to starboard early, before
crossing the current layline. This, however, is risky, too, in case
the wind remains unfavorable. (That is how the boat might end
up on the red trajectory in Fig. 1.) This reasoning illustrates
how the tacking logic of a more advanced sailing strategy
might improve upon that of the MPC controllers. Nevertheless,
with the understanding that the MPC controllers might be
somewhat suboptimal in comparison to what an experienced
skipper might do in a race, they make for reasonable baselines
for comparison.

C. Reinforcement Learning Policies

The learning algorithms were run on a computer with a 12-
core CPU, using PyTorch and RLlib. Table I shows how many
hours it took to compute these policies for each algorithm.

D. Empirical Results

After the RL agents completed training, we evaluated each
of the learned controllers along with the two MPC controllers
over the exact same 1, 000 realizations of wind direction. Table
II shows the average and standard deviation of the negative
cumulative reward, corresponding to sailing time from start to
finish. It is evident that all deep RL algorithms outperformed



TABLE II
AVERAGE DISTANCE TO GOAL FOR ALL CONTROLLERS, IN MINUTES,

OVER THE SAME 1,000 WIND REALIZATIONS.

Deep Learning MPC
Discrete Continuous Disc Cont

PPO ARS PPO SAC - -
mean 85.2 85.4 83.2 83.5 92.9 90.25
stdev 6.7 19.1 10.5 6.1 17.0 9.1

TABLE III
WINNING PERCENTAGE OF THE RL CONTROLLERS AGAINST MPCC.

Discrete Continuous
PPO ARS PPO SAC

win rate 80.3% 75.9% 87.4% 82.9%

significantly both MPC algorithms. The shortest sailing time
was achieved by the continuous RL controllers trained with
the PPO and SAC algorithms, which shorten sailing time by 7
minutes on a race course where the MPC algorithms took more
than an hour an a half (90 minutes) to complete. A difference
of this magnitude would be overwhelming in a real sailing
race.

As the standard deviations of sailing times for all controllers
are rather large, due to the high variability of the wind
patterns encountered during testing, it is not very meaningful
to do unpaired statistical testing between sailing times of two
controllers by using an unpaired test using only the population
means and standard deviations of the two controller’s sailing
times. Instead, because testing was done on the exact same
1, 000 wind patterns, it is more informative to do a paired
statistical test. In fact, in this domain, an obvious such test
exists – how often would each of the two controllers win
the race, if sailing in the exact same wind conditions. Table
III shows the percentage of the 1, 000 races that each RL
algorithm won against the better of the two MPC controllers,
MPCc. As expected, the advantage in average sailing time
translates to a high chance of winning: the best of the RL
controllers, PPO with continuous actions, wins against MPCc
in 87.4% of the races.

It is also interesting to observe the progress of each RL
algorithm across time. Figs. 5 and 6 show how each RL
algorithm learns to improve the cumulative reward per episode.
For both figures, the performance of the respective baseline
MPC controller is shown for comparison, along with the
uncertainty band implied by its standard deviation in sailing
times. Fig. 5 shows that although both PPO and ARS with
discrete actions (tack decision only) eventually achieve a com-
fortable lead of around 5 minutes over MPCd, PPO learned
much faster, learning how to sail well in around 104 episodes.
A similar comparison can be made between PPO and SAC
with continuous actions: both reach approximately the same
asymptotic performance, but PPO needs a lot fewer episodes
to learn. Its behavior is also a lot more purposeful, starting to
improve performance almost immediately, whereas SAC fails

0 0.2 0.4 0.6 0.8 1

·105

−200

−150

−100

−50

number of episodes

to
ta

l
re

w
ar

d
(m

in
ut

es
to

go
al

)

MPCd std
MPCd mean

PPOd
ARS

Fig. 5. Cumulative reward in discrete action space. PPO learns much faster.

0 0.5 1 1.5 2

·104

−200

−150

−100

−50

number of episodes

to
ta

l
re

w
ar

d
(m

in
ut

es
to

go
al

)

MPCc std
MPCc mean

PPOc
SAC

Fig. 6. Cumulative reward in continuous action space. PPO starts learning
immediately and reaches good performance much faster.

to even round the mark once for the first 2, 000 episodes.
Based on these results, the clear winner is the PPO algorithm,
for both MDP formulations of the problem.

And, finally, it is instructive to look at the actual routes all
controllers selected, and try to distill the general strategy they
are using. Figs. 7 to 10 illustrate the routes of sailboats under
four patterns of wind direction selected to represent a usual
pattern (Fig. 7), a favorable pattern where the wind shifts to the
east and thus helps progress to goal (Fig. 8), an unfavorable
pattern where the wind shifts to the west and thus hinders
progress (Fig. 9), and finally an unusual pattern where the wind
fluctuates quite wildly (Fig. 10). In Fig. 7, MPCs tacks early,
and then its tacking logic forces it to tack two more times.
The other controllers tack later, and never have to tack again.
This kind of decision, to tack a bit after the layline is crossed



0 1 2 3 4 5 6

0

2

4

6

x

y

MPCc
MPCd
PPOc
PPOd
ARS
SAC

destination

Fig. 7. A usual wind direction pattern.

is call overstanding in sailing, and knowing when to overstand
is an essential element of competitive racing. Interestingly, the
ARS controller also tacks as early as MPCc, but decided to
stay the course. This kind of approach to the goal at an angle
to the wind less than the optimal angle α∗, in the hope of
rounding the mark without having to tack, is called pinching,
and is also a part of competitive strategy. A later favorable
shift of the wind probably helped, too.

Similar early tacking by MPCc is seen in other wind
patterns, too – in fact, it tacks too early in three out of the four
patterns, and is then forced to tack two more times, clearly
indicating that this is a major reason for its suboptimality.
Based on this discovery, it is tempting to try to tune MPCc
to overstand by some constant amount, but experiments with
this strategy did not improve its average sailing time, as
the optimal amount of overstanding is position- and wind
condition-dependent. In contrast, the deep RL controllers were
able to learn the correct action as a function of the entire state
space, giving them an advantage.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described the application of deep RL
algorithms to the problem of learning to sail upwind optimally.
The main contribution of the paper is the formulation of the
sailing upwind problem under wind uncertainty in the form of
a Markov decision process that would allow modern deep RL
algorithms to be applied to it. In an empirical verification, all
three RL algorithms we experimented with (PPO, SAC, and
ARS) were able to reliably achieve a significant advantage
over baseline MPC algorithms that closely mimic how novice
sailors sail upwind. In an effort to make the problem easier for
RL algorithms to solve, we provided two MDP formulations,
one of which had a limited set of actions specifying only
which tack the sailboat should be on, such that each of the
two actions reliably moved the boat towards the goal, as
opposed to wandering aimlessly around the ocean. It turned
out that this kind of simplification and assistance was not

0 1 2 3 4 5 6

0

2

4

6

x

y

MPCc
MPCd
PPOc
PPOd
ARS
SAC

destination

Fig. 8. A favorable wind direction pattern.

0 1 2 3 4 5 6

0

2

4

6

x

y
MPCc
MPCd
PPOc
PPOd
ARS
SAC

destination

Fig. 9. An unfavorable wind direction pattern.

0 1 2 3 4 5 6

0

2

4

6

x

y

MPCc
MPCd
PPOc
PPOd
ARS
SAC

destination

Fig. 10. An unusual wind direction pattern where the wind fluctuates a lot.



even necessary – the continuous-action MDP formulation
that used directly the rudder correction as its action was
not only solvable by the PPO and SAC algorithms, but the
resulting controllers achieved the best performance overall.
The controller computed by the PPO algorithm was able to
decisively outperform the MPC controller, winning 87.4% of
all races against it, which clearly demonstrates the potential
of deep RL algorithms in this class of sequential decision
making problems under significant uncertainty. This opens the
way for application of deep RL technology to robotic sailcraft,
including fleets of saildrones that can explore the oceans of
the planet autonomously for indefinitely long periods, using
only wind and solar power.

However, this kind of superior performance comes at a
rather high computational price at the moment. The best
overall algorithm, PPO, took over 20 hours to compute the
optimal policy. Although the resulting policy is an entire
control law that can be computed once and uploaded to a
sailcraft for use, the wind process will likely change before
the computation is over. However, by using more advanced RL
algorithms and faster computers, a reduction in computation
of several orders of magnitude might be possible in the near
future. Furthermore, related problems involving other types
of vessels with more stable (and still stochastic) operating
conditions might benefit from a similar type of decision
making technology.

REFERENCES

[1] A. Philpott and A. Mason, “Optimising yacht routes under uncertainty,”
in 15th Chesapeake Sailing Yacht Symposium. OnePetro, 2001.

[2] D. S. Ferguson and P. Elinas, “A Markov decision process model for
strategic decision making in sailboat racing,” in Canadian Conference
on Artificial Intelligence. Springer, 2011, pp. 110–121.

[3] R. Ferretti and A. Festa, “A Hybrid control approach to the route
planning problem for sailing boats,” arXiv preprint arXiv:1707.08103,
2017.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[5] D. H. dos Santos and L. M. G. Goncalves, “A gain-scheduling control
strategy and short-term path optimization with genetic algorithm for
autonomous navigation of a sailboat robot,” International Journal of
Advanced Robotic Systems, vol. 16, no. 1, p. 1729881418821830, 2019.

[6] S. Lemaire, Y. Cao, T. Kluyver, D. Hausner, C. Vasilovici, Z.-y. Lee,
U. J. Varbaro, and S. M. Schillai, “Adaptive Probabilistic Tack Ma-
noeuvre Decision for Sailing Vessels,” in International Robotic Sailing
Conference, 2018, pp. 95–103.

[7] F. Plumet, C. Petres, M.-A. Romero-Ramirez, B. Gas, and S.-H. Ieng,
“Toward an autonomous sailing boat,” IEEE Journal of Oceanic Engi-
neering, vol. 40, no. 2, pp. 397–407, 2014.

[8] J. E. Kerwin and J. N. Newman, “A summary of the H. Irving Pratt ocean
race handicapping project,” in 4th Chesapeake Sailing Yacht Symposium.
OnePetro, 1979.

[9] R. Stelzer and T. Pröll, “Autonomous sailboat navigation for short course
racing,” Robotics and autonomous systems, vol. 56, no. 7, pp. 604–614,
2008.

[10] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[11] F. Tagliaferri, A. B. Philpott, I. M. Viola, and R. G. J. Flay, “On risk
attitude and optimal yacht racing tactics,” Ocean Engineering, vol. 90,
pp. 149–154, 2014.

[12] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] A. Neumaier and T. Schneider, “Multivariate autoregressive and
Ornstein-Uhlenbeck processes: estimates for order, parameters, spectral
information, and confidence regions,” ACM Transactions in Mathemat-
ical Software, 1998.

[15] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[19] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-102.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10


