MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

EEG-GAT: Graph Attention Networks for Classification of
Electroencephalogram (EEG) Signals

Demir, Andac; Koike-Akino, Toshiaki; Wang, Ye; Erdogmus, Deniz
TR2022-097 September 17, 2022

Abstract

Graph neural networks (GNN) are an emerging framework in the deep learning community.
In most GNN applications, the graph topology of data samples is provided in the dataset.
Specifically, the graph shift operator (GSO), which could be adjacency, graph Laplacian,
or their normalizations, is known a priori. However we often have no knowledge of the
grand-truth graph topology underlying real-world datasets. One example of this is to ex-
tract subject-invariant features from physiological electroencephalogram (EEG) to predict a
cognitive task. Previous methods use electrode sites to represent a node in the graph and
connect them in various ways to hand-engineer a GSO e.g., i) each pair of electrode sites is
connected to form a complete graph, ii) a specific number of electrode sites are connected
to form a k-nearest neighbor graph, iii) each pair of electrode site is connected only if the
Euclidean distance is within a heuristic threshold. In this paper, we overcome this limitation
by parameterizing the GSO using a multi-head attention mechanism to explore the functional
neural connectivity subject to a cognitive task between different electrode sites, and simulta-
neously learn the unsupervised graph topology in conjunction with the parameters of graph
convolutional kernels
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Andac Demir, Toshiaki Koike-Akino, Ye Wang, and Deniz Erdogmus

Abstract— Graph neural networks (GNN) are an emerging
framework in the deep learning community. In most GNN
applications, the graph topology of data samples is provided in
the dataset. Specifically, the graph shift operator (GSO), which
could be adjacency, graph Laplacian, or their normalizations,
is known a priori. However we often have no knowledge of the
grand-truth graph topology underlying real-world datasets. One
example of this is to extract subject-invariant features from
physiological electroencephalogram (EEG) to predict a cognitive
task. Previous methods use electrode sites to represent a node in
the graph and connect them in various ways to hand-engineer
a GSO e.g., i) each pair of electrode sites is connected to form
a complete graph, ii) a specific number of electrode sites are
connected to form a k-nearest neighbor graph, iii) each pair
of electrode site is connected only if the Euclidean distance
is within a heuristic threshold. In this paper, we overcome
this limitation by parameterizing the GSO using a multi-head
attention mechanism to explore the functional neural connectivity
subject to a cognitive task between different electrode sites,
and simultaneously learn the unsupervised graph topology in
conjunction with the parameters of graph convolutional kernels.

Index Terms— Graph neural networks (GNN), Graph shift
operators (GSO), Convolutional neural networks (CNN), elec-
troencephalogram (EEG) classification.

I. INTRODUCTION

Convolutional Neural Networks (CNN) have been widely
used to solve several problems with high performance,
including, but not limited to, image classification, object
detection, semantic segmentation, data reconstruction, and
super-resolution. For most of these tasks, data samples lie in
a regular domain and have the representation of a grid-like
structure such as a 2-dimensional pixel format. However,
the preponderance of machine learning applications require
learning from graphs with irregular structures. Graph Neural
Networks (GNN) have been applied to many such machine
learning tasks ranging from simulating complex physical
systems [1], predicting molecular interactions [2], modeling
social networks [3], and exploring causal inference in a
probabilistic model defined over a directed acyclic graph
(DAG) [4]. Although the ultimate goal of GNNs is to
generalize the concept of convolution into graphs, there
are numerous variants of GNNs with modifications on the
convolution operator and hierarchical pooling mechanism to
better propagate the local neighborhood information or the
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use of skip connections to alleviate the problem of vanishing
gradients in the earlier layers of deep networks.

Two major methods for GNNs are spectral networks
and spatial networks. Spectral methods use graph signal
processing theory by applying the convolution operator in
the spectral domain [5], [6]. First, the graph structured data
x is converted to the spectral domain via the graph Fourier
transform F by computing the eigendecomposition of the
normalized graph Laplacian L (evaluated using the degree
matrix D and adjacency matrix A). Then, convolution in the
time domain is conducted by multiplication in the spectral
domain. The output is converted to the time domain via
inverse the Fourier transform F~! at the final stage, e.g., as
follows:

L=I-D'?AD '?=UAU",
Flx)=U"x, FHx) =Utg, (1
grxz=F Y (F(g) - F(z)) =UU" g -U"x).

Since spectral GNNs depend on the eigendecomposition
of the graph Laplacian, which is evaluated from the graph
structure, a spectral GNN cannot be trained on a dataset
where the graph topology of data samples is unsupervised.
Other primary problems with spectral GNNs include that
they omit the edge features, and increase the computational
overhead, in particular for large graphs with an abundant
number of nodes.

One way to solve this problem is to use spatial GNNS.
Spatial GNNs apply convolutions directly on the graph by
projecting nodes’ feature vector onto a new subspace and
aggregating K -hop node representations using a permutation-
invariant and injective function: AGGREGATE. At the final
stage of spatial graph convolution, a representation vector
of the entire graph is learned via another permutation-
invariant and injective function: READOUT [7]-[9]. A spatial
GNN propagates the information from K-hop neighborhood
embeddings, h*~! Vu € N(v), and learns an aggregated
representation, h?\f(v)’ where N (v) denotes the set of node
v’s K-hop neighbors. The current node representation vector
denoted as hffl is concatenated with the aggregated repre-
sentation and then the outcome is passed through a dense
layer, W¥, followed by a nonlinear activation, o. Algorithm 1
summarizes the procedure [9].

CNN architectures have been frequently used to extract
the subject and session invariant features from EEG signals
to perform classification tasks [13]. There are two principal
methodologies to train CNN architectures on EEG signals:

1) Each EEG trial is passed to a CNN model as a pseudo

grayscale image, R“*T, where C' denotes number of



TABLE I: Different choices of GSO to propagate neighborhood information in graphs [10]

S = {m1,ma,ms,e1,e2,e3,a} v(A,S) Choice of GSO

{0,1,0,0,0,0,0} A Adjacency Matrix

{1,-1,0,1,0,0,0} D—-A Unnormalized Laplacian Matrix

{1,1,0,1,0,0,0} D+ A Signless Laplacian Matrix [11]

{0,1,0,0,—1,0,0} D 'A Mean Aggregation Operator [8]

{0,-1,1,0,-1,0,0} I-D'A Random Walk Normalized Laplacian Matrix
_1 _1

{0,1,0,0, f%, 7%, 1} D, *AD, * Normalized Adjacency Matrix [12]

{0,-1,1,0, —%, — %, 0} I-D 3AD 2 Symmetric Normalized Laplacian Matrix

Algorithm 1 Learning graph embedding via spatial GNN

1: hY < X,,VYv € V Initialize a representation vector for
each node

2: fork=1...K do

3: for v € V do

4: R (s) < AGGREGATE({h} ', Yu € N(v)})

5: h} < o(W" - CONCAT(h} ", hi(,)))

6  hE e RnY/|RE)s, eV

v

7: hg < READOUT({hX, Vv e V})

v

EEG channels, and T' denotes number of discretized
time samples, and 2D convolution kernels are slid over
the 2D input data.

2) Each EEG trial is passed to a CNN model as a multi-
channel pseudo image, RE*'*7 and 1D convolutions
are applied along the time axis of each EEG trial.

Although CNNs have shown success in the classification of
several physiological datasets, they represent relationships
between EEG channels with the spatial or channel dimensions
of an image, both of which oversimplify the physiological
structure and ignores the graph topology that may be inferred
from observations. Spatial GNNs are one way to overcome
this problem by representing EEG headsets as an undirected
graph. Let G = (V, E, W) represent a triplet of vertices,
edges, and weights of a graph, where V denotes the set
of vertices, X denotes the set of edges, W denotes the
set of weights, and |V| = C. In our previous work [14],
we assume an electroencephalogram (EEG) trial, collected
from C electrodes and T discretized time samples, can be
represented as graph data X € R*7, where the nth row of
X presents the T-dimensional feature vector of node n. For
the GNN, graph edges between electrode sites can represent
the functional neural connectivity between different sites and
lobes of the brain for a specific cognitive activity. Several
spatial GNN networks, e.g., GraphSage, Graph Isomorphism
Network (GIN), SortPool, EdgePool, SagPool and Set2Set
have been previously modified and tested on different EEG
datasets [14]. Nevertheless, all of these models require an
a priori knowledge of the graph shift operator (GSO), and
the GSO is fixed for a diverse cohort of participants and
different data acquisition sessions. Typically, they formulate
an adjacency matrix under some assumptions: i) each pair of
electrode sites is connected (complete graph), ii) a k-nearest

neighbor graph (NNG), where each electrode site is connected
to the k closest other electrode sites, iii) each pair of electrode
sites is connected, if the Euclidean distance between is lower
than a heuristic threshold, and iv) self-loops are included for
conditions 1)-iii).

The graph topology of observations is an invaluable source
of information for training machine learning models on graphs.
Our research focuses on parameterizing the edge weights
via a multi-head attention mechanism instead of using a
heuristically structured and fixed GSO, hence we can assign
a different importance to every edge in a complete graph.
When the edge weights are non-uniform, we can set a different
importance to every edge while aggregating neighboring
node representations to fuse local and global information.
Parameterizing the edge weights and learning an optimal
GSO as a topology representation lead to the exploration of
neural connectivity factors between different electrode sites
peculiar to a specific cognitive task as well as significant gain
in classification performance.

II. RELATED WORK

Previous studies listed in Table I investigate the selection
of GSO by choosing a different set of parameter values.
Although the specific choice of GSO matters in theory, there is
no significant difference in the reported experimental results.

Definition 1. According to [16], a GSO, denoted by the
matrix S € R™*™, where n is the number of nodes, satisfies
Sou =0 1if v #uand (v,u) ¢ E.

Definition 2. A parameterized GSO, denoted by (A, S), is
defined as follows [10],

’7(A, S) = mlDZI + ngZQAaD23 + mgsl,

. 2
A,=A+al, D,=diag(A,1),

where S = {mi, ma, m3,e1,ea,e3,a} is a parameter set.

The set S consists of scalar multiplicative parameters
my.3, scalar exponential parameters e;.3 and a that is a non-
negative integer to determine the number of self loops in the
graph. Since exponential parameters e;.3 are only applied to
diagonal matrices, a parameterized GSO can be efficiently
computed and optimized. Experimental analysis in [10]
shows the optimization of GSO parameters is numerically
stable over epochs, however the learned values of these
parameters is very vulnerable to the different initializations
of S. Specifically, if the parameterized GSO is initialized
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Fig. 1: EEG-GAT framework scales up EEGNet [13] with the addition of graph attentional layers. EEG-GAT starts with 2D
temporal convolutional operations to learn frequency filters and explore short, medium and long term temporal dependencies
respectively, convolving EEG trials with kernels of size (1 x 15), (1 x 7), (1 x 3). To preserve the spatial dimensions of the
input EEG trial, zero padding of size (0 x 7), (0 x 3), (0 x 1) is added. Number of convolutional kernels: 30, 60, 90 increases
in each layer. This is followed by depthwise separable convolutional operations to learn frequency specific spatial filters with
kernels of size C' x 1. In order to preserve the spatial dimensions of the EEG trial, zero padding of size (floor(C'/2),0) is
added. Depthwise separable convolution is frequently used in mobile vision applications, since they have fewer parameters
which reduces the computational footprint while improving the model throughput and mitigating the risk of overfitting. The
objective of using depthwise separable convolutions in EEG-GAT is to capture the frequency specific spatial information
of the EEG data in an efficient way. After each convolutional layer, we apply batch normalization along the feature map
dimension to improve gradient flow through the network and reduce the risk of overfitting. Then, we apply PReLU activation
to introduce non-linearity. GAT convolution [15] is operated over a complete, undirected graph, where nodes are the EEG
electrodes according to the international 10-20, 10-10 or 10-5 systems for recording and node features are the spatio-temporal
features extracted by the CNN backbone. Node representations are computed by aggregating information from a node’s K -hop
neighbors. At the final stage of EEG-GAT, there are 2 possible outcomes: Following (i), we can apply a global mean pooling
operator, which averages the node representations in order to return a batch-wise graph level output. Then a multi-layer
perceptron (MLP) can classify the graph representation vector. Otherwise, following (ii), we can use node representation
vectors to perform node classification, which is useful for EEG channel selection/sorting to reduce computational overhead
while analyzing EEG data.

as an adjacency matrix, the optimal values learned for GSO III. EEG-GAT FRAMEWORK

parameters after convergence would be quite distinct from the Our framework EEG-GAT, as illustrated in Fig. 1, uses
learned GSO_ parameters if GSO is i.nitialized as a random  the EEGNet architecture as a backbone network to extract
Wal.k I.Jap.lac1an..Ad'd1t10nallyr there is no <.:(')nstra1nt on th.e frequency specific spatial features from EEG trials and the
optimization objective to satisfy the condition Sy, = 0 if  graph attentional operators to explore the strength of cognitive
v#uand (v,u) ¢ E. activity peculiar to an EEG classification task between each
Example 1. A special form of spatial GNN method, GIN, P of e.lectrode.: 51te'. The latt.er allows us tg capture the
intricate interactions in the brain network projected onto a
map of scalp electrodes according to the electrode locations
of international 10-20, 10-10 and 10-5 systems for EEG

updates node embeddings aggregating information from K-
hop neighbors based on the following propagation rule,

recording.

k k—1lyxrk k—1lyxrk

h, = U<h"u W"+ Z h, W > &) Graph attention networks (GATs) offer an alternative
VueN (v) approach to learning a parameterized GSO, since the main

objective of GATs is to implicitly evaluate the importance of
node v’s features to node u by exploring attention weights
ww- We observed that parameters of GAT convolutional

Using the Definition 2, we can modify (3) to formulate a
propagation rule for GINs that use a parameterized GSO:

layers initialized by Xavier uniform [17] converged model

hﬁ =0 <avh5_lwk + ma Z 6uuhﬁ_1wk), parameters are robust against arbitrary model initializations
VueEN (v) (4)  unlike the original parameterized GSO study.

y =M1 (D)% +m3,  epy = (Da)2(Dy)%. Algorithm 2 summarizes the training procedure of a single

GAT layer. The output of CNN backbone in EEG-GAT
While o, represents the node importance factor, e,, repre- preserves the spatial size of an EEG trial. The input to a GAT
sents the edge weight between nodes v and wu. layer is the set of node representation vectors X,,, Vv € V.
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Fig. 2: Left figure illustrates the linear transformation, parameterized by matrix W applied to 2 node feature vectors. The
outputs are concatenated, passed through a single layer feedforward network a and normalized by softmax to compute the
attention coefficients, o, . Right figure illustrates the GAT layer that employs multi-head attention mechanism. There are 3
independent attention coefficients which affect the importance nodes ho, h3 and hy to the node h,. Features from each of
the nelighboring nodes are modulated by these attention coefficients and then concatenated to obtain a new representation for

h]: hl'

To compute the attention coefficients e,,,, we apply the same
linear transformation, W, on all the node representations.
Then, for each neighbor nodes v and u, we concatenate the
transformed node representations: [h,|/h,], where || denotes
concatenation. This concatenated vector is passed through a
single layer feedforward network, a, and the output is passed
through LeakyReLU activation. We normalize the attention
coefficients using softmax, hence they are comparable. Once
normalized, we use attention coefficients, «,, to weigh
node representation vectors and aggregate information from
neighboring nodes. The output is passed through log-softmax
activation, denoted by o, and model parameters are optimized
by minimizing the negative log-likelihood loss. It is illustrated
in Fig. 2.

Algorithm 2 Single-head graph attentional (GAT) layer

1: Initialize a representation vector for each node:

2 h, — X,,Vv € V, X € RVIXT where [V] is the
number of electrodes and 7" is equivalent to the number of
discretized time samples in an EEG trial and X, € RT*1,

h, « WX,, Yo €V and W € RT xT

3:

4: for v € V do

5: for u € N(v) do

6: epu = LeakyReLU(a[h,||h.)), a € R?T

7: Qpy = exp(em)/zjeN(v) exp(ey;), Yu € N(v)
8: h, = U(ZuGN(v) avuhu)

hg + READOUT({h,, Yv € V})

Instead of performing a single-head attention, multi-head
attention mechanism, first proposed in the implementation
of transformer networks, allows the model to combine
information from different representation subspaces [18].
Algorithm 3 outlines the utilization of multi-head attention
mechanism while training a single GAT layer. The major
difference is an intermediate GAT layer that employs multi-
head attention mechanism employs K independent single
layer feedforward networks, a®, and concatenates node

representations. If the GAT layer is at the end of the
network, then node representations modulated by the attention
coefficients are averaged.

Algorithm 3 Multi-head graph attentional (GAT) layer

: Initialize a representation vector for each node:
:hY X, Yo eV, X eRVIXT and X, € RT*1,
cfork=1...K do
hY « WX, Yo e V
for v e V do
for u € N(v) do
ek, = LeakyReLU(a*[h"||hF))

exp(eﬁu)/ZjeN(U) eXP(ij), Yu € N(U)

if GATConv is the final (prediction) layer of the network
then

K
hff( = U(% Zk:l ZUEN(U) aﬁuhZ)
. else

hf = ||IIC<:10—(Zu€N(U) aljuh‘ﬁ)

. hg « READOUT({hX, Vv e V})

k _
vu T

1
2
3
4
5:
6
7
8 «

9:

IV. DATASETS

1) Physionet: Physionet dataset [19] contains EEG record-
ings of 197 subjects during their whole night sleep.' The
dataset also contains EMG, EOG, body temperature, and
respiration recordings. EEG signals have a sampling frequency
at 100 Hz and each EEG trial was classified by well trained
technicians with labels: W (awake), R (rapid-eye-moving
sleep), 1, 2, 3 and 4, according to [20], however using
channels Fpz-Cz/Pz-Oz EEGs instead of C4-A1/C3-A2 EEGs,
as suggested by [21]. Each EEG trial has 2 channels and
3000 discretized time samples.

2) ErrP: The detection of error-related potentials (ErrP) to
improve the accuracy of P300-based brain computer interface
(BCI) speller [22].2 The dataset was recorded from 16 healthy

Physionet Dataset: https://github.com/XiaoxiWei/NeurIPS_BEETL
Zhttps://www.kaggle.com/c/inria-bci-challenge/
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subjects participating in an offline P300 spelling task. Spelling
task had a fast mode (each item was flashed 4 times), and
a slow mode (each item was flashed 8 times). Each subject
performed 340 trials. If there is an inconsistency between
subject’s intention and BCI system, elicited ErrP should be
detected. EEG data were recorded at a downsampled rate of
200 Hz from 56 channels. A trial has 250 discretized time
samples, and is associated with a binary class label: erroneous
(inferred item is different from the intent of subject) or correct
feedback.

3) RSVP: A BCI system to type based on rapid serial
visual presentation (RSVP) paradigm [23].3 The dataset was
collected from 10 healthy subjects, and consists of 41,400
trials of 16 channel EEG data. A g.USBamp biosignal am-
plifier with active electrodes was used to record trials during
RSVP keyboard operations. Each trial has 128 discretized
time samples, and is associated with one of the 4 labels:
emotion elicitation, resting-state, motor imagery, or execution
task.

V. RESULTS & DISCUSSION

We use PyTorch Geometric v2.0.2 [24] to implement GAT
convolutional layers. We utilize stochastic gradient descent
to train EEG-GAT framework instead of minibatch gradient
descent, since the batching capacity of GAT layers is limited
to a single graph due to the tensor manipulation framework
which supports sparse matrix multiplication for rank-2 tensors
[15]. A batch size of 1 graph strictly evaluates a universal
representation for the matrix of attention weights invariant
of subject identity or trial session. This allows assigning the
same set of attention weights to every graph in the dataset
and learning an edge weight matrix that is robust against the
inter-subject and inter-session variations. All models were
trained for 20 epochs on an NVIDIA Tesla K80 12GB GPU,
and optimized by AdamW (Adam with adjustable weight
decay) declared with an initial learning rate of 0.005, which
exponentially decays at a rate of 0.9 every epoch.

ErrP and RSVP datasets were trained to observe EEG-
GAT’s within-subject performance, where we shuffle EEG
trials from all subjects, and use the first 80% of EEG
trials for training and the remaining 20% for validation. We
utilize physionet dataset to observe EEG-GAT’s cross-subject
performance. Specifically, we use the EEG trials collected
from subjects aged between 25-64 for model training and
EEG trials collected from subjects aged between 65-79 for
testing model’s cross-subject performance.

Experimental results are outlined in Table II. EEG-GAT
outperforms the existing GNN methods, especially for the
RSVP dataset. While the classification accuracy of EEG-GAT
is comparable to that of the state-of-the-art for ErrP dataset,
we see EEG-GAT classifies only 58.09% of EEG trials in
Physionet dataset. In general, classification accuracy of all
GNN based models (GraphSage, Set2Set, SortPool, EdgePool,
SagPool, GINO and EEG-GAT) is quite low compared to CNN
based AutoBayes. The main problem that confronts us with

3http://hdl.handle.net/2047/D20294523

TABLE II: Classification accuracy (%) results

Method Physionet ErrP RSVP

GraphSAGE 54.49 74.44 +£0.75 93.27 £0.05
Set2Set 55.33 75.38 £0.54  93.33 £0.09
SortPool 40.76 72.90 £ 0.61 93.24 £0.20
EdgePool 37.79 73.03 £ 0.96 92.89 £ 0.04
SagPool 41.53 74.41 £1.09 93.45 £ 0.19
GINO 55.36 75.48 £+ 0.60 93.26 £ 0.07
AutoBayes [25] 63.02 75.91+0.44  93.42+0.15
EEG-GAT 58.09 76.42+0.29 96.27 £0.18

the Physionet dataset is that it was recorded from only 2
channels and modeling a GNN for a graph with just 2 nodes
is not an effective strategy.

VI. CONCLUSION

The main contributions of this paper over the existing
works are three-fold as follows:

o We extend the EEGNet, which is a de facto standard
to extract frequency specific spatial features from EEG
signals, by designing a neuroscientifically interpretable
graph model, where node features are the EEG electrodes
whose features extracted from the EEGNet backbone
and edge weights between pairs of nodes are learned via
taking advantage of the multi-head attention mechanism.

o While existing CNN and GNN based models are agnostic

to the functional neural connectivity factor between

electrode sites pertinent to a cognitive task, EEG-GAT
can learn how the activity between different regions of
the brain co-varies.

Previous research in the literature use GAT convolutional

layers to handle node classification in graph benchmark

datasets such as: Cora, Citeseet and Pubmed. We extend

GAT convolution to perform graph classification instead

of node classification using various EEG datasets as a

benchmark.
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