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Abstract. The Matrix Profile (MP) of a time series has been proposed
as a versatile primitive for many data mining tasks. As a companion
time series, the MP records distances between nearest neighbors of sub-
sequences in the original time series. The Pan Matrix Profile (PMP) is a
matrix with each row being an MP corresponding to a single subsequence
length, and computing explicitly an exact PMP is slow. We propose an
approximation algorithm called APUMPEDI to compute the PMP under
the unnormalized Euclidean distance based on MP algorithms combined
with interpolation. We validate their efficiency and effectiveness through
extensive numerical experiments on both real-world and synthesized data
sets.
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1 Introduction

The Matrix Profile (MP) of time series has been proposed as a versatile primitive
for various data mining tasks [1]. By definition, the MP keeps track of distances
between nearest neighbors of subsequences in a given time series. Algorithms
based on the fast Fourier transform (FFT) or dynamic programming (DP) have
been proposed to compute the MP under the normalized Euclidean (ℓ2, in partic-
ular) distance metric (leading to shape-based similarity search) [1,2]. Algorithms
based on DP [3] or some special data structure (such as a double-ended queue)
[4] have also been devised to compute the MP under general unnormalized Eu-
clidean (could be ℓp, ∀1 ≤ p ≤ ∞) distance metric (leading to value-based
similarity search). Assuming the length of a given time series is n, then the
best time complexity of the aforementioned algorithms for computing its MP is
O(n2), which is independent of the subsequence length.

Although the MP is already a convenient enough tool for many time series
data mining tasks, it still requires the practitioner to set one critical parameter
– the subsequence length for similarity search. To eliminate the need to guess
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this one parameter, [5] proposes a new data structure – the Pan Matrix Profile
(PMP), which is a matrix with each row being a Matrix Profile corresponding to
a single subsequence length. Essentially, the PMP is a parameter-free version of
the MP that has the potential to deal with various time series data mining tasks.
However, computing an exact PMP is slow; the time complexity is O(|M |n2),
where M is the list of all considered subsequence lengths and |M | is the total
number of subsequence lengths that M contains. To speed up the computation
for the PMP, [5] proposes an approximation algorithm called SKIMP, which
tries to optimize the order of candidate subsequence lengths to compute their
respective MP’s. As noted in [5], the normalized ℓ2 distance is used for the
MP/PMP computation, and this leads to the fact that “given a matrix profile
Pi, it is impossible to predict or even produce an upper or lower bound for matrix
profile Pi+1.” Consequently, the SKIMP algorithm can not deal with the MPs
for the remaining subsequence lengths when it terminates computing the MP’s
for a selected set of subsequence lengths.

Another recent work, [6], also tries to remove the only parameter for the
MP computation, but for a more specific purpose – discord discovery (anomaly
detection). The authors propose a parameter-free algorithm named MERLIN,
for discovery of arbitrary-length discords (anomalies) in massive time series
archives. Note that the MERLIN algorithm is the state-of-the-art in terms of
speed, but it only tries to find discords as fast as possible; to that end, the al-
gorithm avoids keeping track of the anomaly scores of the vast majority of all
the subsequences. On the other hand, when applied for the purpose of discord
discovery, the MP/PMP algorithms output much more information, including
anomaly scores of non-discords, and sometimes such information is intuitive and
important for analysts.

Because algorithms for the MP/PMP under unnormalized distances would
still produce good (or even better) results in various time series data mining
tasks (see, e.g., [4,7]), in this paper we further investigate alternative approxi-
mation algorithms to speed up the PMP computation. Similar to the LINKUMP
algorithm [7], our APUMPEDI (stands for “Approximating Pan Matrix Profile
under Unnormalized Euclidean Distance by Interpolation”) algorithm developed
in this paper is based on the monotonicity of MPs with respect to subsequence
lengths and various interpolation methods. This approximate algorithm can be
viewed as a generalization of the LINKUMP algorithm, noting that the latter
only uses linear interpolation. As a building block, the computation for the MP
under unnormalized ℓp (1 ≤ p ≤ ∞) distance corresponding to a single subse-
quence length is done using the algorithms developed in [4] (for p = ∞; based
on a double-ended queue) or [3] (for 1 ≤ p <∞; based on DP).

We organize the remainder of the paper as follows. In Section 2, under un-
normalized Euclidean distances, the definition of the MP/PMP of time series
and the monotonicity of the PMP are reviewed. In Section 3, we elaborate the
APUMPEDI algorithm. Results from numerical experiments are presented in
Section 4. We give concluding remarks in Section 5.
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Notation: Denote by X = [x0, x1, . . . , xn−1] a real-valued time series (the
length is n), with xt ∈ R being the value sampled at time index t, t = 0, 1, . . . , n−
1. Let m be the length of a subsequence satisfying 1 ≤ m ≤ n − 1. Denote by
Xj,...,j+m−1 = [xj , xj+1, . . . , xj+m−1] the j-th subsequence of X, 0 ≤ j ≤ n−m.
Let |A| denote the length of a given list (vector) A. Assuming M is a list (vector)
and m ∈M , we let m@M denote the index of m in M . Given a lower bound L,
an upper bound U (−∞ < L < U < +∞), and a step size S (0 < S < U − L),
we denote by range(L,U + 1, S) an ordered list (vector) consisting of all the
elements that are within the interval [L,U ] and can be expressed as L + i × S,
where i is an integer.

2 Definition and Monotonicity

We first review the definitions of the Matrix Profile and the Pan Matrix Profile,
under unnormalized Euclidean distances.

Definition 1 (Matrix Profile of Time Series [4])
The Matrix Profile (MP) of time series X = [x0, x1, . . . , xn−1] is a new time
series Y = [y0, y1, . . . , yn−m], where

yj = min
0≤j′≤n−m,j′ ̸=j

d(Xj,...,j+m−1, Xj′,...,j′+m−1), (1)

where d(·, ·) is the ℓp (1 ≤ p ≤ ∞) distance.

In other words, at time index j, the value of the MP of X is the unnormalized
Euclidean distance between the jth subsequence and its nearest-neighbor subse-
quence in X. To simplify the description, while still capturing the essence of the
MP, in Def. 1 we exclude the other component of the MP (i.e., the respective
indices of the nearest-neighbor subsequences) discussed in [1].

Definition 2 (Pan Matrix Profile of Time Series [7])
Given a list of subsequence lengths M = [m0,m1, . . . , m|M |−1], the Pan Matrix
Profile (PMP) of time series X = [x0, x1, . . . , xn−1] is an |M | × n matrix P
with each row filled by a Matrix Profile of X, which corresponds to a specific
subsequence length; in particular,

P [i, j] = min
0≤j′≤n−mi,j′ ̸=j

d(Xj,...,j+mi−1, Xj′,...,j′+mi−1), (2)

∀0 ≤ i ≤ |M | − 1, 0 ≤ j ≤ n − mi, where mi is the subsequence length corre-
sponding to the i-th row.

Note that, in Def. 2, we set the unfilled entries of P (i.e., P [i, j],∀0 ≤ i ≤
|M | − 1, n−mi < j ≤ n) as a Not-a-Number (NaN) value.

Next, we review the monotonicity of the PMP with respect to the subse-
quence lengths.
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(a)

(b)

Fig. 1: (a) A synthesized time series; (b) MP values at time index 100 vs. subse-
quence lengths of the synthesized time series.

Theorem 1 (Monotonicity of Pan Matrix Profile [7]) Assume for the list
of subsequence lengths M = [m0,m1, . . . , m|M |−1] we have mi1 < mi2 ,∀0 ≤ i1 <
i2 ≤ |M | − 1. Then the PMP of time series X = [x0, x1, . . . , xn−1] defined by
(2) satisfy P [i1, j] ≤ P [i2, j],∀0 ≤ i1 < i2 ≤ |M | − 1, 0 ≤ j ≤ n−mi2 .

As pointed out in [7], Theorem 1 would not hold for the PMP under nor-
malized Euclidean distances. To see this more clearly, let us look at an example
using a synthesized time series shown in Fig. 1a. In Fig. 1b we plot its MP
values under both the normalized and unnormalized ℓ2 distances at the 100-th
time instance, versus the subsequence lengths. It is seen that, under normalized
ℓ2 distance, the MP values are not consistently increasing with respect to the
subsequence lengths (there is an obvious decrease when the subsequence length
increases from 10 to 11).

3 Approximation Algorithm for PMP Computation

3.1 Description of the APUMPEDI Algorithm

In this section, we describe our APUMPEDI (stands for “Approximating Pan
Matrix Profile under Unnormalized Euclidean Distance by Interpolation”) algo-
rithm to compute the PMP. As a generalization of the LINKUMP algorithm [7],



3. APPROXIMATION ALGORITHM FOR PMP COMPUTATION 5

Fig. 2: A comparison of different interpolation curves for the PMP of the syn-
thesized time series (depicted in Fig. 1a) under unnormalized ℓ2 distance (with
fixed time index 100).

the APUMPEDI algorithm utilizes various interpolation methods including, but
not limited to, linear interpolation.

Roughly speaking, our algorithm works as follows. Once we have computed
the MPs for a set of selected subsequence lengths, we do interpolation for each
and every missing subsequence length; e.g., if we have done computing the MPs
for the following 5 subsequence lengths, [10, 20, 30, 40, 50], then we do interpo-
lation for the corresponding intervals (10, 20), (20, 30), (30, 40), and (40, 50),
respectively, to obtain approximate MPs for subsequence lengths within these
intervals. In Fig. 2, we visualize the interpolation procedure for the synthesized
time series example (shown in Fig. 1a), where both the exact and approximate
MP functions (with respect to subsequence lengths) are depicted for time index
100, and various interpolation methods (described in Sec. 3.2) are tested. It is
worth pointing out that our idea is essentially different from that of the SKIMP
algorithm [5]; the SKIMP algorithm orders the selected subsequence lengths and
computes MPs for only a portion of them from the beginning.

We are now in a position to formalize the algorithm. Let L (resp., U) denote
the minimum (resp., maximum) subsequence length such that 2 ≤ L < U ≤ n−1,
S ∈ (0, U − L) the step size, and θ ∈ (0, 1] the completion rate for the PMP
computation. We wrap up the steps as Alg. 1, where Lines 10 through 18 describe
the interpolation procedure. We apply the algorithm based on a double-ended
queue (for the case where p = ∞; see [4]) or the dynamic programming based
algorithm (for the case where 1 ≤ p <∞; see [3]) for the uMP subroutine (Line
8 in Alg. 1), which computes the Matrix Profile of a given time series X, for
a given subsequence length m, under the unnormalized ℓp distance. For the
Interpolate subroutine (Line 13), we elaborate various options in Section
3.2. It is seen that the time complexity of this algorithm is O(θ|M |n2), and the
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space complexity is O(|M |n), where |M | = ⌈(U − L) /S⌉ is the number of all
predesignated candidate subsequence lengths.

Algorithm 1 Approximating Pan Matrix Profile under Unnormalized
Euclidean Distance by Interpolation

1: procedure APUMPEDI(X,L,U, S, θ, p)
2: n← length of X
3: M ← range

(
L,U + 1, S

)
4: P ← |M | × n matrix of NaN’s
5: M ′ ← range

(
L,U + 1,

⌊
1
θ

⌋
· S

)
6: for m in M ′ do
7: i← m@M
8: P [i, :]← uMP(X,m, p)
9: end for

10: xvec ← M ′

11: for j in range(0, n, 1) do
12: yvec ← [P [m@M, j] for m in M ′]
13: f(·)← Interpolate(xvec, yvec)
14: for m in M \M ′ do
15: i← m@M
16: P [i, j]← f(m)
17: end for
18: end for
19: return P
20: end procedure

3.2 Interpolation Methods

Assume we are given a set A of n+ 1 data points (x0, y0), (x1, y1), . . . , (xn, yn),
where xi ̸= xj , ∀i ̸= j. In this work we apply the following interpolation methods.

Naive Interpolation As a baseline method, the naive interpolation simply
returns the previous value of the point; that is,

f (x) = yi,∀x ∈ (xi, xi+1) , i = 0, 1, . . . , n− 1. (3)

Linear Interpolation Linear interpolation on the set of data points A is de-
fined as the concatenation of linear interpolants between each pair of data points.
Formally, we have

f (x) = yi +
yi+1 − yi
xi+1 − xi

· (x− xi) ,

∀x ∈ (xi, xi+1) , i = 0, 1, . . . , n− 1. (4)

We note that when linear interpolation is applied, the APUMPEDI algorithm
works exactly the same as the LINKUMP algorithm.
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Spline Interpolation Spline interpolation is a type of piecewise polynomial
interpolation. In particular, rather than fitting a single, high-degree polynomial
to all of the data points at once, spline interpolation fits low-degree polynomials
(called splines) to small subsets of the data points. Spline interpolation typically
outperforms polynomial interpolation due to the fact that the error of interpola-
tion can be small even when applying low-degree polynomials for the spline [8].
It also protects against the Runge phenomenon [9], in which oscillation would
occur between data points when using high-degree polynomials as interpolants.
In this paper, we use both quadratic and cubic spline interpolation.

Remark 1 We have tried using polynomial interpolation, and found that the
resulting approximate PMP would significantly deviate from the true PMP. Thus,
we will not include it when presenting numerical results.

Monotonic Cubic Interpolation Because of the monotonicity of PMP (see
Thm. 1), it is desirable to use monotonic splines to interpolate data points.
To that end, we apply the Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) [10].

4 Numerical Results

In this section, we present results from extensive numerical experiments. The
metric for assessment of the algorithm’s approximation accuracy is RMSE (Root
Mean Square Error) with respect to the exact PMP (i.e., θ = 1). We conducted
the experiments on both real-world and synthesized data sets.

4.1 Results for Mars Curiosity Rover Data Set

First, we present numerical results from experiments on a real-world data set.
In particular, we use the time series of the Mars Curiosity Rover A1−A3, D1−
D3, E1−E3, T1− T3, P1− P3 [6]. After resampling, these 15 time series each
has a length around 4000. As a further preprocessing step, we scale each time
series to make all values be between 0 and 1.

We set L = 3, U = 2000, S = 10, and record results for θ ∈ {0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. In Fig. 3, we show a comparison of the RMSE
versus Rate of Completion (i.e., θ) curves of the APUMPEDI algorithm with
different interpolation methods for PMP approximation under unnormalized ℓp
distance, where p = ∞, 1, 2, 3, 4, 5, respectively. The RMSE scores are obtained
by averaging over the results from the 15 real-world time series for each rate
of approximation, and we also show the standard deviations for these scores as
error bars.

It is seen that, relatively speaking, in all scenarios, the naive interpolation
method would lead to the worst RMSE scores, while the other interpolation
methods would lead to close RMSE scores. Moreover, the smaller the rate of com-
pletion, the more the advantages of the monotonic spline interpolation method
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over other alternatives. However, for this specific real-world data set, for all sce-
narios we see that all interpolation methods other than the naive one would lead
to very close RMSE scores. This might due to the fact that the 15 selected time
series follow similar probability distributions.

4.2 Results for Synthesized Data Sets

To see how our APUMPEDI algorithm perform on data sets with essentially var-
ious stochasticities, we next conduct experiments using synthesized time series.
In particular, we independently generate 15 time series denoted by Z(k), k =
1, . . . , 15, each of which has a length 500. Their underlying probability distribu-
tions are specified as follows:

– Z(1), Z(2), Z(3): uniform distribution over [0, 10);
– Z(4), Z(5), Z(6): normal distribution with parameters (2, 7);
– Z(7), Z(8), Z(9): exponential distribution with parameter 3;
– Z(10), Z(11), Z(12): gamma distribution with parameters (4, 9);
– Z(13), Z(14), Z(15): beta distribution with parameters (1, 5).

Similar to what we did for the Mars Curiosity Rover data, as a prepro-
cessing step, we scaled each generated time series to make all values be be-
tween 0 and 1. We set L = 3, U = 250, S = 1, and recorded results for
θ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. In Fig. 4, we show a
comparison of the RMSE versus Rate of Completion (i.e., θ) curves of the
APUMPEDI algorithm with different interpolation methods for PMP approxi-
mation under unnormalized ℓp distance, where p = ∞, 1, 2, 3, 4, 5, respectively.
The RMSE scores are obtained by averaging over the results from the 15 synthe-
sized time series for each rate of approximation, and we also show the standard
deviations for these scores as error bars.

Similar to the results from the Mars Curiosity Rover data, it is seen that,
relatively speaking, in all scenarios, the naive interpolation method would lead
to the worst RMSE scores, while the other interpolation methods would lead to
close RMSE scores, especially for the case where p = 1 (i.e., under the ℓ1 dis-
tance). Moreover, the smaller the rate of completion, the more the advantages
(resp., disadvantages) of the monotonic spline interpolation method (resp., the
linear interpolation method) over other alternatives. Based on the above obser-
vations, we suggest using the PCHIP monotonic spline interpolation in practice,
especially when needing to set an extremely small completion rate.

4.3 CPU Time for Pan Matrix Profile Computation

To approximate the PMP, similar to the SKIMP algorithm and the LINKUMP
algorithm, our APUMPEDI algorithm also has an “anytime” property [5]; to be
specific, at any time, the algorithm could be terminated, resulting in an approx-
imation of the exact PMP. Depending on how large the completion rate θ is,
the execution time of the APUMPEDI algorithm could be various. For example,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: A comparison of the RMSE versus Rate of Completion (i.e., θ) curves of
the APUMPEDI algorithm with different interpolation methods for PMP ap-
proximation under unnormalized ℓp distance, where p = ∞, 1, 2, 3, 4, 5, respec-
tively. Here we use the time series of the Mars Curiosity Rover A1 − A3, D1 −
D3, E1−E3, T1−T3, P1−P3 [6]. The RMSE scores are obtained by averaging
over the results from the 15 real-world time series for each rate of approximation,
and we also show the standard deviations for these scores as error bars.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: A comparison of the RMSE versus Rate of Completion (i.e., θ) curves
of the APUMPEDI algorithm with different interpolation methods for PMP
approximation under unnormalized ℓp distance, where p = ∞, 1, 2, 3, 4, 5, re-
spectively. The RMSE scores are obtained by averaging over the results from
the 15 synthesized time series for each rate of approximation, and we also show
the standard deviations for these scores as error bars.



5. CONCLUSION 11

for a time series with length 4000, if setting L = 3, U = 500, S = 1, θ = 0.05,
the APUMPEDI algorithm implemented in Python can finish running within 10
minutes on a desktop computer with an Intel(R) Core(TM) i7-4770 CPU and
16 GB of system memory. Our experimental results suggest that, in practice, we
could set θ to relatively small values (say 0.01, 0.05), while still achieving good
enough performance (in terms of the RMSE scores).

5 Conclusion

We have devised an approximation algorithm called APUMPEDI to compute
the Pan Matrix Profile (PMP) under the unnormalized Euclidean distance. It
combines double-ended queue based or dynamic programming based Matrix Pro-
file (MP) algorithms and various interpolation methods. We have validated its
efficiency and effectiveness through extensive numerical experiments on both
real-world and synthesized data sets.
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