
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization

Cao, Weidong; Benosman, Mouhacine; Zhang, Xuan; Ma, Rui

TR2022-096 August 06, 2022

Abstract
The design automation of analog circuits is a longstanding challenge. This paper presents a
reinforcement learning method enhanced by graph learning to automate the analog circuit
parameter optimization at the pre-layout stage, i.e., finding device parameters to fulfill desired
circuit specifications. Unlike all prior methods, our approach is inspired by human experts
who rely on domain knowledge of analog circuit design (e.g., circuit topology and couplings
between circuit specifications) to tackle the problem. By originally incorporating such key
domain knowledge into policy training with a multimodal network, the method best learns the
complex relations between circuit parameters and design targets, enabling optimal decisions
in the optimization process. Experimental results on exemplary circuits show it achieves
human-level design accuracy (99%) with 1.5x efficiency of existing best-performing methods.
Our method also shows better generalization ability to unseen specifications and optimality
in circuit performance optimization. Moreover, it applies to design radio-frequency circuits
on emerging semiconductor technologies, breaking the limitations of prior learning methods
in designing conventional analog circuits.

ACM/IEEE Design Automation Conference 2022

c© 2022 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or
Publications Dept., ACM, Inc., fax +1 (212) 869-0481.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization

Weidong Cao1,2, Mouhacine Benosman1, Xuan Zhang2, Rui Ma1
1Mitsubishi Electric Research Laboratories; 2Department of ESE, Washington University in St. Louis

ABSTRACT
The design automation of analog circuits is a longstanding chal-

lenge. This paper presents a reinforcement learning method en-
hanced by graph learning to automate the analog circuit parameter
optimization at the pre-layout stage, i.e., finding device parameters
to fulfill desired circuit specifications. Unlike all prior methods, our
approach is inspired by human experts who rely on domain knowl-
edge of analog circuit design (e.g., circuit topology and couplings
between circuit specifications) to tackle the problem. By originally
incorporating such key domain knowledge into policy training
with a multimodal network, the method best learns the complex
relations between circuit parameters and design targets, enabling
optimal decisions in the optimization process. Experimental re-
sults on exemplary circuits show it achieves human-level design
accuracy (∼99%) with 1.5× efficiency of existing best-performing
methods. Our method also shows better generalization ability to
unseen specifications and optimality in circuit performance opti-
mization. Moreover, it applies to design radio-frequency circuits on
emerging semiconductor technologies, breaking the limitations of
prior learning methods in designing conventional analog circuits.

1 INTRODUCTION
Analog circuits play the fundamental role in processing analog

signals and bridging the physical analog world and digital infor-
mation world. Unlike digital circuits following standard automated
design flows, analog circuit design relies on onerous human efforts
and lacks effective design automation techniques at all stages. Pre-
layout design is one key stage in analog circuit design flow. It can be
formulated as a parameter-to-specification (P2S) optimization prob-
lem, i.e., finding optimal device parameters (e.g., width and finger
number of transistors) to meet desired circuit specifications (e.g.,
power and bandwidth) based on a pre-determined circuit topology.
This problem is very challenging as it seeks optimum parameters
of diverse devices in a huge design space without exact rules.

Various automated techniques have been proposed for the P2S
problem, mainly falling into optimization/learning-based category.
Optimization methods, e.g., Bayesian Optimization [8] and Genetic
Algorithm [6], use corresponding algorithms to search for optimal
device parameters. They often suffer from several key issues, such
as divergence, and re-starting from scratch if any change is made on
given specifications. Learningmethods, i.e., supervised learning (SL)
methods [5, 10] and reinforcement learning (RL) methods [13, 16],
have emerged recently. They can achieve good convergence and
cover a huge design space once well trained. Despite the promise,
these learning methods are still unable to reach human-level design

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530501

accuracy, i.e., ∼100%. SL methods learn the static mapping between
device parameters and circuit specifications. Due to the inherent
approximation errors, they cannot ensure high design accuracy and
endure weak generalization abilities with one-step inference. RL
methods learn a decision policy from state space of circuits to action
space of device parameters and are often superior to SL methods via
multi-step deployment. However, without incorporating sufficient
key state observations from environments into training, they fail to
accurately learn the complex relations between device parameters
and circuit specifications, leading to sub-optimal policies. More-
over, existing learning methods cannot be applied to design more
advanced analog circuits, e.g., radio-frequency (RF) circuits, which
require sophisticated time-consuming characterizations. Without
overcoming the issue, a much longer training time is needed by
them before used for inference/deployment.

In this paper, we propose a domain knowledge-infused RLmethod
to achieve human-level design accuracy and superior design effi-
ciency for analog and RF circuits. We are inspired by experienced
human designers who leverage the key domain knowledge, e.g.,
topologies of circuits and couplings of specifications, to derive de-
vice parameters. Particularly, they adopt a simplified circuit topol-
ogy of a circuit, carefully consider design trade-offs between spec-
ifications, and use tens/hundreds of iterative fine tunings to seek
the optimal circuit parameters. Our RL method infuses the key
domain knowledge into policy learning with a tailored multimodal
policy network composed of a graph neural network (GNN) and a
fully connected neural network (FCNN). The GNN is built upon the
topology of a given circuit. It can capture the underlying physics of
the circuit, e.g., device’s connections and interactions. The FCNN
extracts the complex couplings of circuit specifications. With such
a unique policy network, our RL agent learns the best policy and
makes optimal sequential decisions like a human expert to find
device parameters. Key contributions in the work are:

• This paper presents the first domain knowledge-infused RL
method to automate the P2S optimization of analog/RF cir-
cuit at the pre-layout level.

• This work proposes a unique multimodal policy network
made of a circuit topology-based GNN and an FCNN to infuse
key domain knowledge of circuit design into policy learning.

• The work also leverages transfer learning to notably acceler-
ate RF circuits’ design in a sophisticated and time-consuming
simulation environment with the learned experiences from
a coarse but time-efficient simulation environment.

• Experiments show the method achieves 99% design accuracy,
1.5× design efficiency of existing best-performing methods, a
stronger generalization ability to unseen specifications, and
better optimality in maximizing circuit’s figure-of-merit.

2 BACKGROUND
Reinforcement Learning (RL): As shown in Figure 1(a), RL is an
area of machine learning related to how an intelligent agent takes
actions to maximize the cumulative return based on observed states

https://doi.org/10.1145/3489517.3530501

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

Neighbors of the
orange node

(a) (b)

(a)

1

l

h

2

l

h

3

l

h

4

l

h

5

l

h

1

1

l

h


aggregation

(b)

1

l

h

2

l

h

3

l

h

4

l

h

5

l

h

1

1

l

h


Concat/avg

12

l


15

l



13

l



14

l



kA

(b)

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

Neighbors of the
orange node

(a) (b)

kA

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

(a)

kA

(b)

Multi-head
attention

GCN GAT

Figure 1: (a), A simplified illustration of RL. (b), A simplified illustra-
tion of a graph. Solid circles denote nodes and lines between circles
represent edges. The graph is processed by two GNNs: GCN and GAT.

from an environment . In each episode, the agent starts from an ini-
tial state. It then observes the state 𝑆𝑘 and takes an action𝐴𝑘 based
on a policy. Meanwhile, the environment updates a reward 𝑅𝑘+1
for that action and enters into a new state 𝑆𝑘+1. The agent iterates
through the episode with multiple steps, accumulating the reward
at each step to obtain the final return. With multiple episodes, the
agent improves its decision quality and finally finds a well-learned
policy to maximize the return. The policy would be deployed for
practical tasks, i.e., the agent follows the policy to finish a given task.
We apply RL to the P2S optimization of analog/RF circuits, which
can best mimic the dynamic design process of human experts.
Learning with Graph Neural Networks (GNNs): GNNs [4, 15]
directly learn the non-Euclidean data structure resembling a graph
as shown in Figure 1(b). The graph is represented as 𝐺 = (𝑉 , 𝐸)
with 𝑉 the set of node and 𝐸 the set of edge between connected
nodes. Assuming each node 𝑣𝑖 ∈ 𝑉 has an𝑚-dimensional vector
of features, all node features form an matrix 𝑋 ∈ R𝑛×𝑚 , 𝑛 = |𝑉 |.
A GNN takes in 𝑋 as inputs and uses the class of each node in a
graph or the class of an entire graph as labels. Graph convolutional
network (GCN) [4] and graph attention network (GAT) [15] are two
representative GNNs. Compared to GCN, GAT has a multi-head
attention mechanism on nodes as indicated in Figure 1(b) and can
better learn high-dimensional complex relations between nodes.

Circuit topology is a graph and can be processed by GNNs. A
prior RL method [16] uses GCN to process a circuit topology but
has two key issues. First, only a partial circuit topology is adopted
by excluding power supply and bias nodes which, however, are
the indispensable parts of a circuit graph. Second, the GCN node
features are all static technology information, such as threshold
voltage and electron mobility. Without including the essential dy-
namic (variable) device parameters into node features, it is hard to
learn the relations between device parameters and circuit specifica-
tions. There are also several SL methods applying GNN to physical
design [7, 11] and electro-magnetic simulation [17] of analog cir-
cuits. In contrast, our work harnesses GCN/GAT as a key part of
our RL policy network to capture the physics of a given circuit
topology, e.g., device’s parameters, connections, and interactions,
at the pre-layout stage. We show that a GAT with the multi-head
attention can better model a circuit topology than a GCN.

3 APPROACH
We target the P2S problem of analog/RF circuit design at the

pre-layout stage and propose an RL approach for it. Figure 2 shows
the proposed RL method with the following five key elements.
Reward Function: The reward is directly related to the design
goal. We define the reward 𝑟𝑖 at each time step 𝑖 as

𝑟𝑖 = 𝑟, if 𝑟 < 0 or 𝑟𝑖 = 𝑅, if 𝑟 = 0, (1)

where 𝑟 =
∑𝑁−1

𝑗=0 min{(𝑔 𝑗
𝑖
− 𝑔

𝑗
∗)/(𝑔

𝑗
𝑖
+ 𝑔 𝑗∗), 0} is a normalized dif-

ference between the intermediate specifications 𝑔𝑖 and the given

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update

device parameters

In
te

rm
e
d

ia
te

S
p

e
ci

fi
ca

ti
o

n
s

Updated

netlist

Agent Environment

Q

Netlist of a given analog circuit

Power node

Capacitor

P-type transistor

N-type transistor

Actor (Policy network)

Specifications

Embedding

Graph

Embedding

FC

Desired specifications

FCNN

GNN

VP

VGND

Data

Processor

D
e

si
re

d

S
p

e
ci

fi
ca

ti
o

n
s

Circuit topology

(Increasing, decreasing, or keeping the device parameters)

Mapping a circuit topology

into a graph

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update

device parameters

In
te

rm
e
d

ia
te

S
p

e
ci

fi
ca

ti
o

n
s

Updated

netlist

Agent Environment

Q

Netlist of a given analog circuit

Power node

Capacitor

P-type transistor

N-type transistor

Actor (Policy network)

Specifications

Embedding

Graph

Embedding

FC

Intermediate specifications

FCNN

GNN

VP

VGND

Data

Processor

Circuit topologyMapping a circuit topology

into a graph

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

(a)

kA

(b)

Multi-head
attention

GCN GAT

Critic

(Value network)

Action (ai)State (si)

Q

Actor (Policy network)

FC

Mapping a circuit topology

into a graph

Circuit

Simulator

Update device

parameters

In
te

rm
e
d

ia
te

S
p

e
ci

fi
ca

ti
o

n
s

Updated netlist

Environment

Netlist of a given analog circuit

Power node

Capacitor

P-type transistor

N-type transistor

VP

VGND

Data

Processor

Circuit topology

Specifications

Embedding

Intermediate
specifications

FCNN

Graph

Embedding

GNN

Agent

Reward (ri)

Figure 2: Overview of the RL method. The RL agent is based on an
actor-critic method. Our multimodal policy network consists of a
circuit-topology-based GNN and an FCNN. We use a two-stage Op-
Amp to show how to map a circuit topology into a graph.

specifications 𝑔∗. The upper bound of 𝑟 is set to be 0 to avoid over-
optimizing the parameters once the given specifications are reached.
All 𝑁 specifications are equally important. We also give a large
reward (i.e., 𝑅 = 10) to encourage the agent if the design goals are
reached at some step. The episode return 𝑅𝑠0,𝑔∗ of searching optimal
device parameters for the given goals 𝑔∗ starting from an initial
state 𝑠0, is the accumulated reward of all steps: 𝑅𝑠0,𝑔∗ =

∑
𝑖=0 𝑟𝑖 . Our

goal is to train a good policy to maximize 𝑅𝑠0,𝑔∗ .
Action Representation: Inspired by human designers who iterate
with fine-grained tuning steps to find optimal device parameters,
we use discrete action space to tune device parameters. For each
tunable parameter 𝑥 of a device (e.g., width and finger number of
transistors), there are three possible actions at each step: increasing
(𝑥 +△𝑥), keeping (𝑥 +0), or decreasing (𝑥−△𝑥) the parameter, where
“△𝑥" is the smallest unit to update the parameter within its bound
[𝑥min, 𝑥max]. Assuming total 𝑀 device parameters, the output of
the policy network is an𝑀 × 3 probability distribution matrix with
each row corresponding to a parameter. The action is taken based
on the probability distribution.
Environment:A circuit design environment is used in this work. It
consists of a given circuit netlist, an industrial circuit simulator, such
as Cadence Spectre or Keysight Advanced Design system (ADS)
(for high-frequency RF circuits), and a data processing module
(DPM). As shown in Figure 2, the simulator obtains intermediate
circuit specifications at each time step. The DPM then deals with
the simulated results to feed back a reward to the agent using Eq. (1).
Meanwhile, it updates the device parameters to rewrite the circuit
netlist based on the actions from the agent.
State Representation: Capturing critical and adequate domain
knowledge from the environment is key to training a good RL agent.
In a circuit design environment, the circuit itself and the intermedi-
ate specifications are the main domain observations. In our work,
we for the first time adopt these two key practical observations to
represent each state 𝑠𝑖 . We use a graph𝐺 (𝑉 , 𝐸) to model the circuit
based on its topology, where each node in set 𝑉 is a device and the
connections between devices form the edge set 𝐸. We also treat the
power supply (𝑉P), ground (𝑉GND), and other DC bias voltages as
extra nodes. Figure 2 takes a two-stage operational amplifier (Op-
Amp) as an example to show the mapping between its topology

and the graph. For a circuit with 𝑛 nodes, the state for the 𝑘th node
is defined as its node feature (𝑡, ®𝑝), where 𝑡 is the binary represen-
tation of the node type and ®𝑝 is the parameter vector of the node.
For transistors, the parameters are the width (𝑥W) and the finger
number (𝑥F) while for capacitors, resistors, and inductors, the pa-
rameter is the scalar value of each device. The parameter for power
supply (ground or DC bias) is a voltage of 𝑉P (0 for 𝑉GND or 𝑉bias,𝑘
for bias node 𝑘). Zero padding is used to ensure that the length of ®𝑝
for each node is the same. For a circuit with five different types of
devices, two power nodes, one bias, the state of an N-type transistor
is [0, 0, 1, 𝑥W, 𝑥F]. We also create a vector to represent intermediate
specifications. For example, to design the Op-Amp, the state vector
of specifications is expressed as [𝐺, 𝐵, 𝑃𝑀, 𝑃] which are gain (𝐺),
bandwidth (𝐵), phase margin (𝑃𝑀), and power consumption (𝑃).
Agent: To incorporate the key domain knowledge into agent train-
ing such that it can make human-level decisions, we propose a
novel multimodal policy network for the agent based on actor-critic
method [9] as shown in Figure 2. It consists of a circuit topology-
based GNN and a fully connected neural network (FCNN), which
is termed GNN-FC-based policy network. The GNN is to distill the
underlying physics (e.g., device’s types, parameters, and interac-
tions) of a circuit graph into low-dimensional vector embedding.
While the FCNN takes the design goals as inputs to extract their
coupled relations, i.e., design trade-offs. The graph embedding and
the FCNN embedding are then concatenated for further processing
by the final fully-connected (FC) layers to update the actions.

We use GCN [4] and GAT [15] to learn the embedding of circuit-
level physical features respectively from the circuit graph 𝐺 =

(𝑉 , 𝐸). As an example, we show how to build the GCN below.
GAT [15] can also be built similarly which is not elaborated here.
The node features of the (𝑙 + 1)th layer in the GCN are obtained as

𝐻 𝑙+1 = 𝑓 (𝐻 𝑙 , 𝐴∗) = 𝜎 (𝐴∗𝐻 𝑙𝑊 𝑙). (2)
Here, 𝐻 𝑙 ∈ R𝑛×𝑚𝑙 is the node feature matrix of the 𝑙 th layer (𝑛:
number of nodes, 𝑚𝑙 : feature dimension per node in the layer).
𝐻0 = 𝑋 is the initial input node feature matrix.𝑊 𝑙 is a weight
matrix which combines the aggregated node features and pass
them into a learnable layer (i.e, the 𝑙 th layer) with a non-linear
activation function𝜎 (i.e., tanh in our work).𝐴∗ is thematrix used to
aggregate the neighbourhood features for a node, which is defined
as: 𝐴∗ = 𝐷̂−1/2𝐴𝐷̂−1/2, 𝐴 = 𝐴 + 𝐼 . Here, 𝐴 is the adjacent matrix
of the circuit graph; 𝐼 is an identity matrix; 𝐷̂ is the diagonal node
degree matrix of 𝐴. Using 𝐴∗ for aggregation is straightforward, as
a device in a circuit graph is directly affected by its neighbors. By
stacking multiple GCN layers, one device can receive information
from farther devices that do not have a direct connection with it.

Combining the GNN, FCNN, and FC forms our policy network
𝜋𝜃 (𝑎 |𝑠) parameterized by 𝜃 = {𝑊GNN,𝑊FCNN,𝑊FC} with𝑊GNN,
𝑊FCNN, and𝑊FC the learnable parameters of the GNN, FCNN and
FC. The value network preserves the same structure as the policy
network except of the last layer. It evaluates the actor’s decision
quality by yielding an estimation of the expected reward,𝑄 , for the
current policy execution. The objective function of the problem can
be formally defined as 𝐽 (𝜃,𝐺) = 1/𝐻 ·∑𝑔∼𝐺 E𝑔,𝑠∼𝜋𝜃 [𝑅𝑠,𝑔]. Here, 𝐻
is the the space size of all desired specifications 𝐺 and 𝑅𝑠,𝑔 is the
episode reward. Our goal is to make the RL agent gain rich circuit
design experiences by interacting with the environment. Given

Algorithm 1 Proximal Policy Optimization (PPO) Optimization
1: Input: initial policy parameters 𝜃0 and initial value function parameters 𝜙0
2: for 𝑘 = 0, 1, 2, · · · do
3: Collect a set of trajectories/episodes D𝑘 = {𝜏𝑖 } by running policy 𝜋𝑘 = 𝜃𝑘

in the circuit design environment.
4: Compute rewards 𝑅̂𝑡 for the trajectories/episodes.
5: Compute advantage estimates, 𝐴̂𝑡 based on the current value function𝑉𝜙𝑘 .
6: Update the policy bymaximizing the PPO-clip objective in Eq. (3), via stochastic

gradient ascent with Adam [3].
7: Fit value function by regression on mean-squared error:

𝜙𝑘+1 = argmin 1/(|D𝑘 |𝑇) ·
∑︁

𝜏∈D𝑘

∑︁𝑇

𝑡=0
(𝑉𝜙 (𝑠𝑡) − 𝑅̂𝑡)2,

via stochastic gradient ascent with Adam [3].
8: end for

the cumulative reward for each episode, we use Proximal Policy
Optimization (PPO) [12] to update the parameters of the policy
network as shown in Algorithm 1 with a clipped objective below:

𝐿CLIP (𝜃) = Ê𝑖 [min(𝑏𝑖 (𝜃), clip(𝑏𝑖 (𝜃), 1 − 𝜖, 1 + 𝜖))𝐴𝑖], (3)

where Ê𝑖 represents the expected value at time step 𝑖; 𝑏𝑖 is the
probability ratio of the new policy and the old policy, and 𝐴𝑖 is the
estimated advantage at time step 𝑖 .
Transfer Learning:We use transfer learning to speed up RF circuit
design. Generally, AC and DC simulations are sufficient to obtain
all intermediate specifications 𝑔𝑖 at time step 𝑖 for low-frequency
analog circuits (e.g., two-stage Op-Amps). Such simulations are fast
within tens of milliseconds in Cadence Spectre without delaying the
learning of RL agents. However, RF circuits (e.g., RF power ampli-
fiers) often need more sophisticated simulations to obtain accurate
intermediate specifications which is timing-consuming. Typically,
one uses Harmonic Balance (HB) simulation (∼1 minute/round in
ADS) to attain intermediate specifications. It significantly delays
the reward calculation and training of RL agents. To tackle the issue,
fast (∼1 second) but rough DC simulation is used to replace HB
simulation. It can obtain the not-very-accurate intermediate speci-
fications for the quick approximation of the reward. Our analyses
show that the approximated rewards are often in ±10% error range
compared to the ones obtained from the HB simulation. Therefore,
the learning process is remarkably speeded up. However, during
the deployment stage for design automation, we still use HB simula-
tion to guarantee the design quality and reliability. In this way, the
learned experiences from a coarse simulation environment can be
accurately transferred into a fine simulation environment as veri-
fied by our results. We think this may be due to the fact that a coarse
design environment also provides sufficient information for the RL
agent to learn the complicated relation between the device parame-
ters and specifications. For other advanced analog circuits, similar
approximated rewards can also be obtained correspondingly.

4 EXPERIMENTS
Two circuits are used for evaluations. One is the CMOS two-stage

Op-Amp as shown in Figure 2, which is a standard benchmark taken
by prior methods [6, 8, 13, 16]. The other one is a gallium nitride
(GaN) RF power amplifier (PA) [2] whose schematic is shown in Fig-
ure 4. GaN is a promising alternative for conventional CMOS tech-
nology and for high-frequency power electronic applications [14].

Table 1: Design space of device parameters and sampling space of desired specifications of two circuit benchmarks.

Circuit types Two-stage Op-Amp RF PA
Implementation technology 45 nm CMOS 150 nm GaN

of device parameters 2 · 7 + 1 = 15 2 · 7 = 14
Parameter constraints

(Design space)
Width (𝜇m)
[1, 100]

of fingers
[2, 32]

capacitance (pF)
[0.1, 10]

Width (𝜇m)
[16, 100]

of fingers
1, 2, ..., 16

Desired specifications
(Sampling space)

Gain (𝐺)
[300, 500]

Bandwidth (𝐵)
[106, 2.5 · 107] Hz

Phase margin (𝑃𝑀)
[55◦, 60◦]

Power consumption (𝑃)
[10−4, 10−2] W

Power efficiency (𝐸)
[50%, 60%]

Output power (𝑃)
[2, 3] W

0

20

40

60

0 10000 20000 30000

20

30

40

50

10

1.0

0.8

0.6

0.4

0.2

0.0

0 10000 20000 30000 0 10000 20000 30000

GAT-FC GCN-FC FCNN GCN GAT-FC GCN-FC FCNN GCN GAT-FC GCN-FC FCNN GCN

of trained episodes # of trained episodes # of trained episodes

0

20

40

0 1000 2000 3000

0

20

30

40

10

0 1000 2000 3000

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

GAT-FC GCN-FC FCNN GCN GAT-FC GCN-FC FCNN GCN GAT-FC GCN-FC FCNN GCN

of trained episodes # of trained episodes # of trained episodes

Policy training for the two-stage Op-Amp

Policy training for the RF PA

0.94

0.92

0.975

0.98

0.989

0.86

0.99

0.82

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

0

20

40

60

0 10000 20000 30000

20

30

40

50

10

1.0

0.8

0.6

0.4

0.2

0.0

0 10000 20000 30000 0 10000 20000 30000

of trained episodes # of trained episodes # of trained episodes

0

20

40

0 1000 2000 3000

0

20

30

40

10

0 1000 2000 3000

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

of trained episodes # of trained episodes # of trained episodes

Policy training for the two-stage Op-Amp

Policy training for the RF PA

0.93

0.92

0.975

0.98

0.989

0.86

0.99

0.82

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

of trained episodes

M
e

a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e

a
n

 e
p

is
o

d
e
 l
e

n
g

th

D
e

p
lo

y
m

e
n

t
a
c
cu

ra
cy

R
e
w

a
rd

 (
r)

of simulation steps

Genetic algorithm

0.98

0.92

0.83

0.78

10

0

10

20

30

40

0 1000 2000 3000

10

20

30

0 0.

0 2.

0 4.

0 6.

0 8.

1 0.

1 00.

0 75.

0 50.

0 25.

0 00.

0 100 200 300 4000 1000 2000 3000 0 1000 2000 3000
of trained episodes # of trained episodes

GNN-FC (our work)

AutoCkt

GCN

FCNN

GNN-FC (our work)

AutoCkt

GCN

FCNN

GNN-FC (our work)

AutoCkt

GCN

FCNN

0

20

40

60

0 10000 20000 30000

20

30

40

50

10

1.0

0.8

0.6

0.4

0.2

0.0

0 10000 20000 30000 0 10000 20000 30000

of trained episodes # of trained episodes # of trained episodes

0

20

40

0 1000 2000 3000

0

20

30

40

10

0 1000 2000 3000

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

of trained episodes # of trained episodes # of trained episodes

Policy training for the two-stage Op-Amp

Policy training for the RF PA

0.93

0.92

0.975

0.98

0.989

0.86

0.99

0.82

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

0

0 25.

0 50.

0 75.

1 00.M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

0 100 200 300 400

0

0 25.

0 50.

0 75.

1 00.

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

1 25.

0 200 400

Genetic algorithm

Genetic algorithm
Bayesian Optimization

Genetic algorithm
Bayesian Optimization

of simulation steps

of simulation steps

Figure 3: Comparing RL-based methods and optimization-based methods in the P2S problem with ours. Two rows correspond to the two-stage
Op-Amp and the RF PA. All results of RL methods are based on 6 random seeds.

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

Neighbors of the
orange node

(a) (b)

(a)

1

l

h

2

l

h

3

l

h

4

l

h

5

l

h

1

1

l

h


aggregation

(b)

1

l

h

2

l

h

3

l

h

4

l

h

5

l

h

1

1

l

h


Concat/avg

12

l


15

l



13

l



14

l



kA

(b)

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

Neighbors of the
orange node

(a) (b)

kA

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

(a)

kA

(b)

Multi-head
attention

GCN GAT

D1 D2 D3 D4 D5 DF

VIn_A

VGND

VIn_P1

VIn_P2

Vout

M1

Vbias1

Vbias2

VP1

VGND
Vbias2

Vbias1 VP1

VGND

VIn_P1

VIn_P2

D1 D2 D3 D4 D5 DF

VIn_A

VGND

VIn_P1

VIn_P2

Vout

M1

Vbias1

Vbias2

VP1

VGND
Vbias2

Vbias1 VP1

VGND

VIn_P1

VIn_P2

VP

VGND

Figure 4: Schematic of the RF PA [2] which consists of a driver stage
(D1∼D5 and DF) and a power amplifying transistor (M1).

The design space of device parameters and the sampling space of
desired specifications for the two circuits are listed in Table 1.

We adopt prior methods, i.e., Genetic Algorithm [6], Bayesian
Optimization [8], and RL methods [13, 16] as our baselines. These
prior arts focus on two problems, i.e., P2S optimization [6, 13] and
figure-of-merit (FoM) optimization [8, 16]. The prior RL methods
exclude the key domain knowledge into policy learning and are not
capable of designing RF circuits. Baseline A (i.e., prior work [13])
simply observes intermediate and given specifications from the
environment and vectorizes them to train a feedforward policy net-
work. Baseline B (i.e., prior work [16]) uses all static semiconductor
technology information as observations to train a partial circuit
topology-based GCN as the policy. Such a method is often found
to be divergent during training. For conservative comparisons, we
interpret and implement these RL arts [13, 16] with our method.
First, we use the GCN design in our policy network as a more
advanced implementation for the Baseline B. Note that our GCN
design is not only built upon a full circuit topology but also uses
the essential dynamic (variable) device parameters as node features
to better learn the relations between device parameters and circuit
specifications. Second, we build these RL baselines with the PPO
technique [12] and discrete action space as done in our work as well
as the transfer leaning technique to enable them to design RF cir-
cuits. Our methods have two versions: GCN-FC policy and GAT-FC

policy as GCN and GAT are respectively used as the GNN to capture
the underlying physics of a full circuit topology. We build circuit
graphs using Deep Graph Library [1] and implement all methods
with PyTorch. We use equal amount of network parameters and the
same set-ups for each baseline. All our experiments are performed
on an 8-core Intel CPU. Moreover, surprised learning method [10]
and a GAT-based implementation of Baseline B are also used as
auxiliary comparisons with our method, whose training results are
not shown in the paper but summarized in Table 2.
P2S Optimization: Figure 3 shows the training curves (i.e., mean
episode reward, mean episode length, and deployment accuracy)
of different RL methods for the P2S optimization. The maximum
episode length for each Op-Amp agent (RF PA agent) is set to be 50
(30). The total episodes used to train the two RL agents are chosen
to be 3.5 · 104 and 3.5 · 103, respectively. As observed, our method
achieves higher reward (first column), shorter mean episode length
(second column), and higher deployment accuracy (third column)
than all RL baselines. Policy deployment applies a trained policy to
automatically find the device parameters for given specifications.
Each point in Figure 3 (third column) comes from deploying each RL
agent for 200 groups of randomly sampled specifications in Table 1.

Given the desired circuit specifications, Genetic algorithm [6]
and Bayesian Optimization [8] use algorithms to guide the search-
ing process by maximizing 𝑟 in Eq. (1) without training. The last
column in Figure 3 shows the optimization curves. However, they
cannot leverage transfer learning and have to use HB simulation to
ensure design quality, which is time-consuming. We observe that
Genetic Algorithm (Bayesian Optimization) often requires ∼400
(∼100) steps/simulations to find optimal device parameters, incur-
ring long run-time delay. Moreover, due to the limitations, such as
being stuck at a local optimum and even divergence, the algorithm
cannot guarantee the correctness of each design. Based on 30-group
random experiments, the design accuracy is 76.7% (83.7%) for the
Genetic Algorithm (Bayesian Optimization).

.2 5

.2 0

.1 5

.1 0




4
10

.3 0

.1 0

.1 2

.1 4

.1 6

.1 8


7
10

50

40

30

20

10

375

400

350

325

300

275

250
0 10 20 27 0 10 20 27

0 10 20 27 0 10 20 27

.2 5

.2 0

.1 5

.1 0

0 5 10 11

0 5 10 11

G
a
in

P
o

w
e

r
c
o

n
su

m
p

ti
o

n
 (

W
)

P
h

a
se

 m
a
rg

in
 (
d

e
g

re
e
)

B
a
n

d
w

id
th

 (
H

z)

Episode steps Episode steps

Episode stepsEpisode steps

O
u

tp
u

t
p

o
w

e
r

 (
W

)
P

o
w

e
r

e
ff

ic
ie

n
c
y

Episode steps

Episode steps

Deployment example for the two-stage Op-Amp Deployment example for the RF PA

350

55
7

1 8 10. 

2.5

60%

45%

30%

15%

57%

Agent

Environment

State Action

Reward

kS

1kS 

kR

1kR 

(a)

kA

(b)

Multi-head
attention

GCN GAT

0

20

40

60

0 10000 20000 30000

20

30

40

50

10

1.0

0.8

0.6

0.4

0.2

0.0

0 10000 20000 30000 0 10000 20000 30000

of trained episodes # of trained episodes # of trained episodes

0

20

40

0 1000 2000 3000

0

20

30

40

10

0 1000 2000 3000

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

of trained episodes # of trained episodes # of trained episodes

Policy training for the two-stage Op-Amp

Policy training for the RF PA

0.93

0.92

0.975

0.98

0.989

0.86

0.99

0.82

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

GAT-FC GCN-FC

Baseline BBaseline A

0

0 25.

0 50.

0 75.

1 00.M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

0 100 200 300 400

0

0 25.

0 50.

0 75.

1 00.

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

1 25.

0 200 400

Genetic algorithm
Bayesian Optimization

Genetic algorithm
Bayesian Optimization

of simulation steps

of simulation steps

.2 5

.2 0

.1 5

.1 0

0 5 10 110 5 10 11

O
u

tp
u

t
p

o
w

e
r

 (
W

)

P
o

w
e

r
e
ff

ic
ie

n
c
y

Episode steps Episode steps

Deployment example for the RF PA

2.5
60%

45%

30%

15%

57%

Figure 5: Deployment examples of the trained RL agent attempting
to reach one group of the target specifications for each circuit.

The comparison shows that the our methods achieve the highest
design efficiency (with fewer deployment steps per episode, ∼20
steps for Op-Amp and ∼15 steps for RF-PA) and human-level design
accuracy (higher policy deployment accuracy, 99%) for both circuits
design. Particularly, we also note that the GAT-FC-based policy is
superior to the GCN-FC-based policy. Such a comparison shows
that circuit topology is an important ingredient in RL-based pol-
icy learning. And a better circuit topology modeling method, that
is using GAT with the multi-head attention mechanism to learn
higher-dimensional interactions among circuitry nodes, can further
improve the performance of a policy.
Automated Design with Policy Deployment:We take our GCN-
FC-based policy as an example to show the deployment process.
Figure 5 illustrates the deployment where RL agents automatically
find optimal device parameters for a group of randomly sampled
specifications (the horizontal dashed lines in each sub figure). The
sampled desired specifications for the two-stage Op-Amp are gain
(𝐺 = 350), bandwidth (𝐵 = 1.8 · 107 Hz), phase margin (𝑃𝑀 = 55◦),
and power consumption (𝑃 = 4 · 10−3 W). And for the RF PA, they
are output power (𝑃 = 2.5 W), and power efficiency (𝐸 = 57%).
Note that the smaller the power consumption is, the better the
performance is. At the initial state, the intermediate specifications
(𝑦-axis of each sub-figure) often deviate a lot from the desired ones.
As the deployment continues, they get closer to the desired ones by
following the trained policy. An interesting phenomenon here is
that when some specification is first achieved, the RL agent will not
over-optimize it too much but instead try to optimize the remaining
ones. For example, the gain of the two-stage Op-Amp is first attained
at the 14th deployment step. In the following steps, the RL agent
focuses on optimizing phase margin and bandwidth. The similar
analysis also applies to the design of the RF PA. We also analyze a
few failed cases where our trained policy cannot converge to the

8.0

6.0

4.0

2.0

3.5

3.0

2.0

1.0

2.5

1.5

0 10 20 30 38

0 10 20 30 38 0 10 20 30 38

0 10 20 30 38

20

40

60

100

150

200

250

300

350

400

0 20 40 49

0 20 40 49

1.0

1.5

2.0

2.5

3.0

O
u

tp
u

t
p

o
w

e
r

 (
W

)
P

o
w

e
r

e
ff

ic
ie

n
c
y

G
a
in

P
o

w
e

r
c
o

n
su

m
p

ti
o

n
 (

W
)

P
h

a
se

 m
a
rg

in
 (

d
e
g

re
e
)

B
a
n

d
w

id
th

 (
H

z)

Generalization example for the two-stage Op-Amp Generalization example for the RF polar-TX

Episode stepsEpisode steps Episode steps

Episode stepsEpisode steps Episode steps




4
10

225

65

2.9

7
2 6 10. 

7
10

60%

45%

30%

15%

69%

8.0

6.0

4.0

2.0

3.5

3.0

2.0

1.0

2.5

1.5

0 10 20 30 38

0 10 20 30 38 0 10 20 30 38

0 10 20 30 38

20

40

60

100

150

200

250

300

350

400

0 20 40 49

0 20 40 49

1.0

1.5

2.0

2.5

3.0

O
u

tp
u

t
p

o
w

e
r

 (
W

)
P

o
w

e
r

e
ff

ic
ie

n
c
y

G
a
in

P
o

w
e

r
c
o

n
su

m
p

ti
o

n
 (

W
)

P
h

a
se

 m
a
rg

in
 (

d
e
g

re
e
)

B
a
n

d
w

id
th

 (
H

z)

Generalization example for the two-stage Op-Amp Generalization example for the RF PA

Episode stepsEpisode steps Episode steps

Episode stepsEpisode steps Episode steps

225

65

2.9

60%

45%

30%

15%

69%

0 20 40 490 20 40 49

1.0

1.5

2.0

2.5

3.0

O
u

tp
u

t
p

o
w

e
r

 (
W

)

P
o

w
e

r
e
ff

ic
ie

n
c
y

Generalization example for the RF PA

Episode steps Episode steps

2.9

15%

30%

45%

60%

7
10

4
10




7
2 6 10. 

69%

Figure 6: Generalization examples of the trainedRL agent attempting
to reach one group of the unseen new specifications for each circuit.

optimal device parameters. We observe that in these cases, some
specifications can converge to a neighborhood of the desired ones,
but after which they deviate a bit from the goal. Fortunately, we
find that by slightly tuning the device parameters with manual
effort at that particular step, the design goal is also easily achieved.
In this way, the design accuracy can be improved to 100%. These
results show that human designers can still greatly benefit from
the trained policy, if used as an efficient warm-start for the manual
tuning, even if an automated deployment fails.
Generalization to Unseen Specifications: We also evaluate the
generalization ability of our GCN-FC-based policy by deploying
it with unseen specifications out of the sampling space in Table 1.
Figure 6 shows such an example, where the horizontal dashed lines
denote these unseen specifications: gain (𝐺 = 225), bandwidth (𝐵 =

2.6 · 107 Hz), phase margin (𝑃𝑀 = 65◦), power consumption (𝑃 =

6 · 10−3 W) for the two-stage Op-Amp; output power (𝑃 = 2.9W),
and power efficiency (𝐸 = 69%) for the RF PA. Compared to policy
deploymentwith the specifications coming from the sampling space,
the deployment with unseen specifications usually requires more
search steps. For example, the generalization for the RF PA needs
49 steps to achieve the design goals while 11 steps are enough for
the normal deployment in Figure 5. This is because that unseen
specifications are beyond the scope of training datasets, thereby
demandingmore steps to reach optimal parameters.We also analyze
the generalization ability of baseline methods (not shown here) and
find that they often do not generalize well as ours even with a
higher number of search steps. The better generalization ability
of ours is attributed to the fact that it is capable of capturing key
domain knowledge from state space, hence can better apply the
learned experiences to unseen specifications at the inference time.
FoM Optimization:We also compare all methods in optimizing
FoM by using the RF PA as an example. To apply the methods to this

Table 2: Comparison summarization of different design automation methods.

Methods Sufficient key domain knowledge (?)
P2S optimization FoM optimization

Design accuracy Mean # of design steps FoM value
Two-stage Op-Amp RF PA RF PA

Genetic Algorithm [6] NO 76.7% 370 389 2.53
Bayesian Optimization [8] NO 83.7% 86 105 2.61
Supervised learning [10] NO 79% 1 1 N/A

RL method (Baseline A) [13] NO 92% 27 23a 2.92a
RL method (Baseline B) [16] NOb 84% (87%) 32 (31) 25 (23)a 2.81 (2.86)a

Our RL method YES: Full circuit topology +
Specification couplings

GCN + FCNN 98% 24 19 3.18
GAT + FCNN 99% 21 16 3.25

a They originally cannot design RF circuits. We leverage our transferring learning technique to enable them to design RF circuits.
b Implemented with our GCN (GAT) part: full circuit topology + device parameters as key node features.

1000 2000 30000 0 100 200 300 400

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

0

10

20

30

30

25

20

15

10

5

0

M
e
a
n

 e
p

is
o

d
e
 l
e
n

g
th

0 1000 2000 3000 0 1000 2000 3000

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

D
e

p
lo

ym
e
n

t
a
c
cu

ra
cy

of trained episodes # of trained episodes# of trained episodes

0.98 0.93

GNN-FC

FCNN

GNN-FC

FCNN

GNN-FC

FCNN

3.0

2.0

1.0

0.0

M
e

a
n

 e
p

is
o

d
e
 r

e
w

a
rd

of trained episodes

3.0

2.0

1.0

of simulation steps

Bayesian optmization

GNN-FC (our work)

F
o

M

0 1000 2000 3000 0 100 200 300 400

0.5

1.5

2.5 2.65

3.18(b)(a)

GNN-FC (our work)

AutoCkt

GCN

FCNN

3.0

2.0

1.0

0.0

M
e
a
n

 e
p

is
o

d
e
 r

e
w

a
rd

 (
F
o

M
)

of trained episodes

GAT-FC GCN-FC

Baseline BBaseline A

2.0

1.0

F
o

M

0.5

2.5

1.5

2.532.61

of simulation steps

Genetic algorithm
Bayesian Optimization

GAT-FC GCN-FC

Baseline BBaseline A

3.25

Figure 7: Comparing FoM optimization between different methods.
All results of RL methods are reported based on 6 random seeds.

problem, we use the FoM definition [8] of RF PAs, i.e., 𝑟𝑖 = 𝑃𝑖 +3 ·𝐸𝑖
to revise the reward function in Eq. (1). Here, 𝑃𝑖 , 𝐸𝑖 are the in-
termediate specifications at time step 𝑖 . In the training, we use
references 𝑃𝑟 , 𝐸𝑟 for normalization, i.e., 𝑟𝑖 = (𝑃𝑖 − 𝑃𝑟)/(𝑃𝑖 + 𝑃𝑟) +
3 · (𝐸𝑖 − 𝐸𝑟)/(𝐸𝑖 + 𝐸𝑟). For each RL method, we train the corre-
sponding RL agent with 3.5 × 103 episodes. Figure 7 shows the
optimization curves of all methods. Our methods (GAT-FC/GCN-
FC) obtains a higher FoM and the GAT-FC-based policy attains the
highest one, showing the superiority of our methods.
Comparison Summarization:We summarize the comparisons in
Table 2. In tackling the P2S optimization, our method achieves the
highest design accuracy. Optimization methods [6, 8] cannot ensure
a high design accuracy because of their limitations, e.g., being stuck
at a local optimum (caused by non convexity) or divergence of the
algorithms. Due to the inherent approximation errors, SL meth-
ods [10] suffer from a low design accuracy. RL methods [13, 16]
excluding the key domain knowledge cannot reach the human-level
design accuracy as ours. Due to such limitations, these methods
show a weaker generalization ability than ours, either. Despite not
excelling the design efficiency of SL methods with one-step predic-
tion, once trained our method uses fewer steps to find the optimal
device parameters for the same desired specifications, improving
the design efficiency by average 1.5× compared to the prior RL
methods [13, 16] and average 10× compared to optimization meth-
ods [6, 8]. In the application of FoM optimization, our method also
achieves higher FoM value than prior RL methods and optimiza-
tion methods. In summary, our RL method inspired by key domain
knowledge of analog circuit design and human-like multiple tuning
steps achieves the best balance between the design accuracy and
efficiency as well as the best optimality.

5 CONCLUSION
We have shown a deep learningmethod for the automated design

of analog circuits. The key property of our framework is to incorpo-
rate domain knowledge of practical analog circuit design (i.e., the
underlying physical topology of a given circuit and the trade-offs
between specifications) into the newly proposed combined GNN
(GCN/GAT)-FC-based multimodal policy network. We show that

such a method is superior to other methods without such consider-
ations in designing various analog circuits with higher accuracy,
efficiency, and optimality. We expect that our method will assist
IC industry to accelerate the analog/RF chip design, with artificial
agents that master massive circuitry optimization experiences via
continuous learning.
Acknowledgment: Weidong Cao was an intern at MERL. This
work is supported by MERL with additional support for Weidong
Cao, Xuan Zhang in part by National Science Foundation grant no.
CCF-1942900.

REFERENCES
[1] Minjie Wang et al. 2020. Deep Graph Library: A Graph-Centric, Highly-

Performant Package for Graph Neural Networks. arXiv:cs.LG/1909.01315
[2] Q. Diduck et al. 2016. A 300MHz to 1200MHz Saturated Broadband Amplifier in

GaN for 2W Applications. In 2016 Texas Symposium on Wireless and Microwave
Circuits and Systems (WMCS). 1–4.

[3] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[4] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[5] Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. Lin. 2020. An Artificial Neural Network
Assisted Optimization System for Analog Design Space Exploration. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020),
2640–2653.

[6] Bo Liu, Yan Wang, Zhiping Yu, Leibo Liu, Miao Li, Zheng Wang, Jing Lu, and
Francisco V. Fernández. 2009. Analog Circuit Optimization System Based on
Hybrid Evolutionary Algorithms. Integration 42, 2 (2009), 137 – 148.

[7] Mingjie et al. Liu. 2021. Parasitic-Aware Analog Circuit Sizing with Graph Neural
Networks and Bayesian Optimization. In 2021 Design, Automation & Test in Europe
Conference Exhibition (DATE). 1372–1377.

[8] Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. 2018. Batch
Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated
Analog Circuit Design. In Proceedings of the 35th International Conference on
Machine Learning. 3306–3314.

[9] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of The 33rd
International Conference on Machine Learning. 1928–1937.

[10] H. M.V. and B. P. Harish. 2020. Artificial Neural Network Model for Design
Optimization of 2-stage Op-amp. In 2020 24th International Symposium on VLSI
Design and Test (VDAT). 1–5.

[11] Haoxing et al. Ren. 2020. ParaGraph: Layout Parasitics and Device Parameter Pre-
diction Using Graph Neural Networks. In Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference. 1–6.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:cs.LG/1707.06347

[13] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic. 2020. Au-
toCkt: Deep Reinforcement Learning of Analog Circuit Designs. In 2020 Design,
Automation & Test in Europe Conference Exhibition (DATE). 490–495.

[14] Stuart Thomas. 2020. Gallium nitride gets wrapped up. Nature Electronics 3, 12
(01 Dec 2020), 729–729.

[15] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[16] H. Wang, K. Wang, J. Yang, and L. Shen et al. 2020. GCN-RL Circuit Designer:
Transferable Transistor Sizing with Graph Neural Networks and Reinforcement
Learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[17] Guo Zhang, HaoHe, and Dina Katabi. 2019. Circuit-GNN: GraphNeural Networks
for Distributed Circuit Design. In Proceedings of the 36th International Conference
on Machine Learning. 7364–7373.

http://arxiv.org/abs/cs.LG/1909.01315
http://arxiv.org/abs/cs.LG/1707.06347

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-096.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

