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Abstract
In this paper, we study a data privacy and protection problem in a federated learning system
for image classification. We assume that an attacker has full knowledge of the shared gradients
during the model update. We propose a layer-wise pruning defense to prevent data leakage
from the attacker. We also propose a sequential update attack method, which accumulates
the information across training epochs. Simulation results show that the sequential update
can gradually improve the image reconstruction results for the attacker. Moreover, the layer-
wise pruning method is shown to be more efficient than classical element-wise threshold-based
pruning on the shared gradients.
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Abstract—In this paper, we study a data privacy and
protection problem in a federated learning system for
image classification. We assume that an attacker has
full knowledge of the shared gradients during the model
update. We propose a layer-wise pruning defense to
prevent data leakage from the attacker. We also propose
a sequential update attack method, which accumulates
the information across training epochs. Simulation results
show that the sequential update can gradually improve the
image reconstruction results for the attacker. Moreover, the
layer-wise pruning method is shown to be more efficient
than classical element-wise threshold-based pruning on the
shared gradients.

Index Terms—Federated learning, Data leakage, Privacy
protection

I. INTRODUCTION

Federated learning is a distributed technique for train-
ing a model without directly sharing the training data
from each local device [1]. A collaborative training
process is achieved by sharing and aggregating model
weights or gradients, produced from the local training
at each device. However, as shown by [2], the common
method of gradient sharing produces a potential privacy
leakage issue, where an attacker can reconstruct the
training data from the knowledge of the shared model
gradients. The general approach for the attacker is to
optimize the similarity between the shared model gradi-
ents and the loss gradients produced by the model when
applied to a dummy input. The successful reconstruction
attack demonstrated by [2] uses mean-squared error
as the attacker loss function when matching gradients
produced by the dummy (reconstruction) input to the
shared gradients. Further investigation in [3] shows that
by exploiting the gradients of the final layer of the neural
network model, the attacker might not even need knowl-
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edge of the labels of the original data for successful
reconstruction.

These attacks were refined in [4], by adding a regu-
larization term (total variation [5]) and adopting cosine
similarity for gradient matching, improving successful
reconstruction for an entire batch of images, while
dealing with deep network structures such as ResNet18
and ConvNet. It is further shown in [6] that combining
the reconstruction results from a group of randomly
initialized images can enhance the overall reconstruction
performances by an attacker.

The studies in [7], [8] evaluate the gradient inversions
attack algorithm and defense methods in a federated
learning framework. However, the reconstruction perfor-
mance is mostly measured in a static model, where the
trainable parameters in a neural network are unchanged.
Meanwhile, to analyze data leakage, the parameters of
an untrained/trained model are assumed to be known by
the attacker. Our aim is to consider data leakage over
the whole training process, where an attacker eavesdrops
on the gradient sharing from the beginning of model
updates.

In this paper, we study the gradient inversions problem
in a dynamic training model for image classification.
We assume that an attacker has full knowledge of the
shared gradients and the model is updated over several
training epochs. By saving and combining information
across the training epochs, the attacker can improve the
reconstruction accuracy of the source data. From the
perspective of effective distributed learning, an important
goal is to minimize the degradation upon the final
classification accuracy due to privacy protection method.
Therefore, this paper considers this privacy-utility trade-
off, with the main contributions summarized as follows:

1) We analyse the trade-off between privacy protection
and test accuracy for classifying images by com-
puting the area under the curves of test accuracy



and structural similarity (SSIM) between the recon-
structed and source images.

2) We propose a magnitude-based alternating layer-
wise pruning method to prevent data leakage.
We demonstrate that the alternating optimization
method does not influence the final test accuracy
on classification when the number of layers to be
pruned is small.

3) By comparing to the element-wise threshold-based
pruning method, we demonstrate that the layer-wise
pruning method can efficiently prevent data leakage
during the model update.

4) We propose a sequential reconstruction method for
the attacker, which gradually improves the recon-
struction performance during the model update.

II. PRELIMINARY

Before introducing our proposed layer-wise pruning
method for data protection and the sequential update
method for the attacker’s reconstruction, we briefly re-
view the gradient inversion technique that is proposed
in [4] and the element-wise threshold-based gradient
pruning method for data protection from [2].

A. Inverting Gradients

Inverting gradients in [4] introduces an image recon-
struction method for a deep neural network given the
shared gradients by a local user. Suppose there is a
neural network model M that is designed for image
classification. Let (x,y) be a mini-batch for training,
where x refers to the input images and y refers to
the corresponding labels. Then, we define ∂Wx as the
combined sets of gradients of all trainable parameters W
from a model training loss function F

(
M(x),y

)
. The

main target of an attacker is to use the knowledge of
∂Wx and W to recover the source data x. As proposed
in [2], [3], a trainable dummy image x̂ is firstly initial-
ized. Then, an objective function L is defined to measure
the distance between the gradients ∂Wx and ∂Wx̂. By
computing the derivative ∂L/∂x̂, the trainable images x̂
can be gradually tuned by stochastic gradient descent.
Successful reconstruction on the source data implies
privacy leakage in the distributed training system. The
objective function L in [4] is defined as:

L =

(
1− ⟨∂Wx, ∂Wx̂⟩

||∂Wx||2||∂Wx̂||2

)
+ αTV(x̂), (1)

where TV(x̂) refers to the total variation of the trainable
dummy image x̂, α is a scaling factor to control the
contribution of total variation to the loss function L and

|| · ||2 denotes the Euclidean norm function. Compared to
the mean-square error loss function in [2], [3], the cosine
similarity term, ⟨∂Wx,∂Wx̂⟩

||∂Wx||2||∂Wx̂||2 , improves performance by
eliminating the effect of varying magnitudes across the
trainable parameters.

B. Element-wise Threshold-based Pruning

To prevent data leakage, a direct way is to modify
the shared gradients. As proposed in [2], a threshold-
based pruning method is a low-cost and effective way to
reduce the reconstruction performance of an attacker. [2]
proposes to prune the gradients to 0 if the magnitudes
of gradients are smaller than a threshold. To define the
threshold, a percentage value p from 0 to 1 is firstly
determined. Then, let ∂W i

x be the ith set of gradients
in ∂Wx, the threshold li is found by li = P(∂W i

x, p),
where P(·) represents a percentile function that finds an
element in ∂W i

x that has a magnitude greater than p-
percentage of the elements in ∂W i

x. As a result, for the
jth element in ∂W i

x, the element-wise threshold-based
pruning method returns

(∂Ŵ i
x)j =

{
0, for |(∂W i

x)j | < li,

(∂W i
x)j , for |(∂W i

x)j | > li,
(2)

We can observe that in the gradients of each network
layer, only a portion may be pruned to 0. However, the
ground-truth gradients are computed from the chain rule,
where the relationship of gradients between consecutive
layers can be easily derived. Pruning part of the gradients
can be viewed as signals with incomplete sampling [9],
which suggests that the attacker can still recover the
source images with reasonable accuracy. Therefore, in
the following, we propose a layer-wise pruning method,
which is more effective than the element-wise threshold-
based pruning. In addition, we propose a sequential
update method for the attacker, which can improve the
attacker’s reconstruction performance.

III. DYNAMIC SYSTEM - LAYER-WISE PRUNING AND

SEQUENTIAL UPDATE

A. Layer-wise pruning

Different from the threshold-based pruning method
discussed in the previous section, our proposed pruning
method zeroes out entire layers of gradients, selected
by comparing each layer’s averaged gradient magnitudes
across the network. In this paper, we consider a valid
layer in a neural network as either a fully connected
layer or a convolutional layer, which contain trainable
multiplicative weights and bias. A batch normalization
layer also contains trainable parameters but as shown



Algorithm 1 Layer-wise Pruning by a Local User
Step 1: Compute the gradients ∂Wx.
Step 2: Find the averaged gradient magnitudes g as

in (3).
Step 3: Find the sorted averaged gradient magnitudes

gsort.
Step 4: Train the model for K epochs and zero-out T

layers’ gradients. Then go back to Step 1.

in [7], the attacker can learn the normalization terms
during reconstruction. Therefore, we do not consider this
type of layer for pruning.

Define N = {n1, n2, ..., nL} as the number
of elements of each valid layer and ∂Dx =
{∂D1

x, ∂D
2
x, ..., ∂D

L
x} as the set of gradients for each

layer, where ∂Di
x ⊂ ∂Wx for i ∈ {1, 2, ..., L}. The

average gradient magnitudes g = [g1, g2, ..., gL] of each
layer is found by

gi =
1

ni
||∂Di

x||1. (3)

Depending on the number of training mini-batches that a
local device has, this averaged gradient magnitudes can
be further evaluated by averaging over all of the training
mini-batches. Based on the average gradient magnitudes
of each layer, the local device can choose the layer to be
pruned depending on the requirement of classification ac-
curacy and privacy protection capability. In our method,
the layers with the smallest gradient magnitudes are
pruned. We use gsort = [gsort

1 , gsort
2 , ..., gsort

L ] with gsort
1 <

gsort
2 < ... < gsort

L to indicate the sorted averaged gradient
magnitudes for each layer and h = {h1, h2, ..., hL} as
the corresponding set of indices in ∂Wx for the sorted
layers. As a result, suppose there are T layers selected
for pruning, the layer-wise pruning method has

∂D̂i
x =

{
0ni

, for i ∈ {h1, h2, ..., hT },
∂Di

x, for i ∈ {hT+1, hT+2, ..., hL}.
(4)

Moreover, we expect the final trained model’s test
accuracy to be not influenced by the privacy protection
technique. Therefore, we propose to alternate the layers
to be pruned for every K training epochs. In other
words, during the model update, which has several
training epochs, the set of layers to be pruned will be
changed after every K training epochs. For simplicity,
we increase the pruning index by 1 if the set of layers
to be pruned is the same after K training epochs. For

Algorithm 2 Sequential Update by an Attacker
Step 1: Observe the M + 1th set of gradients and

updated models.
Step 2: Select an image from the M reconstructed

images as the initialized dummy image x̂ by (6).
Step 3: Construct a multi-loss objective function L as

in (5).
Step 4: Find the gradients ∂L/∂x̂.
Step 5: Perform stochastic gradient descent to opti-

mize the trainable dummy image and save the
results.

Step 6: Wait until the next set of gradients. Then, go
back to Step 1.

example, let cK−1 = {h1, h2, ..., hT } be the set of
layers to be pruned at the K − 1th training epoch. If
cK = cK−1, we replace h1 by hT+1 in cK , so that
cK = {h2, h3, ..., hT+1}. As a result, for the next K
training epochs, from Kth to 2K−1th epoch, the set of
layers to be pruned are not the same as the preceding K
training epochs.

B. Sequential update

1) Multi-loss objective function: Previous section in-
troduces a privacy protection method from the perspec-
tive of a local device. In this section, we propose a
sequential update method for the attacker to reconstruct
the source images with improved quality. We assume that
the attacker has full knowledge of the gradients shared
by the local device during the model update. Let ∂Wxi

be the ith shared gradients of training batch x on a model
Mi. Suppose the attacker has obtained and saved M sets
of shared gradients during the training epochs. A multi-
loss objective function can be constructed by

L =

M∑
i=1

γi−1

(
1− ⟨∂Wxi

, ∂Wx̂⟩
||∂Wxi

||2||∂Wx̂||2

)
+ αTV(x̂),

(5)

where γ is a scaling factor to control the contribution of
each saved shared gradients of the ith model Mi.

2) Dummy image initialization: On top of the multi-
loss objective function, we propose to adjust the initial-
ization of dummy image x̂ by selecting the saved recon-
structed image which has the smallest mean-square error
to all the saved set of gradients. Suppose there are M−1
reconstructed images from the previous saved sets of
models and gradients. We use X̂ = {x̂1, x̂2, ..., x̂M−1}



to indicate all the M − 1 reconstructed images from
model M1 to MM−1 and ∂Wx̂i

j
represents the gradients

of the ith reconstructed image from the jth saved model.
Then, we propose to initialize the dummy image by

x̂ = argmin
x̂i

{
M−1∑
j=1

||∂Wxj
− ∂Wx̂i

j
||2

}
, (6)

where i ∈ {1, 2, ...,M − 1} refers to the index of pre-
viously saved models. Note that the attacker is assumed
to have saved access to the previous M − 1 models. For
each reconstructed image x̂i, the attacker can generate
M − 1 sets of gradients from all the saved models.

All the previous proposed methods for data leakage
protection and image reconstruction are summarized in
Algorithm 1 and 2.

IV. NUMERICAL RESULTS

In this section, we evaluate the model test accu-
racy and attacker reconstruction performance across the
model training progress.

We use SSIM [10] to measure the accuracy of im-
age reconstruction by the attacker. To evaluate the at-
tacker reconstruction performance, we match each re-
constructed image to the source mini-batch by:

x̂i = x̂argmax{SSIM(xi,x̂j) | j=1,2,...,B}. (7)

This is due to the fact that with a mini-batch of size
greater than 1, which might contain images that have
the same labels, the reconstructed images might not
follow the original order as in the source data. Therefore,
when we measure the average SSIM, we match each
reconstructed image to one of the ground-truth images,
which has the largest SSIM.

In our experiments, ResNet18 is employed as the neu-
ral network model for image classification, and CIFAR-
10 is the data set. There is no pre-processing on the
source images before training or testing. We use 5 dif-
ferent batches with a size of 8 to evaluate the attacker’s
reconstruction performance, where the average SSIM
across the 5 batches is recorded. The gradients of a local
device are assumed to be shared after every 5 epochs
of training. In total, there are 40 training epochs for the
local device. In Figs. 2 and 3, “EW” and “LW” represent
the conventional element-wise threshold-based pruning
and layer-wise pruning, respectively. Moreover, we use
“Seq” to represent the sequential update method that
is introduced in Section III-B. In comparison, “Static”
represents the reconstruction method without saving all
of the previous models and shared gradients. The attacker

TABLE I: Test accuracy and SSIM during the training
of a ResNet18

Pruning Methods AUC of TA AUC of SSIM Final TA
No pruning 0.79 0.73 82.5
LW T = 1 0.80 0.54 82.3
LW T = 2 0.80 0.35 83.1

EW p = 0.21 0.79 0.70 81.9
EW p = 0.43 0.79 0.67 82.0

is assumed to know only the model and shared gradients
from the current training epoch. To demonstrate the
overall test accuracy and reconstruction performances
during model update, in Table I, “AUC of TA” and “AUC
of SSIM” refer to the area under the curves (AUC) of
test accuracy (TA) and SSIM, respectively. “Final TA”
refers the final model’s test accuracy on classifying the
CIFAR-10 test data set.

In Fig. 2, there are 4 curves with different pruning
parameters shown, layer-wise pruning with T = 1 and
T = 2 and element-wise pruning with p = 0.21 and
p = 0.43. We choose p = 0.21 and p = 0.43 to have
the same number of pruned parameters as the layer-wise
pruning with T = 1 and T = 2, respectively. We observe
that both element-wise and layer-wise pruning methods
can achieve a close performance to the trained model
without pruning. Moreover, in Fig. 3, we can observe
that the SSIM of layer-wise pruning is much smaller
than the element-wise pruning method at all the training
epochs. Without the proposed sequential update method,
the reconstruction performance by the attacker is poor.
As analysed in Table I, the total AUC of SSIM of layer-
wise pruning is 0.35 and 0.54 for T = 1 and T = 2,
respectively. These values are much smaller than the
AUC of SSIM of element-wise pruning, which has 0.7
and 0.67 for p = 0.21 and p = 0.43. Note that the AUC
of SSIM of layer-wise pruning with T = 1 is much
smaller than the element-wise pruning with p = 0.43,
which has twice number of pruned parameters.

On top of the test accuracy and reconstruction perfor-
mance, in Fig. 1, we show an example of reconstructed
image in comparison between element-wise pruning with
p = 0.43 and layer-wise pruning with T = 2. We ob-
serve that with the implementation of sequential update,
the image becomes more and more accurate with the
increase of training epoch for the layer-wise pruning.
The SSIM with T = 2 eventually reaches a SSIM of
0.3, where the attacker is hard to identify all the images.
While for an element-wise pruning, all the 8 images are
relatively accurate to be identified.



(a) Original test images

(b) Training epoch index: 0. EW pruning with p = 0.43 has a
SSIM of 0.48. LW pruning with T = 2 has a SSIM of 0.13.

(c) Training epoch index: 20. EW pruning with p = 0.43 has a
SSIM of 0.79. LW pruning with T = 2 has a SSIM of 0.28.

(d) Training epoch index: 40. EW pruning with p = 0.43 has a
SSIM of 0.75. LW pruning with T = 2 has a SSIM of 0.30.

Fig. 1: Examples of attacker’s reconstructed images using the sequential update method. The figures above refer to
the reconstruction results with layer-wise pruning of T = 2. The figures below refer to the element-wise threshold-
based pruning with p = 0.43, which has the same number of pruned parameters as the layer-wise pruning.
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Fig. 2: Test accuracy during 40 epochs of training

V. CONCLUSION

In this paper, we studied a data leakage problem in
a federated learning system. We proposed a privacy
protection method for a local device by zeroing out
the full layer’s gradients before sharing the gradients to
the central server. By comparing to the element-wise
threshold-based pruning method, we show that layer-
wise pruning can achieve a much better protection on the
source data. On top of that, we assume that an attacker
might have the full knowledge of shared gradients during
the model update. As a result, the attacker can se-
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Fig. 3: Averaged SSIM of reconstructed images.

quentially combine all the models and shared gradients’
information at each training epoch to achieve a better
reconstruction performance on the source data.
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