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Dynamic Clustering for GNSS Positioning with Multiple Receivers

Marcus Greiff1, Stefano Di Cairano1, and Karl Berntorp1

Abstract— We consider the problem of jointly estimating the
states of multiple global navigation satellite system (GNSS)
receivers modeled with shared biases. In particular, we explore
how to best assign these receivers to disjoint sets, so as to
retain computational feasibility in the resulting filters. We
propose a genetic algorithm that dynamically assigns agents
to clusters subject to constraints on the maximum number of
states in the clusters. Several numerical examples illustrate the
flexibility of the approach, and the choice of genetic operations
in the clustering algorithm is motivated by their effect on the
algorithm’s expected convergence rate. Numerical experiments
with a GNSS-inspired problem demonstrates that the proposed
clustering can yield a substantial improvements in the mean-
square error compared to a random cluster assignment.

I. INTRODUCTION
Global navigation satellite system (GNSS) positioning is a

ubiquitous tool in modern society, and has been the subject
of intense research since the 1950’s [1]. The state of the art
precise point positioning (PPP) approaches utilize sophisti-
cated models of the underlying physics to eliminate various
biases from the estimation problem [2]. These methods often
involve a first-order expansion of the measurement equation,
with subsequent de-correlation and integer search methods to
approximately solve an NP-hard mixed-integer least-squares
(MILS) problem in a non-linear Kalman filter (KF) setting
(see, e.g., [3]–[7]). With simpler integer fixation schemes,
such as bootstrapping [8], the computational complexity of
these filters2 scales with O(N3) in the number of estimated
states, N . Several other approaches have been developed,
including those based on multiple model (MM) Kalman
filtering in [9], [10], which closely relates to the particle-
filtering methods employed in [11]. Such algorithms improve
the positioning performance at the cost of an increased
computational complexity in N , and are therefore often
implemented using simpler estimation models.

The above approaches all consider the problem of esti-
mating the states of a single receiver (or agent). However,
if we consider a set of agents, the inter-agent measurement
noise will be correlated if the measurements are processed by
difference schemes using the same base station (especially
if considering double difference operations, see, e.g., [3]).
In addition, the biases for the different agents are similar
if the receivers are in close geographical proximity [7].
Hence, multiple agents can benefit from sharing information,
but this comes at a cost of increasing the size of the
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2The exponent depends on how the nonlinearities are handled. If using
σ-point methods, it is cubic in the state dimension, but it can be sub-cubic
for simpler EKFs. The computational complexity is also cubic in the number
of measurements, which may dominate the complexity for certain problems.

estimation problem. Even with the methods in [6], [7],
the joint estimation of multiple agents quickly becomes
computationally infeasible as the number of agents increase,
due to how the computation scales with the number of states
and measurements. Therefore, the question addressed in this
work is how to best form clusters of agents to minimize
a desired performance objective given constraints on the
computational resources.

The problem of finding an optimal clustering is closely
related to the KF sensor selection (KFSS) problem [12]–
[16]. In KFSS, a subset of the available measurements is
to be used in minimizing a cost of the estimate mean-
square error (MSE). Even in the linear Gaussian setting,
this problem is NP-hard and generally not submodular [14,
Examples 1 and 2]. Consequently, it is often addressed with
approximations and convex relaxations [16, Section III.A],
which come with no performance guarantees. An appealing
alternative is to employ greedy selection algorithms [16,
Section III.B], which tend to work very well in practice, and
can be shown to converge to an optimal solution when the
sensors are separable [14]. Indeed, recent work has shown the
MSE in the KFSS to be approximately supermodular [15],
which can be used to derive performance guarantees for more
general problems. This motivates the study of algorithms
inspired by greedy selection for the clustering problem.

Unlike the KFSS, we do not seek a single subset of
all available measurements. Rather, the measurements are
clustered into multiple disjoint subsets. A change in cluster-
ing implies the exclusion of measurements as in [14], [16],
since the estimation of certain states cannot be done using
certain measurements. In addition, a change in clustering also
modifies the state spaces in the clusters, as the local states
differ among the agents in GNSS positioning [7]. Here, the
question is not how to pick a subset of measurements to
improve estimation performance with respect to a specific
state-vector, but how to choose a clustering such that sub-
sets of measurements improves estimation performance with
respect to the states in the resulting clusters.

A. Notation

Vectors are denoted by x ∈ Rn with xi denoting the ith

element of x. The concatenation of two vectors x ∈ Rn and
y ∈ Rm is denoted (x;y) = (x>,y>)> ∈ Rn+m. Matrices
are indicated in bold as X , and the element on row i and
column j of X is written [X]ij . The notation x ∼ N (µ,Σ)
indicates that x is Gaussian distributed with mean x̂ and
covariance P , and x ∼ U(I) indicates that the x is uniformly
distributed over I . The notation x̂k|k refers to the estimate
of x at time step k given the set of measurements y0:k ,
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Fig. 1. Two ways of clustering a set of n = 7 agents into C = {C1, C2}
where m = 2 (left) and C∗ = {C∗1 , C∗2 , C∗3} with m = 3 (right), and a
concise representation of by integer vectors, with I and I∗, respectively.
Agents exchange information within the clusters, and the clustering changes
both the state-space in the clusters and the measurements used by each agent.

{y0, . . . ,yk}, and x̂k|k−1 denotes the one-step prediction of
x̂k−1|k−1. Finally, ⊗ denotes the Kronecker product where
M = (A⊗B)ij is block structured with Mij = [A]ijB.

In the following, we refer to a set of agents A = {Ai}ni=1,
clusters of agents Cj ⊆ A, and a set of m disjoint clusters
C = {Cj |Cj ∩ Ci = ∅, i 6= j}mj=1, represented as an integer
vector I ∈ [1,m]n where value of the ith element indicates
the cluster to which agent Ai belongs (see Fig. 1). Each of
the agents run a local estimator, and each cluster runs an
estimator based on the measurement information gathered
by the agents in that cluster. The number of estimated
states in Cj is written N(Cj), the number of measurements
taken in Cj is written Ny(Cj). Constraints are imposed on
these quantities (c.f., the energy constraint in KFSS), thus
bounding the computations of the estimator in each cluster.

B. Problem Formulation

Problem 1 Assign a set of agents A = {Ai}ni=1 to a set of
disjoint clusters C = {Cj}mj=1, where each Cj can fuse the
information of its assigned agents, and the agents in turn
can leverage this estimate. Minimize a cost J of I subject to
a constraint on the number of states and measurements per-
mitted in Cj , max{N(Cj), Ny(Cj)} ≤ Nmax ∀i = 1, ...,m.

Remark 1 This clustering problem is of a combinatorial
nature, a single evaluation of J(I) requires large amounts
of computations if expressed in the MSE (see Sec. II).

C. Contributions

We propose a greedy algorithm inspired by [14], [16] that
approximately solves Problem 1. The exploration is guided
by a sequence of operations on the set C, resulting in a
genetic algorithm (GA) with the following properties:

(i) The method can handle partially overlapping state-
spaces in the agents and correlated inter-agent noise;

(ii) The computational complexity of the clustering per
time unit can be traded for slower convergence rates;

(iii) The algorithm can be parallelized and does not apply
only to KFs, but can be used with any filter in [6], [9],
[10], as it only operates on a filtering posterior.

We assess how the proposed genetic operations affect the
expected convergence rate of the cost. This is done through
several numerical experiments, including a Monte-Carlo
(MC) simulation study on a simplified GNSS example.

II. PRELIMINARIES

A. Modeling

In GNSS applications, the filter running in Ai may en-
tertain different estimates: a relaxed estimate and/or a fixed
estimate (see, e.g. [5], [6]). For simplicity, we consider a
clustering based on the relaxed estimate, which (after a lin-
earization) obeys Gaussian linear time-varying dynamics [7],

xk+1 = Akxk + qk, qk ∼ N (0,Qk), (1a)
yk = Ckxk + rk, rk ∼ N (0,Rk). (1b)

To better illustrate the algorithm and facilitate the numerical
experiments, we use a simplified model for each receiver
that still captures much of the properties of a complete GNSS
estimation model, where each local agent obeys the dynamics

xik+1 = Ai
kx

i
k + qik, qik ∼ N (0,Qii

k ), (2a)

yik = Ci
kx

i
k + rik, rik ∼ N (0,Rii

k ). (2b)

The local state is decomposed into a position pik ∈
R2, a velocity vik ∈ R2, and a bias θk ∈ R2, with
xik = (pik ;vik ;θk). For receives in close proximity of each
other (about 3–10km), the bias is shared among all of the
models (hence omitting the super-index i), and enters on the
positional measurements with opposite sign (c.f. [7]),

Ai
k =

I hkI 0
0 I 0
0 0 I

 , Qii
k =

h
3
k

3 I
h2
k

2 I 0
h2
k

2 I hkI 0
0 0 hkI

, (3a)

Ci
k =

[
I 0 −I
I 0 I

]
, Rii

k =

[
(σR1i)

2I 0
0 (σR2i)

2I

]
. (3b)

For the inter-agent noise, let E[rik(rjk)>] = Rij
k =

r(Rii
k )1/2(Rjj

k )1/2, with blocks of the measurement noise
covariance matrix in the larger “global” model satisfying

Rii
k � 0 ∧Rjj

k � 0 ∧ r ∈ [0, 1)⇒
[
Rii
k Rij

k

Rji
k Rjj

k

]
� 0. (4)

The state-vectors of each agent in (2) contains a unique part
and a part that is shared among agents. These relate to the
state and measurement vector in a larger global model by

xk , (x1
k; · · · ; xnk ; θk) , (xuk ; θk) ∈ RN(C), (5a)

yk , (y1
k; · · · ; ynk ) ∈ RNy(C), (5b)

where the super-index (·)u denotes the states that only appear
in a single agent. Similarly, in any given cluster Cj , let

x̄jk , (xl1k ; · · · ; xlmk ; θk) , (xujk ; θk) ∈ RN(Cj), (6a)

ȳjk , (yl1k ; · · · ; ylmk ) ∈ RNy(Cj), (6b)

for all Ali ∈ Cj , where l1 < l2 < ... < lmj and mj = |Cj |.
To simplify the discussion, a general linear map is defined



to relate the global state-vector in (5) to the state-vector in
a cluster Cj ∈ C characterized by I. To this end, let

x̄j = M j
Ix = (Muj

I +M sj
I )x, M j

I ∈ {0, 1}N(Cj)×N(C),

with Muj
I x=(xuj ; 0)∈RN(Cj) and M sj

I x=(0;θ)∈RN(Cj).

B. Defining the Objective

In the GNSS literature, specifications are often given in
terms of the MSE, where the positional MSE is of particular
interest. However, when considering multiple receivers with
partially overlapping states, other costs may be relevant. For
instance, in an urban driving scenario relying on positional
information, it may not matter if the estimate is excellent in
all but one receiver, if the estimation errors in one receiver
are large enough to violate the specification. An additional
complicating factor is the shared states θk in (6). To illustrate
this, consider the partition of the set C into two clusters, C1
and C2, defined by I ∈ {1, 2}n. In the unlikely event that
the re-clustering does not change the estimates, we have that[

ˆ̄xi

x̄i

]
= (M i

I ⊗ I2)

[
x̂
x

]
, (7)

then, unless MSE(θ, θ̂) , E[‖θ − θ̂‖22] = 0,

MSE(x, x̂) 6=
2∑
i=1

MSE(x̄i, x̂i). (8)

As such, to compare the effects of a particular clustering to
another, we instead need to compare the quantities

MSE

([
M1
I

M2
I

]
x,

[
M1
I

M2
I

]
x̂

)
≤

2∑
i=1

MSE(x̄i, x̂i). (9)

which, unlike (8), holds with equality in the case of (7).
The inequality holds when using minimum MSE (MMSE)
estimators to resolve x̂, ˆ̄x1, ˆ̄x2, under the assumption that
additional information leads to a lower MSE. Similarly,
if comparing MSE of clusters of different size, we need
to account for the number of unique and shared states
differently. Motivated by these considerations, we define:
• JG(I) = (

∑m
i N(Ci))−1

∑m
i MSE(x̄i, ˆ̄xi),

• JC(I) = maxj(|Cj |d)−1MSE(H̄jx̄
j , H̄j ˆ̄xj),

• JL(I) = maxj maxi d
−1MSE(Hi

ijx̄
j ,Hi

ij
ˆ̄xj),

where d = 2, H̄j extracts the d-dimensional positional states
of the state-vector ˆ̄xj , while H̄ij extracts the positional state-
vector of the ith agent in the jth cluster. Here, JG(I) is the
total MSE per state among all of the agents, JC(I) denotes
the same measure but only considering the position in the
worst performing cluster, and JL(I) is the worst positional
MSE in the worst performing agent in any cluster.

Ideally, the clustering, I, should minimize JL(I), but a
more flexible cost is formed as the linear combination

J(I) = αGJG(I) + αCJC(I) + αLJL(I), (10)

for some positive parameters αG, αC , αL > 0. In the follow-
ing, these costs will be evaluated in the filtering posterior.

Remark 2 If we disregard the constraint on the cluster
state dimension in Problem 1, any clustering operation that
involves filtering with MMSE estimators satisfies (9) when
partitioning a cluster into subsets. Hence, the best clustering
is to have a single cluster with all of the agents, m = 1,
C1 = {A1, · · · ,An}. Similarly, the worst possible clustering
is to have one agent in each cluster, m = n, Ci = {Ai}.

C. Kalman Filtering

In the context of the dynamics defined in Sec. II-A, the
MMSE estimator is the KF [17], which is initialized from a
prior x0 ∼ N (x̂0|0,P0|0) followed by a prediction step,

x̂k|k−1 = Ak−1x̂k−1|k−1, (11a)

Pk|k−1 = Ak−1Pk−1|k−1A
>
k−1 +Qk−1, (11b)

and an update step

Kk = Pk|k−1C
>
k (CkPk|k−1C

>
k +Rk)−1, (12a)

x̂k|k = x̂k|k−1 +Kk(yk −Ckx̂k|k−1), (12b)
Pk|k = (I −KkCk)Pk|k−1. (12c)

Thus, if a clustering given by Ik is fixed in time, the dynam-
ics in each resulting cluster are known, and the mean and
covariance at time step k can be computed by iterating (11b)
and (12c) for each resulting system over a sufficiently large
number of iterations, here denoted with τ . As the considered
systems are non-autonomous in general, the cost is approxi-
mated by considering the filtering posterior covariance Pk|k
resulting from a clustering Ik−τ = · · · = Ik−1 = Ik
over the time interval [k− τ, k], and making a forward pass
from a prior Pk−τ |k−τ . This is illustrated in Fig. 2, and the
implementation is summarized in Algorithm 1.

Algorithm 1 Cost evaluation by a forward pass.

Receive: {P̄ i
k−τ |k−τ}

|C|
i=1, Ik, I∗k , τ , and let l = k − τ .

// Compute prior in the new clusters
1: Pl|l,

∑|C|
i=1(Mui

Ik)>P i
l|lM

ui
Ik + 1

|C| (M
si
Ik)>P i

l|lM
si
Ik

2: P̄ i
l|l,

∑|C∗|
i=1M

ui
I∗k
P i
l|l(M

ui
I∗k

)>+ 1
|C∗|M

si
I∗k
P i
l|l(M

si
I∗k

)>

// Recompute estimate at k in modified clusters
3: for c ∈ unique(I∗k) do
4: if Cc ∩ C∗c = Cc ∪ C∗c then
5: P̄ i,∗

k|k , P̄ i
k|k

6: else
7: Evaluate P̄ i,∗

k|k from P̄ i,∗
l|l using (11) and (12)

8: end if
9: end for

10: Evaluate J(I∗k) from {P̄ i,∗
k|k}

|C∗|
i=1 and output result

As such, to evaluate the cost in (10) for a single candidate
cluster, we need to run the relevant filters in all modified
clusters over τ time steps, where τ is sufficiently large to
contain any transient induced by the prior set at k − τ .

Remark 3 Moving an agent to a new cluster not only
changes the state-space of each individual cluster, but also
the measurements that will be available to the cluster in the
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Fig. 2. Sketch depicting the estimate posterior MSE as a function of time in
two differently formed clusters mirroring Fig. 1: with C = {C1, C2} (black),
and C∗ = {C∗1 , C∗2 , C∗3} (red). At a time k, the performance of cluster C∗
is evaluated by computing the filtering posterior, when initialized from a
prior computed by the estimate corresponding to the clustering C at k− τ .

future. By evaluating the cost in Algorithm 1, we approxi-
mately extrapolate how the clustering is likely to perform in
the future based on its performance on the interval [k−τ, k].

D. Combinatorial Properties of the Optimization Problem

Theoretically, the best possible clustering given the energy
constraints in Problem 1 is computable. To illustrate the
complexity of such a computation, we note that just checking
all of the possible solutions with n agents into m clusters of
equal size results in n!/(((n/m)!)m(m)!) possible cluster
combinations. For the problem of size (n,m) = (30, 10)
considered later in Sec. IV-A, this equates to ≈ 1018

solutions. In practice, this number can be much larger, as
both |Cj | and |C| are permitted to vary when re-clustering.

Relating this back to the KFSS problem in [14], the
greedy algorithms iteratively include sensors based on how
the resulting measurements affect the estimate covariance.
With n sensors and a sensor budget of m (akin to having
two clusters, C1 with m agents, and C2 with m− n agents),
this includes m(n−m) evaluations of an objective expressed
in the posterior of the estimate in C1. However, for Problem 1
and the cost in (10), a modification of C1 might imply a mod-
ification of C\{C1} that affects the cost. Hence, checking all
of the possible ways in which an agent can be introduced into
the clusters quickly becomes infeasible due to the number
of evaluations of (10). Consequently, we seek numerically
tractable heuristics that can solve the problem sub-optimally
by incrementally improving the clustering with respect to the
cost in (10), in as few evaluations of the cost as possible.

III. A GENETIC ALGORITHM

In this section, we propose a GA heuristic that approx-
imately solves Problem 1. GAs are gradient-free heuristics
that are often applied to approximately solve combinatorial
optimization problems [18, Chapter 5]. In particular, GAs
have been considered in computer science applications re-
lated to data clustering and feature selection problems [19]–
[21]. In the context of Problem 1, the appeal of the GA is

its ability to incrementally improve solutions, as highlighted
in [22]. Furthermore, the structure of the algorithm allows
for parallelism, and its expected convergence rate (when
considered as a function of time) can be easily traded for
a decrease in computational complexity per time step, which
becomes particularly relevant for real-time implementations.

In classical GAs, a set of solutions (a generation) are
permuted, and allowed to propagate to future generations by
mechanisms inspired by genetics and natural selection. For
the clustering problem, the set of candidate solutions consists
of NS integer vectors Ii ∈ [1,m]n, and the fitness function
is defined as the cost in (10). To clarify the presentation, let
S = {(Ii, J(Ii))}NS

i=1, and consider an algorithm consisting
of three main operations: selection, cross-over, and mutation.

1) Selection: The selection step consists of randomly
selecting candidate solutions from S. Here, the solutions
are ordered by fitness, and their sampling is heavily skewed
toward solution candidates with lower fitness. This is done by
selecting the best solution, I1, and the (r+1)th best solution
with r = max{d|r̄|e, NS − 1} where r̄ ∼ N (0, α(NS − 1)).

2) Cross-over: The cross-over operations, denoted by
OCi , are subsequently applied to any two selected solutions
to produce a new solution candidate in the next generation.
Two such operations are defined in Table I.

3) Mutation: The solutions produced by the cross-over
are subject to a mutation operation, here denoted with OMi ,
defined in Table I. The mutations result in a new solution
set with cardinality NS , and the process is repeated from the
selection step. The algorithm is summarized in Algorithm 2.

TABLE I
OPERATIONS CONSIDERED IN THE GENETIC ALGORITHM.

Operation Description

OC1 (IA, IB)
Randomize j ∈ {1, ..., n}. Combine the first l
elements of IA with last j − l elements of IB .

OC2 (IA, IB)
For each element in the solutions, choose the element
in the output from IA or IB with equal probability.

OM1 (I) Set a random element in I to a number in [1, |C|].

OM2 (I) Swap the positions of two random elements in I.

OM3 (I) Apply OC2 to two randomly selected clusters in I.

A. Implementation Considerations

The operations defined in Table I not only change the
solution by reassigning agents to new clusters, but OM1
and OM3 also modify the cardinality of individual clusters,
and possibly also the number of clusters. As such, when
performing the operations, checks needs to be made to ensure
that the resulting solution is feasible subject to the constraint
in Problem 1. This check is implicitly done when performing
the operations, which only return a solution if it is feasible.

Due to the high computational cost associated with ap-
proximately evaluating the fitness of the candidate solutions
with Algorithm 1, the GA heuristic is designed to always
propagate the best solution in one generation to the next
without applying mutations. This makes the algorithm less



Algorithm 2 A genetic algorithm for dynamic clustering.

Receive: S0={(Ii0, J(Ii0))}NS
i=1, αG, αC , αL, α,NS , Nmax.

Let J(·) = αGJG(·) + αCJC(·) + αLJL(·) and p = 1
1: for k = 1 to K do

// Filtering
2: Run filters in Cj according to (11) and (12)

// Clustering
3: if mod(k,NT ) = 0 then

// Selection
4: Draw r̄ ∼ N (0, (α(NS − 1))2)
5: Round r to nearest integer in [1, NS − 1].

// Cross-over
6: Let Sp = {(I1p−1, J(I1p−1))}
7: while |Sk| < NS/2 do
8: Draw i ∈ {1, 2}
9: Sp , Sp ∪ OCi (I1p−1, Ir+1

p−1)
10: end while

// Mutation
11: while |Sp| < NS do
12: Draw i ∈ {1, 2, 3}
13: Sp , Sp ∪ OMi (Ilp)
14: end while

// Acceptance
15: Sort Sp by increasing fitness.
16: end if

// Re-initialization
17: if I1p 6= I1p−1 then
18: Redefine C = {Cj}mj=1 according to I1p
19: Reinitialize the estimates in Cj with the

moments used in evaluating J(I1p)
20: end if
21: end for

likely to escape locally optimal solutions, but has the ad-
vantage that the best solution (found so far) will always be
present in future generations until a better one is found.

If the considered estimation problem is large and the
sampling time hk in (3) is small, it may be infeasible to
compute the clustering at each time step k. In Algorithm 2,
the generations are therefore only propagated once every NT
time steps. Consequently, the computation of new clusters
can be spread out over time, resulting in a worst case compu-
tational complexity of O(mτN−1T NSN

3
max) per propagated

generation and per time step. In practice, the complexity
is smaller, as only the subset of C that changes between
generations needs to be recomputed by Algorithm 1.

IV. NUMERICAL EXAMPLES

To demonstrate the heuristic in Algorithm 2, we consider
a scenario with cluster dynamics defined by (2), (3), (6).
We start by studying a case where the number of agents
per cluster is fixed (see Sec. IV-A). For this example, the
expected convergence rate is explored as a function of the
operations used in the GA (see Sec. IV-B). Finally, to show
the flexibility of the approach, an example is given where the
number of agents per cluster varies with time (see Sec. IV-C).
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Fig. 3. Left: The cost in (10) as a function of time, when (i) separating
all agents into individual clusters (blue); (ii) using a random clustering
that satisfies the constraints, depicted with an empirical 2-σ confidence
interval (black); (iii) running the proposed heuristic from the same cluster
initializations, depicted with an empirical 2-σ confidence interval (red, here
the variance becomes vanishingly small); and (iv) forming a single large
cluster, thus violating the constraint which provides a lower bound on the
cost when operating without the cluster size constraint (green). Right, top
to bottom: Components of the cost as a function of time, with global cost,
JG, cluster cost, JC , and local cost, JL.

A. Clustering with Constant Cluster Sizes

In this example we consider n = 30 agents and m = 10
clusters, with a constraint of Nmax = 14 states per cluster.
Given the state composition in Sec. II-A, with four unique
states and two shared states (biases) per agent, this constrains
each cluster to operate with exactly three agents at all times.
From the simulation, we compute the cost associated with:

(i) The worst possible clustering (m = n);
(ii) The best possible clustering when removing the con-

straint on the number of states in Problem 1 (m = 1);
(iii) A random clustering that is fixed in time, while en-

forcing the constraint in Problem 1 (m = 10).
(iv) Dynamically re-clustering with the GA in Algorithm 2,

while enforcing the constraint in Problem 1 (m = 10).
The cost is defined as in (10), and evaluated in the filtering

posterior with αG = αC = αL = 1. This weighting is
arbitrary, and can be changed to reflect the specifications of
the application. The GA operates with α = 0.1, NS = 20,
τ = 20, where the last parameter is set long enough to
contain the typical transients induced by the prior set in
Alg. 1. Furthermore, we let NT = 1, and each simulation
runs for K = 500 time steps. The dynamics are defined
with hk = 0.1 for all k, and the measurement noise is
realized with (σR1i; σ

R
2i) ∼ U((0, 1]2) for all i = 1, ..., n and

r = 0.9. A set of 103 MC-simulations are performed with (ii)
and (iii) to compute the empirical mean and variance of the
cost evolution as time progresses. The exact same problem
realization is used in all simulations, with the only variation



TABLE II
CONVERGENCE RATES IN EXPECTATION AS A FUNCTION OF THE USED

GA OPERATIONS (Var[J(IK)] ≈ 10−4 IN ALL TESTED CASES).

Operations k∗ε=0.1 k∗ε=0.05 k∗ε=0.01 E[J(IK)]

O = (0, 1, 1, 1, 1) 71 94 203 0.1775
O = (1, 0, 1, 1, 1) 73 99 201 0.1775
O = (1, 1, 0, 1, 1) 77 107 248 0.1780
O = (1, 1, 1, 0, 1) 70 91 194 0.1774
O = (1, 1, 1, 1, 0) 71 93 182 0.1776
O = (1, 1, 1, 1, 1) 72 94 203 0.1773

being in the seed of the initial clustering. The GA is switched
on at k = 50, and the resulting cost is depicted in Fig. 3.

Despite keeping the number of agents per cluster constant
over time, just exchanging agents across the clusters using
the heuristic in Algorithm 2 provides a significant improve-
ment in the mean of the cost. Notably, there is relatively large
variance in the cost associated with the random clustering
(black), where Var[J(IK)] ≈ 5 · 10−4. This is reduced by
the GA heuristic (red), to Var[J(IK)] ≈ 10−6. The heuristic
does not converge to the same solution across all realizations,
but the variance of the cost at K = 500 is small, and it is
clear that significant gains in estimation performance can be
made by using the GA for dynamic re-clustering.

B. Expected Convergence Rate vs. Included Operations

To demonstrate that the considered operations achieve the
desired effect, a total of 103 MC-simulations are performed
on the same problem as in Sec. IV-A, now varying the prob-
lem realization and only permitting subsets of the defined
GA operations. To study this, a vector O ∈ {0, 1}5 is used
to indicate the included operations, with the ith index set to
1 indicating that the operation on the ith row in Table I
is used. For each tested combination of the operations,
measure of of cost convergence, here weak convergence, is
evaluated empirically. We also compute the time step when
this measure is below a threshold ε in expectation, as

k∗ε = min

{
k ∈ [1,K]

∣∣∣∣∣ E
[
J(Ik)− J(IK)

J(IK)

]
≤ ε
}
.

The resulting convergence rates are characterized in Tab. II,
and we emphasize that the elimination of an operation in
Algorithm 2 does not imply fewer number of evaluations
of the cost in (10). The cost is evaluated exactly the same
amount of times in all tested combinations of the operations.

In this experiment, the proposed combination of operations
in Sec. III yields the lowest expected cost at time step k =
500 for the problem defined Sec. II, but it is clear from
the convergence rates that while the mutation operation OM1
is necessary, either OM2 and OM3 could be removed. Thus,
a simpler GA using a subset of the defined operations is
still expected to significantly outperform a random clustering
(compare the right-most column in Table II with Fig. 3).

C. Clustering with Time-varying Cluster Sizes

To demonstrate the flexibility of the proposed GA heuris-
tic, the simulation in Sec. IV-C is repeated with a relaxed
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Fig. 4. Top: The number of clusters used as a function of the time-step,
k. Center: The cost in (10) as a function of the time step, k. Bottom: Time
evolution of the best solution found by the GA. Each column depicts the
index vector I1k at a time k: the color indicates the cluster to which the
agent Ai belongs to at a time k. At k = 500, there are three clusters.

constraint characterized by Nmax = 42, thus permitting a
maximum of 10 agents per cluster. In light of Remark 2, we
expect the heuristic to remove some of the clusters entirely,
and maximize the number of agents in each cluster. Indeed,
given the state composition in Sec. II-A, the algorithm should
find a solution with M = 3 clusters containing 10 agents
each, which is precisely the behavior observed in Fig. 4.

The resulting clustering yields a lower cost of approxi-
mately J(IK)|Nmax=42 ≈ 0.108, which can be compared to
the expected cost of E[J(IK)|Nmax=14] ≈ 0.177 in Fig. 3.
Importantly, this simulation also shows that the total number
of clusters used is time varying, from the initial 15 clusters to
the expected 3 clusters at k = K = 500. Indeed, a solution
with 3 clusters is found already at approximately k = 320,
but it is refined slightly even after this point (see Fig. 4).

V. CONCLUSIONS

In this paper, we propose a heuristic method for clus-
tering agents to minimize a cost expressed in the filtering



posterior. The method is targeted at multi-receiver GNSS
positioning, for the case where max{N(C), Ny(C)}3 is large.
Specifically, the method forms a set of clusters that requires
O(mmax{N(Cj), Ny(Cj)}3) ≤ O(mN3

max) operations per
time step, which may be paralellized. To find a clustering,
the proposed GA requires less than O(mτN−1T NSN

3
max)

operations per time step, and similar to the filters, these
computations can also be distributed among multiple com-
puters. An important feature of the method is the parameter
NT (how frequently re-clustering is done), which permits
a trade-off between computational cost per time step and
convergence rate of the chosen MSE cost. To facilitate
an empirical study, an example was given where the GA
heuristic yielded a substantial improvement in the estima-
tion performance when compared to a strategy of random
clustering in which the number of agents per cluster was
maximized. Here, the GA reduced both the variance and
and mean of the cost significantly. Similarly, the algorithm
performed well when run on a problem where the cardinality
of the clusters changed with time. As such, the heuristic is
flexible, guarantees that the performance is no worse than the
initial clustering (in the linear time-invariant setting), and can
be parallelized, thereby facilitating collaborative estimation
schemes with a large numbers of agents in a GNSS setting.

Future work will involve the evaluation of the algorithm
in real-time GNSS applications involving a large number of
moving receivers, and a theoretical examination of worst-
case convergence rate of the algorithm leveraging the ap-
proximate supermodularity properties of the KFSS [15].
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