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Abstract
This paper presents a method that adjusts the operation of advanced driver-assistance systems
(ADAS) to a specific location and driver. The method uses crowdsourced data collected
from multiple drivers in multiple locations/environments to predict the vehicle behavior of
an individual driver in a previously unseen location/environment. This prediction can in
turn be used for adapting the calibration of ADAS to the specific location/environment, as
well as to the individual driver. We describe an algorithm for making predictions, which
uses probabilities and quantile functions of empirical cumulative distribution functions to
relate an individual driver to the population. The paper reports a simulation study in SUMO
(Simulation of Urban MObility), where an emergency braking system is adapted to individual
drivers and to different road surface conditions. The results show that the algorithm is quickly
able to make accurate predictions and consequently adjust ADAS to the specific location and
drive
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Location and Driver-Specific Vehicle Adaptation
Using Crowdsourced Data

Marcel Menner, Ziyi Ma, Karl Berntorp, and Stefano Di Cairano

Abstract— This paper presents a method that adjusts the
operation of advanced driver-assistance systems (ADAS) to
a specific location and driver. The method uses crowd-
sourced data collected from multiple drivers in multiple lo-
cations/environments to predict the vehicle behavior of an
individual driver in a previously unseen location/environment.
This prediction can in turn be used for adapting the calibration
of ADAS to the specific location/environment, as well as to
the individual driver. We describe an algorithm for making
predictions, which uses probabilities and quantile functions of
empirical cumulative distribution functions to relate an individ-
ual driver to the population. The paper reports a simulation
study in SUMO (Simulation of Urban MObility), where an
emergency braking system is adapted to individual drivers and
to different road surface conditions. The results show that the
algorithm is quickly able to make accurate predictions and
consequently adjust ADAS to the specific location and driver.

I. INTRODUCTION

An advanced driver-assistance system (ADAS) aims to
increase safety of a human-operated vehicle by partially
taking control of the vehicle. This increase in safety may
come at the expense of comfort if the ADAS is configured
too conservatively. Consequently, ADAS aims to increase
safety while not decreasing the comfort of the human driver.
However, the feeling of comfort may vary between individual
human drivers. Further, driving conditions such as traffic or
environmental conditions may vary, while ADAS is typically
calibrated at production of the vehicle and not adjusted
online. This paper presents a method to adapt the calibration
of ADAS to the human driver, and to a specific location or
environmental condition, using crowdsourced data.

Vehicle connectivity and crowdsourcing offer a new po-
tential for storing and processing data of past and current
driving patterns collected from multiple drivers [1]. These
data can be utilized to determine patterns of behavior across
drivers, e.g., patterns that impact all drivers, such as the
weather or accidents. Furthermore, by providing a vehicle
with such data, the operation of ADAS can be individual-
ized by contrasting the individual driver with a group of
drivers, while taking into consideration effects that impact
all traffic participants. In such crowdsourcing applications,
anonymity is key to ensure privacy, which is achieved by
data aggregation and lack of identifier-based data labeling.

This paper presents a procedure for predicting the behavior
of an individual driver using crowdsourced data. The algo-
rithm uses anonymized population data provided, e.g., by a
cloud storage as well as driver-specific data, see Fig. 1 for
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Fig. 1. Illustration of location and driver-specific prediction-making. The
global data (blue) reflect behaviors of multiple drivers in different locations.
The location-specific data (green) reflect behaviors of multiple drivers in a
specific location of interest for the ego vehicle (displayed in red). The global
driver-specific data (orange) reflect behaviors of the ego vehicle collected
in different locations. These three data sets are used to make location and
driver-specific predictions, which are used to adapt ADAS calibration.

an illustration. It uses (i) global data collected from multiple
drivers in multiple locations (or environments), (ii) location-
specific data collected from multiple drivers in a specific
location for which we want to make predictions, and (iii)
global driver-specific data collected from an individual driver
in multiple locations. The algorithm proposed in this paper
uses such data sources to construct three empirical cumula-
tive distribution functions, and to predict the distribution of
the individual driver in the specific location. This can in turn
be used for adapting the calibration of ADAS. The proposed
algorithm is based on the underlying assumption that an
individual driver ranking at a certain percentile in multiple
locations compared to the population, also ranks at the same
percentile in the specific location of interest, compared to the
population. Although the distribution functions of data sets
(i) and (ii) are available for every driver to use, the data are
not labeled. Hence, the data cannot be dissected and assigned
to a driver, which protects their privacy. The distribution
function in (iii) is only stored locally in the vehicle of the
individual driver. The algorithm is verified using SUMO
(Simulation of Urban MObility) [2], which is a commonly-
used microscopic traffic simulation tool, and it has been
extended to simulate connected vehicle scenarios [3]–[5].
We implement a case study in SUMO, where crowdsourced
data are used to predict a location-specific and driver-specific
distribution of the braking distance, which is then used for



adapting the calibration of an automated emergency braking
(AEB) system. This ensures that AEB is activated at a
distance where the driver does not perceive the AEB as false
position, i.e., braking too early, or false negative, i.e., braking
too late, while still ensuring safety.

1) Related work: Vehicle connectivity has been exten-
sively investigated for road safety [6]–[8], congestion predic-
tion or mitigation [9], [10], and traffic signal control [11]–
[14]. Further, there is an increased interest in utilizing
connectivity for emerging technologies and progress in au-
tonomous driving and electric vehicles. For example, [10]
uses autonomous vehicles to indirectly control human-
operated vehicles using connectivity. In [15], the impact of
vehicle connectivity for improved energy management of
plug-in hybrid vehicles is discussed. Other applications in-
clude pavement condition monitoring [16] and travel time es-
timation [17], [18]. In addition, there is research in designing
communication protocols between vehicles, infrastructures,
and pedestrian, see, e.g., [19], [20].

Related crowdsourcing methods use consensus-type algo-
rithms, decentralized blockchain technology, and location
obfuscation to ensure the integrity and privacy of data
[21]–[25]. For example, in [21] a privacy-preserving sys-
tem is proposed that guarantees message trustworthiness in
vehicle-to-vehicle communications, and [22] uses decentral-
ized blockchain technology for privacy-preserving spatial
crowdsourcing. In [23], a location obfuscation strategy is
proposed to minimize the information loss due to obfuscation
using geo-indistinguishability. In [24], [25], crowdsourced
data are used for the routing of connected vehicles. In this
work, we propose an algorithm for making location and
driver-specific predictions and using such predictions for
adaptive ADAS calibration, which appears not to have been
investigated yet.

2) Notation: N (µ, σ2) denotes the Gaussian distribution
with mean µ and variance σ2. The notation x ∼ N (µ, σ2)
means x sampled from N (µ, σ2). The cumulative distribu-
tion function FX of a distribution p(X) is defined as

p̃ = Prob(X ≤ x̃) = FX(x̃) =

∫ x̃

−∞
p(X = x)dx,

where p̃ is the probability that the random variable X is less
than or equal to x̃, and x̃ = F−1

X (p̃) is the inverse cumulative
distribution function. For the Gaussian distributionN (µ, σ2),

p̃ = FX(x̃) =
1

2

[
1 + erf

(
x̃− µ√

2σ

)]
and x̃ = F−1

X (p̃) = µ+
√
2σ erf−1(2p̃− 1), where erf and

erf−1 are the error function and inverse error function.
Given n data points {xi}ni=1 with xi ∈ R, let F̂ (x) be an

empirical cumulative distribution function,

F̂ (x) =
1

n

n∑
i=1

1xi≤x with 1xi≤x =

{
1 if xi ≤ x

0 else
(1)

where n is the number of data samples, xi, and 1xi≤x

denotes the indicator function, i.e., F̂ (x) is a step function
increasing by 1/N at each data sample point, xi.

II. MATHEMATICAL PROBLEM FORMULATION

In this paper, we use probability distributions to predict
the location-specific and driver-specific behavior of a ve-
hicle. Probability distributions are suitable in this context
as data are expected to be noisy due to sensor uncertainty,
disturbances, as well as human factors. The goal of the
method in this paper is to predict a quantity or the range
of a quantity, X , which may vary dependent on the location,
L, of the vehicle as well as on the driver, D. For instance,
X could denote the fuel/energy consumption of a vehicle,
which varies based on the driver due to different vehicles or
individual driving styles [26], and based on the location due
to congestion, temperature, weather, etc. Hence, we want to
predict the probability distribution of X ∈ R for a specific
driver, D, at a specific location, L,

p(X|D,L). (2)

To predict (2), we assume access to three data sets. First,
we have a data set with nx|d data points, XX|D =

{x1
X|D, ..., x

nx|d
X|D}, for a specific driver, D, obtained at mul-

tiple locations, i.e., samples from the distribution

xi
X|D ∼ p(X|D), (3a)

which are stored locally on the vehicle to protect the privacy
of the driver. Referring back to Fig. 1, this data set is
illustrated in orange. Second, we have a crowdsourced data
set with nx data points, XX = {x1

X , ..., xnx

X }, e.g., sent from
a cloud, collected from multiple drivers at multiple locations,
i.e., samples from the distribution

xi
X ∼ p(X). (3b)

This data set is shown in blue in Fig. 1. Third, we have
a crowdsourced data set with nx|l data points, XX|L =

{x1
X|L, ..., x

nx|l
X|L}, collected from multiple drivers at a spe-

cific location, L,

xi
X|L ∼ p(X|L). (3c)

This data set is shown in green in Fig. 1. In (3), xi
X|D, xi

X ,
and xi

X|L denote the ith samples of the same quantity, but
originating from different distributions, which are indicated
by subscripts.

In summary, the goal is to predict the range of the quantity,
X , as in (2) using the three data sets XX|D (stored in
vehicle), XX (stored in cloud), and XX|L (stored in cloud).

III. PREDICTION ALGORITHM

In this section, we present an algorithm that uses cu-
mulative distributions functions to predict X for a specific
location, L, and a specific driver, D, as in (2) based on
samples of the distributions in (3). The main modeling
assumption for the algorithm is that individual human drivers
behave “always in the same way” relative to the population
of drivers, which is detailed in the following. Mathematically,
for any percentage value p̃∈ (0, 1) of the driver distribution
with associated value x̃X|D = F−1

X|D(p̃), we compute a



“ranking” of the individual driver (distribution (2)) with
respect to the population (distribution (3b)) as

p̃X = FX

(
x̃X|D

)
(4a)

x̃X|D = F−1
X|D(p̃), (4b)

where x̃X|D is both the p̃th percentile of the global driver-
specific distribution and the p̃X th percentile of the global
population distribution. Hence, we associate the percentile p̃
of the global driver-specific distribution with a percentile p̃X
of the global population distribution.

To predict (2), we model the association of percentiles
of p̃ and p̃X in (4) to be similar for the location-specific
distributions,

p̃X|L = FX|L
(
x̃X|D,L

)
(5a)

x̃X|D,L = F−1
X|D,L(p̃), (5b)

where x̃X|D,L is both the p̃th percentile of the location and
driver-specific distribution and the p̃X|Lth percentile of the
location-specific population distribution. However, FX|D,L is
unknown. To predict FX|D,L, we use

p̃X = p̃X|L (6)

to connect (4) and (5), thus obtaining

xpred
X|D,L = F−1

X|L

(
FX

(
F−1
X|D(p̃)

))
∀p̃ ∈ (0, 1), (7)

where xpred
X|D,L is the predicted p̃th percentile of the location

and driver-specific distribution and can be used for adaptation
of ADAS. In other words, this approach is based on the as-
sumption that the ranking of an individual driver with respect
to the population is consistent across all different locations.
Eq. (7) requires access to the three cumulative distribution
functions FX|L, FX , and FX|D, which is addressed next.

Remark 1: It is easy to see that this ranking assumption
holds true in expectation. E.g., a generally more aggressive
driver is predicted to be more aggressive in the specific loca-
tion, whereas a cautious driver is predicted to act cautiously.

A. Empirical Cumulative Distribution Functions

In practice, the cumulative distribution functions can have
very complex shapes and may not be well-represented by
a specific class of distributions such as Gaussian, Laplace,
etc. As a result, we use empirical cumulative distribution
functions, which offer the advantage of avoiding assump-
tions about probability distribution classes and enable flex-
ible shapes of the distributions. This model-free/data-driven
solution approximates an unknown cumulative distribution
function F (x) with an empirical cumulative distribution
function F̂ (x) as in (1). By the law of large numbers,
F̂ (x)

a.s.−−→ F (x), i.e., converges (almost surely) as n→∞,
see [27]. It is easy to see that the prediction F̂ (x) improves
in expectation as more data are accumulated.

Thus, our algorithm works as follows. For any p̃, we pre-
dict the associated value using the three empirical cumulative
distribution functions according to (7) resulting in

xpred
X|D,L = F̂−1

X|D,L(p̃) = F̂−1
X|L

(
F̂X

(
F̂−1
X|D(p̃)

))
,

where F̂X|L, F̂X , and F̂X|D are provided by the data sets
XX|L, XX , and XX|D, respectively. Algorithm 1 shows how
to construct the empirical cumulative distribution function
F̂X|D,L by means of a set of predicted data points, XX|D,L.

Algorithm 1 Predict location/driver-specific F̂X|D,L

Require: Data sets XX|D, XX , XX|L
1: for p̃ = 1%, ..., 99% do
2: xpred

X|D,L = F̂−1
X|L

(
F̂X

(
F̂−1
X|D(p̃)

))
3: XX|D,L ← {XX|D,L, x

pred
X|D,L} ▷ Add to data set

4: end for
5: return XX|D,L ▷ Data for predicted distribution

B. Selected Theoretical Properties

For certain distributions in (2) and (3), the proposed
estimator is consistent, i.e., the prediction can reconstruct
the underlying ground-truth distribution exactly as n → ∞.
E.g., let (2) and (3) be Gaussian distributions with

p(X|D) = N (µx|d, σ
2
x|d) (8a)

p(X) = N (µx, σ
2
x) (8b)

p(X|L) = N (µx|l, σ
2
x|l) (8c)

p(X|D,L) = N
(
µx|d,l, σ

2
x|d,l

)
, (8d)

µx|d,l = µx|l+
σx|l
σx

(µx|d−µx), σ2
x|d,l=

(
σx|lσx|d

σx

)2

. Then,

F−1
X|D,L(p̃) = xpred

X|D,L = F−1
X|L

(
FX

(
F−1
X|D(p̃)

))
, (9)

for all p̃ ∈ (0, 1), i.e., FX|D,L is reconstructed exactly, which
is formally proven in Theorem 1.

Theorem 1: Let (2) and (3) be as in (8). Then, (9) holds
for all p̃ ∈ (0, 1).

Proof: Using the definitions of the cumulative distri-
bution function and its inverse,

xX|D = F−1
X|D(p) = µx|d + σx|d

√
2erf−1(2p− 1) (10a)

pX = FX(xX|D) =
1

2

[
1 + erf

(
xX|D − µx√

2σx

)]
(10b)

xX|D,L = F−1
X|L(pX) = µx|l + σx|l

√
2erf−1(2pX − 1),

(10c)

where erf is the error function. Inserting (10b) into (10c),

xX|D,L = µx|l + σx|l
√
2
(

xX|D−µx√
2σx

)
. (11)

Using xX|D in (10a), (11) can be reformulated as

xX|D,L = µx|l + σx|l
√
2
(

µx|d+σx|d
√
2erf−1(2p−1)−µx√
2σx

)
= µx|l +

σx|l
σx

(µx|d − µx) +
σx|lσx|d

σx

√
2erf−1(2p− 1).

Hence, by definition of the cumulative distribution function,

p(X|D,L) = N (µx|d,l, σ
2
x|d,l)

with µx|d,l = µx|l+
σx|l
σx

(µx|d−µx), σx|d,l =
σx|lσx|d

σx
, which

show (9) for all percentages p and distributions in (8).



Remark 2: The Gaussian assumption makes theoretical
investigations easier. However, the presented method does
not require Gaussian distributions. Studying more general
theoretical properties exceeds the scope of this paper.

IV. SIMULATION RESULTS

A. Convergence of Predicted Distribution

First, we investigate how quickly the predicted distribu-
tion converges to the ground-truth distribution as data are
gathered. Here, let p(X|D) and p(X) as in (8a)–(8b) be
known. This amounts to having observed sufficiently many
data points such that the empirical cumulative distribution
functions approximate (8a)–(8b) well. In practice, this means
having constructed the distributions using multiple trips of
multiple drivers and multiple trips of the target driver. Then,
we collect samples of the distribution (8c) and the goal of
the proposed algorithm is to predict (8d).

We performed 2000 Monte Carlo simulations where at
each iteration, we first obtained the means and variances of
(8a), (8b), (8c) as µx ∼ N (0, 10), σx ∼ N (5, 25), µx|d ∼
N (0, 5), σx|d ∼N (3, 9), µx|l ∼N (0, 10), σx|l ∼N (5, 25).
This ensures that a wide range of different scenarios are
simulated. For each of the 2000 trials, the means and
variances remain constant while samples are drawn. During
each trial, we draw samples from (8c) to build the empirical
cumulative distribution function, F̂X|L. Then, we predict (8d)
using Algorithm 1 after each sample has been drawn and
compute the prediction error as

err =

∑99%
p̃=1%

(
F−1
X|D,L(p̃)− F̂−1

X|L

(
FX

(
F−1
X|D(p̃)

)))2

∑99%
p̃=1%

(
F−1
X|D,L(p̃)

)2 .

Fig. 2 shows the convergence results of the error, by the
median, the 20th, and 80th percentile of the 2000 Monte-
Carlo runs. The algorithm reduces the error quickly, e.g.,
see median of err = 1 after the first sample and err = 0.02
after 100 samples. As a comparison, Fig. 2 also shows
the convergence of the error that we would obtain if we
could directly observe samples from FX|D,L (rather than
FX|L). Since we cannot observe samples from FX|D,L, this
is an oracle and is expected to have faster convergence.
The simulation results show that the proposed algorithm
converges only slightly slower than the ideal case of the
oracle, which indicates that the algorithm is able to quickly
predict the unknown distribution.

B. ADAS Adaptation Case Study using SUMO

Next, we present a case study using SUMO [2], where
drivers are traveling on a straight road with a speed limit
of 50km/h and need to stop at a traffic light. The vehi-
cles’ behaviors are simulated using the Krauss car-following
model [28]–[30], which is calibrated using a range of dif-
ferent parameters to simulate different drivers. For this case
study, we generate 100 different drivers with the parameters
sampled from distributions and value ranges in Table I. The
parameters accel and decel define the acceleration and
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Fig. 2. Convergence of prediction error. The prediction error (displayed
in black) reduces quickly from a median of err = 1 after the first sample
and err = 0.02 after 100 samples. The hypothetical convergence rate of
an oracle observing samples directly (displayed in red) is only 9.5% faster,
which can be expected to be the performance limit.

TABLE I
VEHICLE PARAMETERS FOR SUMO

Parameter Range Distribution

accel [0, 9.81] Beta (α = 2, β = 5)
decel [0, 9.81] Beta (α = 2, β = 5)
sigma [0, 1] Truncated Gauss (µ = 0.2, σ = 0.5)
tau [0.5, 1.6] Truncated Gauss (µ = 0.6, σ = 0.5)
speedFactor [0.8, 1.2] Truncated Gauss (µ = 1.1, σ = 0.2)
speedDev [0, 0.2] Truncated Gauss (µ = 0.1, σ = 0.05)

deceleration ability of vehicles, respectively; sigma defines
a driver’s imperfection; tau defines the driver’s desired time
headway; speedFactor defines the vehicle’s expected
multiplicator for speed limits; and speedDev defines the
deviation of the speedFactor. For more detail, the reader
is referred to the SUMO documentation [31]. For our case
study, we modify the parameters accel and decel to
account for different driving behaviors in different environ-
mental conditions. Here, we choose a simple scaling, i.e.,
accel← µ·accel and decel← µ·decel, where µ is
the friction coefficient. This scaling considers that drivers are
more cautious in conditions with lower friction coefficients.

Fig. 3 shows how the algorithm predicts the location-
specific and driver-specific cumulative distribution function.
In this case study, the “location” refers to snowy road con-
ditions with friction coefficient µ = 0.4, whereas “global”
refers to data collected for multiple different friction co-
efficients, µ ∈ [0.3, 0.9]. Fig. 3 illustrates the assumption
on consistent rankings in (6) for p̃ = 50% and p̃X =
p̃X|L = 42%, i.e., a driver ranking at the 42th percentile
w.r.t. the population also ranks at the 42th percentile w.r.t.
the population on a snow-covered road. Fig. 3 shows an
exemplary trial, where 50 data points have been collected for
the location-specific population data, and 1000 data points
for both global data sets, i.e, the left column in Fig. 3.
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To increase the statistical significance of the results, we
conduct 1000 trials similar to Fig. 3. Fig. 4 reports the mean
and standard deviation of braking distances over the 1000
trials. Fig. 4 shows how quickly the prediction of the 50th
percentile, i.e., p̃ = 50%, converges for three drivers in
two different locations/environment, which simulate driving
on snow with friction coefficient µ = 0.4 and driving on
dry asphalt, µ = 0.9. First, having observed only one data
point, the algorithm will not be able to make driver-specific
predictions (see, braking distance of 90 m for µ = 0.9 and
155 m µ = 0.4 for all drivers). However, in expectation,
the algorithm is able to correctly predict the impact of the
different friction coefficients. Further, after collecting 10
data points at the specific location with either dry asphalt
or snow, the algorithm is able to distinguish between the
different drivers and the specific location more reliably. After
collecting 100 data points, the algorithm is able to distin-
guish between drivers and locations, as all predicted braking
distances are well-separated by more than one standard
deviation. Note that 100 data points are collected when 100
(connected) vehicles have gone through the specific location.
For roads with at least medium level of traffic, this happens in
the order of minutes, which is appropriate for our purposes.

Lastly, we utilize the prediction in Fig. 3 to adapt the
calibration of an AEB system in SUMO, where we use the
predicted braking distance xpred

X|D,L for percentile p̃ = 2%,
i.e., the automatic emergency braking system is triggered

at the distance xpred
X|D,L from the stopping point. Note that

other percentiles can be used as well, e.g., p̃ = 20% can be
used to trigger a warning to the driver. One advantage of the
proposed procedure for adapting the calibration of such an
AEB system is that safety is ensured by design, as long as the
data are nonadversarial. This is because the location-specific
population data can be viewed as a filter, which only allows
predictions that are physically possible, i.e., filtered by actual
braking distances that were observed at the specific location
or the specific friction coefficient, under the assumption that
the AEB is not worse than any driver.

V. CONCLUSION

This paper presented a concept to make location-specific
and driver-specific predictions of a vehicle’s behavior. The
concept leverages crowdsourced data collected from multiple
locations and multiple drivers and can be used in order to
adapt the calibration of advanced driver assistance systems
to a specific location and a specific driver. In addition, we
developed an algorithm/estimator based on three empirical
cumulative distribution functions of (i) global population
data, (ii) location-specific population data, and (iii) global
driver-specific data in order to make predictions. The algo-
rithm is based on a consistent ranking assumption, which
models that drivers behave similar with respect to the pop-
ulation for all locations. We showed conditions for which
the estimator is consistent, i.e., the estimator reconstructs
the underlying unknown distribution exactly. A simulation
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study showed that the algorithm is fast to converge and
requires little data. Finally, we presented a case study in
SUMO in which an emergency braking system was adapted
using location-specific and driver-specific predictions of the
braking distance.
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