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Bayesian Sensor Fusion of GNSS and Camera With Outlier
Adaptation for Vehicle Positioning

Karl Berntorp, Marcus Greiff, and Stefano Di Cairano

Abstract—In this paper we develop a method for vehicle
positioning based on global navigation satellite system (GNSS)
and camera information. Both GNSS and camera measurements
have noise characteristics that vary in time. As a result, the
measurements can abruptly change from reliable to unreliable
from one time step to another. To adapt to the changing noise
levels and hence improve positioning performance, we combine
GNSS information with measurements from a forward looking
camera, a steering-wheel angle sensor, wheel-speed sensors, and
optionally an inertial sensor. We pose the estimation problem
in an interacting multiple-model (IMM) setting and use Bayes
recursion to choose the best combination of the estimators. In
a simulation study, we compare vehicle models with varying
complexity, and on a real road segment we show that the proposed
method can accurately adjust to changing noise conditions.

I. INTRODUCTION

The need for high-precision vehicle positioning is becoming
increasingly important as vehicles equipped with sophisticated
advanced driver assistance systems (ADASs) and even au-
tonomous driving (AD) features are becoming widely spread.
For such applications, high positioning accuracy is needed for
safety-critical obstacle and lane-change maneuvering, and to
provide comfortable autonomous vehicle control.

Road-vehicle positioning can be approached in numerous
ways depending on the sensor suite and the communication
interface that is being employed. Using only onboard sensing
is convenient as it removes the need for external communi-
cation. However, it has the drawback that it can only provide
positioning in the local (vehicle) frame, as global positioning
information is lacking. For instance, [1] fuses information
from several sensors to perform joint road geometry estimation
and vehicle tracking. This work was extended in [2], where
a forward looking camera and radar, together with an inertial
measurement unit (IMU), a steering wheel sensor, wheel speed
sensors, and a new road-geometry model are leveraged in an
extended Kalman filter (EKF). A similar work is [3], which
in addition to the sensors in [2] develop a novel road model
with claimed higher prediction accuracy compared to other
established road models.

Other positioning methods rely on global navigation satellite
system (GNSS) information. GNSSs estimate a receiver’s
(e.g., located in the vehicle) states from a set of code and
carrier-phase measurements, acquired from one or several
constellations of satellites and transmitted over one or more
frequency bands [4], [5]. The measurement equation, from
which the receiver state is inferred, is time-varying, nonlinear
in the position of the receiver, and incorporates various biases
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[6]. For the carrier-phase measurements, some of these biases
are integer-valued, commonly referred to as ambiguities [7].
Leveraging that these biases are integers, the estimator can
significantly improve the estimation accuracy [5], [8]–[10].

Since GNSS measurements are prone to occasional errors
and cannot always deliver high-level accuracy, particularly in
deep urban settings, one may perform sensor fusion of the
position estimate of said GNSS-based estimators with onboard
vehicle sensors. Three examples are: [11], which uses inertial
sensors, wheel-speed sensors, and the steering-wheel angle
sensor in combination with GNSS position measurements to
perform vehicle-state estimation; [12], which performs tire
radii estimation for improving vehicle odometry using GNSS
measurements; and [13], which uses GNSS measurements in
combination with camera, IMU, and range measurements.

In this paper, we address the vehicle-positioning estima-
tion problem by fusing GNSS position measurements with
a forward looking camera, steering-wheel sensing, wheel-
speed sensing, and (optionally) an IMU. In addition to vehicle
positioning, our method can also provide estimates of the
road geometry. The camera and GNSS measurements are
complementary in the sense that provided that lane markings
are visible, the camera provides position measurements relative
to the road independent of whether the vehicle drives in a rural
or urban setting. On the other hand, the GNSS measurements
provide global position information irrespective of the lane
markings. However, combining GNSS with additional sensing
does not circumvent the fact that GNSS measurements are
prone to occasional errors (e.g., due to partial occlusion).
Hence, to become truly robust to GNSS measurement errors,
also the time-varying reliability of the measurements need to
be estimated. In combination with a computer-vision (CV)
algorithm, the camera provides measurements of the distance
between the lane markings and the vehicle, in addition to
measurements of the road geometry [14]. However, also the
quality of these measurements is time varying, for exam-
ple, because of erroneous detection in the CV algorithm
or because of other environmental effects, such as rain or
light conditions. To account for this, we model said time-
varying measurement reliability as a variation on the noise
models of the related measurements. We pose the resulting
nonlinear estimation problem in an interacting multiple model
(IMM) framework, which we combine with linear-regression
Kalman filters (LRKFs) [15] to handle the nonlinearities in the
estimation model. Each LRKF executes with its own belief of
the measurement noise characteristics, and the estimate from
each LRKF is weighted according to how likely it is to best
explain the measurements.



The proposed method differs from [2], [3] in that we incor-
porate GNSS information to yield performance improvements,
and systematically deal with outliers that are likely to be
present in the considered vehicle applications. While [11],
[12] use GNSS information to make related vehicle estimation
problems observable, the IMM method considered in this
paper is specifically designed to handle outliers.

Notation: Throughout, x ∼ N (µ,Σ) indicates that the
vector x ∈ Rnx is Gaussian distributed with mean µ and
covariance Σ. Matrices are written in capital bold font as X ,
and the element on row i and column j of X is denoted with
Xij . We let x̂j|m denote the estimate of x at time step j
given the measurement sequence y0:m = {y0, . . .ym}. With
p(xk|y0:k), we mean the posterior density function of the
state xk from time step 0 to time step k given y0:k. The
concatenation of two vectors x ∈ Rnx and y ∈ Rny is
(x;y) = (x>,y>)> ∈ Rn+m. Furthermore, 1n×n denotes
the n×n identity matrix, 1n is a column vector of n elements
equal to one, and (a)(?)> = (a)(a)> for an expression a.

Outline: Sec. II outlines the assumptions, the sensors, the
dynamic models, and the associated measurement models our
method relies on. Sec. III presents the proposed method, which
is evaluated in Sec. IV, and finally, Sec. V closes the paper.

II. MODELING

In this section we present the motion and measurement mod-
els employed in the estimation. We assume to have access to
steering-wheel and wheel encoders. Based on these inputs, we
present two vehicle models of varying complexity. Ultimately,
the goal of many vehicle estimations is to be employed in
closed loop with controllers enabling ADAS and AD features.
However, to accurately determine future vehicle decisions, not
only the ego vehicle motion but also the knowledge of its
surroundings is of utmost importance [16], [17]. To this end,
we also present a representation of the road geometry as a
dynamical system, dependent on the chosen vehicle model.
Depending on the amount onboard sensing assumed available
and what is known about the vehicle parameters, models of
different complexity can be used. Here, we formulate two
different vehicle models, which are subsequently used to
formulate the road-geometry model.

Fig. 1 shows the different coordinate frames used in this
paper. The vehicle’s coordinate frame OE is located at the
vehicle center of gravity. The vehicle yaw (heading) angle
ψ describes the rotation of the vehicle frame OE relative to
the world frame OW by the standard planar rotation matrix.
Similarly, the road-aligned frame OR is located on the left
lane boundary, separated with a distance lR from the camera
frame OC , which is rigidly connected to OE with distance lC .

A. Vehicle Models

There are three main categories of vehicle models; point-
mass models, which represent the vehicle as a particle; kine-
matic models, which account for the geometry of the vehicle;
and dynamic models, which account for the force balances,
including the tire models, to more accurately capture the
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Fig. 1. The relation between the vehicle frame OE , the camera frame OC ,
the road frame OR, and the world frame OW . The distance between the
vehicle’s longitudinal x-axis and the lane boundary is lR, and the shaded
circle depicts the road curvature (here exaggerated) at the origin of OR.
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Fig. 2. A schematics of the single-track model and related notation.

vehicle motion under (highly) dynamic maneuvers. Although
a model based on force balances is generally more accurate
than a kinematic model, the differences are small for regular
driving [18]. Furthermore, a dynamic model depends on more
parameters, such as the wheel radii, tire stiffness, and vehicle
mass and inertia, which typically are unknown/uncertain and
may be difficult, or at least tedious, to estimate [19]. To get a
tractable estimation problem using only standard sensors, we
make certain assumptions. Such assumptions are consistent
with those that allow to model the vehicle dynamics by a
single-track (i.e., bicycle) model, and have been shown to be
valid in normal driving scenarios, see, for example, [20].

Assumption 1 The steering angles of the front left and right
wheels are the same, here denoted by δ (see Fig. 2).

Assumption 2 The steering and acceleration commands are
small, such that the vehicle operates in the linear region of
the tire-force curve, with negligible inclination, roll, and road-
bank angles.

Under these assumptions, we can use a planar single-track
model depicted in Fig. 2.

1) Dynamic Single-Track Model: In the following, F x, F y

are the longitudinal and lateral tire forces, respectively, α is
the wheel-slip angle, ψ is the yaw, v is the velocity vector,
and subscripts f, r denote front and rear, respectively. With the



state vector x = (pX , pY , vX , vY , ψ̇) ∈ Rnx , nx = 5 where
(pX , pY ) is the Cartesian global vehicle position, (vX , vY ) is
the longitudinal and lateral velocity of the vehicle in OE , and
ψ̇ is the yaw rate. The equations of motion are

m(v̇X − vY ψ̇) = F xf cos(δ) + F xr − F
y
f sin(δ), (1a)

m(v̇Y + vX ψ̇) = F yf cos(δ) + F yr + F xf sin(δ), (1b)

Iψ̈ = lf (F yf cos(δ) + F xf sin(δ))− lrF yr , (1c)

where m is the vehicle mass and I is the inertia. Because
we focus on normal driving conditions, the longitudinal and
lateral tire forces can be approximated as linear functions of
the wheel slip ratio λ and the slip angle α,

F xi ≈ Cxi λi, F yi ≈ C
y
i αi, i = f, r, (2)

where Cxi , C
y
i are the longitudinal and lateral stiffness, respec-

tively. The wheel slip is defined following [21], as

λi =
vxi −Rwωi

max(vxi , Rwωi)
, (3)

where ωi is the wheel rotation rate, Rw is the effective wheel
radius, and vxi is the wheel forward velocity, expressed in the
wheel coordinate system. The slip angles are approximated as

αf ≈ δ −
vyf + lf ψ̇

vxf
, αr ≈

lrψ̇ − vyr
vxr

. (4)

To connect the global position with the velocity in OR, let[
ṗX

ṗY

]
= R(ψ)

[
vX

vY

]
. (5)

The resulting model consisting of (1) – (5) is nonlinear, and
after a forward Euler discretization with a sampling period Ts,
we concisely write the dynamic single-track model as

xk+1 = f(xk,uk) +wx
k , (6)

with input vector u = (δ, ωf , ωr), and Gaussian zero-mean
process noise, wx

k ∼ N (0,Qx) that accounts for model
mismatch. The resulting model is accurate even for highly
dynamic maneuvers. As will be shown later, it is also possible
to exploit (6) in the road-prediction model. However, (6)
requires the mass, inertia, and tire stiffness parameters to be
known, which may be a drawback in practical applications.

2) Kinematic Single-Track Model: The kinematic single-
track model is also based on the geometry in Fig. 2 but
does not need knowledge of the mass, inertia, and friction
parameters. With its three states z = (pX , pY , ψ) ∈ Rnz ,
nz = 3, the kinematic single-track model has lower com-
plexity than the five-state dynamic single-track model (6).
Here, instead of being used as inputs to the model, the wheel-
speed measurements directly provide the vehicle velocity. In
continuous time, the model is

ż =

vX cos (ψ + β)/ cos(β)
vX sin (ψ + β)/ cos(β)

vX tan (δf )/L

 , (7)

where L = lf + lr, β = arctan(lr tan(δ)/L) is the kinematic
body-slop angle, and the velocity is related to the wheel speeds
by vX = Rw

2 (ωf + ωr). After time discretization, (7) is

zk+1 = g(zk,uk) +wz
k , (8)

with Gaussian zero-mean process noise, wz
k ∼ N (0,Qz).

B. Road-Geometry Models

When describing the road geometry, a critical component is
the curvature, denoted by c. The road curvature can be defined
in various ways. We define it as the curvature of the lane
markings to the left of the ego vehicle (see Fig. 1). The road
curvature is often approximated as a linear function

c(xR) = c0 + c1xR, (9)

where xR is the position along the road in a road-aligned
coordinate frame OR, related to OE through OC (see Fig. 1).

Eq. (9) results in a clothoid expression of the road and is
commonly used in automotive applications, and approximately
agrees with road-construction principles [22]. Note that (9) is
clearly violated in some situations, for example, when a part
of the road is a straight line followed by a clothoidal stretch.
However, for many situations (e.g., for highway or suburban
driving) (9) is a good local approximation of the curvature.

Using (9), simple closed-form expressions of the road path
can be found using small angle approximations. The lateral
position of the road relative to the E frame can be written

yER = lR + xER tan(δr) +
c0
2
xER

2
+
c1
6
xER

3
, (10)

which is a good polynomial approximation of the road, at least
for prediction lengths less than 60–80m [1]. In (10), we let
δr = ψR − ψ denote the difference between the road heading
angle ψR and the vehicle heading angle ψ.

A commonly used model for the road curvature is

ċ0 = vXc1, (11a)
ċ1 = 0. (11b)

However, (11) does not utilize the vehicle model when pre-
dicting the road curvature.

In [2], a new road dynamic model was derived that uses the
road geometry to calculate c0 and δr. By defining

δR = δr − β, (12)

that is, the difference between the road angle relative to the
vehicle and the vehicle velocity vector, the road geometry
model has the state vector r = (δR; c0;w) ∈ Rnr , nr = 3,
where w is the lane width. Choosing between the dynamic and
kinematic single-track model will not only have implications
on the vehicle motion, but also on the road-prediction model.



1) Road Model with the Dynamic Single-Track Model: We
briefly present the road-geometry model in [2], referring to it
for additional details. A differential equation for δR is

δ̇R = c0v
X − (ψ̇ + β̇), (13)

which follows from differentiating (12) and from geometrical
relationships. From a approximation (i.e., β ≈ vX/vY ), by
substituting β̇ with (1b) divided with vX ,

δ̇R = c0v
X −

(
Cyr lr − C

y
f lf

(mvX)2

)
ψ̇ −

(
Cyf + Cyr

m(vX)2

)
vY

+

(
Cyf + v̇Xm

mvX

)
δ, (14)

which gives the dynamic equation for δR. Differentiating (13),

δ̈R = ċ0v
X +c0v̇

X−(ψ̈+ β̈)⇐⇒ ċ0 =
δ̈R + ψ̈ + β̈ − c0v̇X

vX
,

(15)
which gives a dynamic model for c0. The premise of the
dynamic single track model in (6) is that the vehicle operates
in the linear region of the tire-force curve and that δ is small.
It is therefore reasonable to set δ̈R ≈ 0 and use small-angle
approximations in (1). Hence,

ċ0 =
1

(Im2vX)4
((Cyr )2(I + l2rm)(−ψ̇lr + vY )

+ (Cyf )2(I + l2fm)(ψ̇lf + vY − δvY )

+ Cyr Im(−3ψ̇v̇X lr + 3vY v̇X + ψ̇(vX)2)

+ v̇XIm2vX(2
vY v̇X

vX
+ vX(ψ̇ − c0vX))

+ Cyf (Cyr (I − lrlfm)(ψ̇L− 2ψ̇lr + 2vY − δvX)

+ Im(3ψ̇v̇X lf + (3vY − 2δv̇X) + (δ̇ + ψ̇)(vX)2))), (16)

which follows by differentiating (1b) and inserting that to-
gether with (1c) into the second expression in (15), and using
v̈X ≈ 0.1 For the maneuvers in this paper, the difference
between (16) and the exact, much longer expression that does
not use any small-angle approximations, is negligible. After
discretization with sampling period Ts and modeling the lane
width w as a random walk, the resulting road-geometry model
using the dynamic single-track model is

rk+1 = a(xk, rk,uk) +wr
k , (17)

with Gaussian zero-mean process noise, wr
k ∼ N (0,Qr).

2) Road Model with the Kinematic Single-Track Model:
When using the kinematic single-track model, by inserting
β = arctan(lr tan(δ)/L) into (13),

δ̇R = c0v
X − (ψ̇ +

d

dt
arctan(lr tan(δ)/L))

= c0v
X − ψ̇ − Llr

L2 cos2(δ) + l2r sin2(δ)
δ̇

≈ c0vX − ψ̇ −
lr
L
δ̇. (18)

1Note that (16) differs slightly from the corresponding equation in [2],
which included a typo.

From (15) and by again assuming δ̈R ≈ 0,

ċ0 ≈
ψ̈ + β̈ − c0v̇X

vX
, (19)

where ψ̈ can be approximated using the yaw-rate measurement
and, by using a small-angle approximation, β̈ ≈ lr/Lδ̈.
Clearly, this way of constructing the road prediction model
is less precise than when utilizing the dynamic single-track
model. On the other hand, the kinematic prediction model does
not use knowledge of additional parameters, and for moderate
driving maneuvers the discrepancies between the two models
will be small. After discretization with a forward Euler scheme
with sampling period Ts, the road-geometry model using the
kinematic single-track model is

rk+1 = b(zk, rk,uk) +wr
k , (20)

with Gaussian zero-mean process noise, wr
k ∼ N (0,Qr).

Remark 1 For a more compact notation, in the following we
use x̄ to mean either x̄ = (x; r) or x̄ = (z; r). Similarly
f̄(x̄;u) denotes the functional relationships in (6) or (8), often
omitting u for brevity.

C. Measurement Model

We consider the GNSS algorithm to output position mea-
surements yp generated by an estimator using code and
carrier-phase measurements, for example, by the methods in
[8], [10], [23]. We assume the position measurements to
be Gaussian distributed and because the estimation quality
will continuously change with environmental conditions and
receiver movements, both the mean µp and covariance Rp are
considered to be time varying, resulting in ypk ∼ N (µpk,R

p
k).

For simplicity but without loss of generality, we assume
yp ∈ R2 in this work.

For use together with the dynamic single-track model, we
utilize an IMU measuring the vehicle body frame longitudinal,
aX = v̇X − vY ψ̇, and lateral, aY = v̇Y + vX ψ̇, acceleration
and the yaw rate ψ̇. The estimator uses the acceleration, aX ,
aY , and yaw-rate ψ̇ as measurements, forming the measure-
ment vector ya = (aX ; aY ; ψ̇). Automotive-grade inertial
sensors usually have a slowly time-varying bias, which must
be modeled for any realistic implementation. For now, we
assume that the bias has been predetermined offline, which is
reasonable for experiments lasting only a few minutes. Future
implementations will also address this.

The camera in combination with a CV algorithm provides
measurements of the road geometry and the relative vehicle
position. We assume intermediary processing such that the fol-
lowing measurement is available through the camera module,

yc =
[
c0 δr w lR

]>
, (21)

where lR is the distance from the camera center position and
the road, see Fig. 1. This results in the measurement equation

hc =
[
c0 δR + β w lR

]>
. (22)

The camera measurements are assumed Gaussian distributed
according to yck ∼ N (µck,R

c
k), where, similarly to the GNSS



measurements, both the mean and covariance are time varying.
In summary, the complete measurement model is

yk = h(xk,uk) + ek ∈ Rny , (23)

where y = (yp;ya;yc) ∈ R9 for the dynamic single-track
model (6) and y = (yp;yc) ∈ R6 for the kinematic single-
track model (8), and e is zero-mean Gaussian distributed with
a block-diagonal covariance matrix.

Remark 2 What the vision system measures and outputs
varies according to the implementation. The notation we use
here is the same as in [2]. However, in [3], the vision system
outputs the coefficients from a third-order polynomial. Our
method can be modified to support such changes.

III. BAYESIAN SENSOR FUSION OF GNSS AND CAMERA

Irrespective of using the dynamic or kinematic single-track
model, the resulting estimation model contains multiple non-
linearities, and an analytic solution to the estimation problem
does not exist. While an extended Kalman filter (EKF) may
work, the estimation model has significant nonlinearities for
which a first-order linearization may be insufficient. However,
owing to the rich set of measurements, the estimation problem
is assumed to be unimodal and a particle filter (PF) is therefore
deemed unnecessary for the task at hand. A convenient middle-
ground between complexity and accuracy is to use linear-
regression Kalman filters (LRKFs), which we employ in this
work embedded in an IMM framework.

A. Linear-Regression Kalman Filter

For each LRKF we approximate the posterior density as

p(x̄k|y0:k) ≈ N
(
ˆ̄xk|k,Pk|k

)
, (24)

by its first two moments. Given the assumed Gaussian filtering
posterior (24) at time step k, the distribution of the state
prediction at time step k + 1 is approximated by a Gaussian,

p(x̄k+1|x̄k,y0:k) ≈ N
(
x̄k+1| ˆ̄xk+1|k,Pk+1|k

)
, (25)

by direct evaluation of the associated moment integrals

ˆ̄xk+1|k =

∫
f̄(x̄k)p(x̄k|y0:k) dx̄k, (26a)

Pk+1|k =

∫ (
f̄(x̄k)− ˆ̄xk+1|k

)
(?)
>
p(x̄k|y0:k) dx̄k +Qk,

(26b)

here simplified by the assumptions on wk. By insertion of
the approximation in (24), this becomes equivalent to eval-
uating two Gaussian integrals. For a general f̄ , no closed-
form solutions exist, but numerical integration methods also
known as cubature rules, can be employed [24]. To facilitate
this, we transform the coordinates ξk = L−1

k|k(x̄k − ˆ̄xk|k),
using the Cholesky factorization of the covariance matrix
Pk|k = Lk|kL

>
k|k. The LRKFs approximate the transformed

integrals by evaluating the nonlinearity f̄ in a set of integration
points P = {ωi, ξi}|P|i=1, where |P| denotes the total number

of points used. Hence, for each such point ξi and the filtered
mean estimate ˆ̄xk|k, we compute

ˆ̄xik+1|k = f̄
(
ˆ̄xk|k +Lk|k ξ

i
)
, (27)

subsequently approximating the moment integrals in (26a) as

ˆ̄xk+1|k ≈
|P|∑
i=1

ωi ˆ̄xik+1|k, (28a)

Pk+1|k ≈
|P|∑
i=1

ωi(ˆ̄xik+1|k − ˆ̄xk+1|k)(?)>. (28b)

For the measurement update, the joint density is approxi-
mated using the same integration techniques, resulting in

p
(
(x̄k+1;yk+1)|x̄k,y0:k

)
≈ N

([
ˆ̄xk+1|k
ŷk+1|k

] [
Pk+1|k P x̄y

k+1|k
P yx̄
k+1|k P yy

k+1|k

])
. (29)

Conditioning of the joint density in (29) on the new measure-
ment yk+1 amounts to the usual Kalman filter update

Kk+1 = P x̄y
k+1|k(P yy

k+1|k)−1, (30a)

x̂k+1|k+1 = x̂k+1|k +Kk+1|k(yk+1 − ŷk+1|k), (30b)

Pk+1|k+1 = Pk+1|k −Kk+1|kP
yx̄
k+1|k. (30c)

For the numerical examples, we use an LRKF with point set
in Definition 1. Other integration rules can be used without
modifications to the underlying method.

Definition 1 The spherical cubature (SC) rule, as used in the
cubature Kalman filter (CKF) [25], consists of |P| = 2n with

Ξ =
√
n
[
1n×n −1n×n

]
, Ω =

1

2n
1>2n, (31)

with n = nx̄. The integration point ξi and weight ωi corre-
spond to the ith column of Ξ and element of Ω, respectively.

B. Interacting Multiple-Model LRKF

LRKFs usually assume a known process noise and measure-
ment covariance matrix. However, the reliability of both the
GNSS measurements and camera-based measurements varies
in time. To account for this, we implement the LRKF in
an IMM framework [26], [27], in which we have a set of
m models that differ only only in their measurement noise
characteristics. At each time step k, the IMM assigns a weight
qk to each model reflecting its probability of explaining the
measurements. In this framework,

x̄k+1 = f̄(x̄k;uk) +wk, wk ∼ N (0,Qk), (32a)

yk = h(x̄k,uk) + ek(θk), ek ∼ N (0,Rθk
k ), (32b)

where the mode parameter θk ∈ [1,m] ⊂ N evolves accord-
ing to a finite-state Markov chain with transition probability
matrix Π ∈ [0, 1]m×m. For every possible θk, we assign a
unique measurement noise covariance matrix from {Rθk ∈
Rne×ne |Rθk = (Rθk)>,Rθk � 0}mθk=1.



At each time step, the IMM uses the transition matrix Π to
perform a mixing of the m model estimates and weights,

q̄ik =

m∑
j=1

Πijq
j
k−1, (33a)

ˆ̄xik−1|k−1 =

m∑
j=1

Πij

qjk−1

q̄ik
ˆ̄xjk−1|k−1, (33b)

P i
k−1|k−1 =

m∑
j=1

Πij

qjk−1

q̄ik

(
P j
k−1|k−1+

(ˆ̄xjk−1|k−1 − ˆ̄xik−1|k−1)(?)>
)
. (33c)

Next, we execute a filter bank of m LRKFs to find the estimate
of x̄k, where the jth LRKF executes using Rj . The state
posterior is expressed using the law of total probability as a
Gaussian mixture of m components,

p(x̄k|y0:k) =

m∑
j=1

p(x̄jk|y0:k) =

m∑
j=1

p(yk|x̄jk)p(x̄k|y0:k−1)

p(yk|y0:k−1)

≈
m∑
j=1

qjkN (x̄jk| ˆ̄x
j
k|k−1,P

j
k|k−1), (34)

where

qjk ∝ p(yk|x̄
j
k) = N

(
yk|ŷjk|k−1,P

yy,j
k|k−1

)
q̄jk, ∀j ∈ [1,m],

(35)
and p(yk|y0:k−1) is a normalization constant. The mean
ŷjk|k−1 and covariance prediction P yy,j

k|k−1 are determined by
the corresponding LRKF. The state estimate is determined as

ˆ̄xk|k =

m∑
j=1

qjk ˆ̄xjk|k, (36a)

Pk|k =

m∑
j=1

qjk

(
P j
k|k + (ˆ̄xjk|k − ˆ̄xk|k)(?)>

)
. (36b)

Algorithm 1 summarizes the proposed method for adaptive
sensor fusion of GNSS and camera measurements.

IV. SIMULATION STUDY

In this section we validate the proposed IMM method in a
Monte-Carlo simulation study. To generate the synthetic data,
we consider a car modeled by the dynamic single-track model
(6) in closed loop with a reference tracking controller driving
in the vicinity of Boston, USA. The route is extracted using
the open-source routing machine (OSRM) tool [28]. This map
is represented by a sequence of points. To generate a smooth
map and determine the ground-truth camera measurements, we
low-pass filterered the points in the map, and determined the
measurements using standard methods of optimization.2

We have set the IMU measurement noise comparable to the
noise for a low-cost IMU, and the GNSS position measure-
ments nominally provide Gaussian zero-mean measurements

2The filtered map position is C2 and known: whereby the curvature c(xR)
is known analytically; {c0, c1} can be computed by a linear regression at any
point in the map; and the distance lR is found by a simple Newton method.

Algorithm 1 Pseudo-code of proposed IMM algorithm

Initialize: {ξi, ωi}|P|i=1, { ˆ̄xj−1|−1,P
j
−1|−1,R

j , qj−1}mj=1, Π
1: for k = 0, 1, . . . do

// IMM mixing
2: for i ∈ {1, . . . ,m} do
3: Mix estimates according to (33).
4: end for
5: for j ∈ {1, . . . ,m} do

// LRKF time update
6: for i ∈ {1, . . . , |P|} do
7: Determine ˆ̄xik|k−1 according to (27).
8: end for
9: Determine ˆ̄xjk|k−1, P j

k|k−1 according to (28a).
// LRKF measurement update

10: for i ∈ {1, . . . , |P|} do
11: Determine ŷik|k−1 akin to (27)
12: end for

// IMM weight update
13: Determine ŷjk|k−1, P yy,j

k|k−1, P x̄y,j
k|k−1 akin to (28a).

14: Determine ˆ̄xjk|k, P j
k|k using (30).

15: Determine qjk according to (35).
16: end for

// Form weighted mean
17: Determine ˆ̄xk|k, Pk|k according to (36).
18: end for

with standard deviation 0.5m in both X and Y direction.
Furthermore, the camera measurements provide lane measure-
ments that nominally are Gaussian distributed according to
yc ∼ N (hc(x̄),Rc), Rc = diag(0.1π/180, 10−5, .05, .05)2.
When executing Algorithm 1 using the kinematic single-track
model (8), only GNSS and camera measurements are used.
For each of the Monte-Carlo runs, we generate the initial
state by sampling it from some initial distribution with 5m
initial uncertainty on the position, in both the X and Y
direction. All measurements arrive with sampling rate 10Hz
but the prediction step is performed at 100Hz, that is, when
executing Algorithm 1 at 100Hz, the measurement update step
and weight update are executed every tenth time step.

To simulate outliers, we consider three different models:

1) Rp = Rp
nom,R

c = Rc
nom;

2) Rp = Rp
nom,R

c = 502Rc
nom;

3) Rp = 102Rp
nom,R

c = Rc
nom;

where Rc
nom denotes the nominal camera covariance matrix

and Rp
nom is the nominal GNSS covariance matrix. Hence,

Model 1 is correct when no outliers occur, Model 2 is correct
when camera outliers occur, and Model 3 is correct when
GNSS outliers occur. Note that the chosen values in a real
experiment should be determined based on actual data.

We inject the GNSS outlier measurements after 5s, lasting
for 3s, and repeating every tenth second. Similarly, we inject
camera outlier measurements after 10s, lasting for 3s, and
repeating every tenth second. We use the three modes in the
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Fig. 3. Excerpt of the position error of the four (three models plus weighted
average) compared combinations with occasional outliers for one realization.
Results using the dynamic single-track model (upper) and kinematic single-
track model (lower) in the estimation.

IMM, and the transition probability matrix is set to

Π =

 0.95 0.025 0.025
0.225 0.75 0.025
0.225 0.025 0.75

 , (37)

to reflect that it is more likely for inliear measurements to
stay inliers than it is for outliers to stay outliers. The vehicle
drives on Interstate-90 in the suburbs of Boston, MA, with the
reference velocity 25m/s (56mph).

A. Result with Outliers: One Realization

Fig. 3 shows the position error in the global Cartesian Y
direction for the first ten seconds of one realization for the
three models in the IMM, together with the estimated output
of Algorithm 1 (Line 17). The effects of outliers are seen by
the sudden increase in positioning error. The position estimate
of the proposed method shows the smallest position error for
most of the time, that is, it correctly weighs together the
different estimators in the IMM to produce the best possible
estimate. This is clearly seen between 5–8s, when the model
using camera outlier noise covariance gives an estimation error
of more than 3m, which the IMM discards when producing the
estimates. The first ten seconds of the realization are shown,
but the results are similar across the full realization.
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Fig. 4. Curvature estimation results for one on the MC realizations.
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Fig. 5. Position RMSE with the dynamic (upper) and kinematic (middle)
single-track model. The lower plot shows a comparison of the RMSE between
the two vehicle models. The two upper plots use the same coloring as in Fig. 3.

Fig. 4 displays the curvature estimation results using Algo-
rithm 1 for a period of time where the curvature change is
significant. The estimation results are slightly improved when
using the dynamic single-track model. The kinematic single-
track model has a substantially simpler prediction model,
which results in slightly inferior prediction capabilities.

B. Result with Outliers: Monte-Carlo Study

Fig. 5 shows the position RMSE for the three models plus
the weighted average when using the dynamic single-track
model (upper plot), the same when using the kinematic model
(middle plot), and the comparison between the dynamic and
kinematic single-track model (lower plot). Clearly, irrespective
of which model is used, the IMM correctly weighs together the
models. For this road type (highway) and reference velocity
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Fig. 6. Model weights averaged over the Monte-Carlo runs for the dynamic
single-track (black) and kinematic single-track (red).

(25m/s), there is some benefit of using the dynamic single-
track model. However, this performance increase should be
considered in combination with the increased complexity of
using the dynamic single-track model in terms of the number
of parameters needed to be estimated a priori.

Fig. 6 displays the probabilities of each model weighted
over the Monte-Carlo runs for both the dynamic and kinematic
single-track model. On average, the correct model is found
at each time step in the sense that it gets the highest weight.
Relating to the estimation results in the lowet plot in Fig. 5, the
slight performance increase when using the dynamic single-
track model in the estimation is reflected by the slightly larger
assigned probabilites to the correct model.

V. CONCLUSION

This paper presented an LRKF-based IMM estimator, where
each model has a different noise covariance structure, that
adaptively fuses GNSS and camera information to find the
best combination of noise covariance that explains the mea-
surements. The method can output estimates of the vehicle
state, as well as the road state. Using a Monte-Carlo study,
the results indicate that the method correctly determines the
best model to explain the measurements.

We provided estimation results using two different vehicle
models. The dynamic single-track model seemingly produces
slightly more accurate estimates for the scenario used in this
paper. However, the difference may be small, and should
be considered in combination with the increased complexity
compared to the kinematic single-track model.
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