
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

An Empirical Analysis of Boosting Deep Networks
Rambhatla, Sai; Jones, Michael J.; Chellappa, Rama

TR2022-075 July 28, 2022

Abstract
Boosting is a method for finding a highly accurate classifier by linearly combining many
“weak” classifiers, each of which may be only moderately accurate. Thus, boosting is a
method for learning an ensemble of classifiers. While boosting has been shown to be very
effective for decision trees, its impact on neural networks has not been extensively studied.
Using standard object recognition datasets, we verify experimentally the wellknown result
that a boosted ensemble of decision trees usually generalizes much better on testing data
than a single decision tree with the same number of parameters. In contrast, using the same
datasets and boosting algorithms, our experiments show the opposite to be true when using
neural networks (both convolutional neural networks (CNNs) and multilayer perceptrons
(MLPs)). We find that a single neural network usually generalizes better than a boosted
ensemble of smaller neural networks with the same total number of parameters. While this is
an experimental investigation, more theoretical research is warranted to understand the role
of boosting in deep learningbased classifiers

International Joint Conference on Neural Networks (IJCNN) 2022

c© 2022 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

An Empirical Analysis of Boosting Deep Networks
Sai Saketh Rambhatla

Electrical and Computer Engineering
University of Maryland

College Park, USA
rssaketh@umd.edu

Michael J. Jones
Mitsubishi Electric Research Laboratories

Cambridge, USA
mjones@merl.com

Rama Chellappa
Electrical and Computer Engineering

Johns Hopkins University
Baltimore, USA
rchella4@jhu.edu

Abstract—Boosting is a method for finding a highly accurate
classifier by linearly combining many “weak” classifiers, each
of which may be only moderately accurate. Thus, boosting is a
method for learning an ensemble of classifiers. While boosting has
been shown to be very effective for decision trees, its impact on
neural networks has not been extensively studied. Using standard
object recognition datasets, we verify experimentally the well-
known result that a boosted ensemble of decision trees usually
generalizes much better on testing data than a single decision
tree with the same number of parameters. In contrast, using
the same datasets and boosting algorithms, our experiments
show the opposite to be true when using neural networks (both
convolutional neural networks (CNNs) and multilayer percep-
trons (MLPs)). We find that a single neural network usually
generalizes better than a boosted ensemble of smaller neural
networks with the same total number of parameters. While this
is an experimental investigation, more theoretical research is
warranted to understand the role of boosting in deep learning-
based classifiers.

Index Terms—Neural Networks, Boosting, Ensembles
I. INTRODUCTION

We are motivated to study the application of boosting
[1], [2] to neural networks (especially convolutional neural
networks (CNNs)) because of the great success boosting has
had especially in conjunction with decision trees. Before
the explosion of research on deep neural networks, boosted
decision trees were considered state of the art. In fact, the well-
known statistician, Leo Breiman, once called boosted decision
trees ”the best off-the-shelf classifier in the world” [3].

The basic idea of boosting is to form a ”strong” classifier
(one with high accuracy) using a linear combination (an
ensemble) of ”weak” classifiers. The only requirement of a
weak classifier is that it has accuracy slightly better than
chance. AdaBoost [4] is probably the best known boosting
algorithm and has been widely used by machine learning
researchers. AdaBoost maintains a set of weights per training
example and requires that any weak learning algorithm returns
a classifier that has a weighted accuracy better than chance on
the training examples. On each round of boosting, the weight
on each example is updated with a specific equation that gives
less weight to examples the weak classifier got right and more
weight to examples it got wrong. The next weak classifier will
be forced to classify more of the incorrect examples correctly.
AdaBoost has been proven to reduce the training error as more
weak classifiers are added to the ensemble [4].

Since boosting can be applied to any classifier, it makes
sense to try to combine the power of neural networks with the

power of boosting. The idea of boosting many small CNNs
to create a very accurate classifier while avoiding the trial-
and-error search for better network architectures is an exciting
possibility. Other researchers have had the same motivation
[5]–[8]. In the past, researchers have shown that a boosted
ensemble of decision trees or neural networks improves ac-
curacy as the number of decision trees or neural networks
increases. An examination of past Kaggle challenge winners
shows the success of neural network ensembles. Unlike past
work, however, we look at the accuracy of an ensemble of
classifiers compared to the accuracy of a single classifier of
the same type with the same number of total parameters.
When comparing classifiers of the same type with different
numbers of parameters and trained with different algorithms,
it is not possible to know whether any accuracy advantages
are due to the difference in number of parameters or the
difference in training algorithm. Furthermore, classifiers with
more parameters are computationally more expensive so it
makes sense to study how to maximize accuracy within a
certain parameter budget. In the case of decision trees, we
show that a boosted ensemble is usually much more accurate
than a single decision tree with the same number of total
parameters. Surprisingly, however, the same may not hold for
neural networks. The main contribution of this paper is to
present empirical evidence that a single large neural network
is usually more accurate than a boosted ensemble of neural
networks with the same number of total parameters. In terms
of accuracy and assuming sufficient training data, it appears
that one is better off training a single large network than an
ensemble of small networks.

The remainder of the paper is organized as follows. Past
work on boosting using both decision trees and neural net-
works is discussed in Section II. An overview of the basic
boosting method is given in Section III as well as details on
the specific version of multi-class boosting that we use. In
Section IV, we present experiments on boosted decision trees
using three well-known object recognition datasets. Analogous
experiments are presented in Section V for boosted neural
networks. These experiments confirm that while boosting
works well for decision trees, it is not as successful for neural
networks. In Section VI we give conclusions and speculate on
why boosting is not as effective for neural networks.

II. BACKGROUND AND RELATED WORK

Boosting was first developed in the early to mid 1990’s by
Schapire and Freund [1], [2], [4], [9] as a method of creating
more accurate classifiers from linear combinations (ensembles)
of simpler classifiers. The AdaBoost algorithm [9] was the first
practical boosting algorithm to come from this initial work.
This early work opened up a rich line of further research
that explored the potential of boosting and tried to better
understand its success. Some of the key follow-on papers
are by Friedman, Hastie and Tibshirani [3], [10] who tried
to explain AdaBoost in terms of well-understood techniques
in statistics. Friedman proposed gradient boosting [10] as a
method of learning a regression function in a stagewise fashion
by fitting a function that approximates the residual errors of
the training data at each stage and then using a weighted
sum of the functions learned at each stage. Mason et al. [11]
further showed the connections between boosting and gradient
descent function optimization. Friedman et al. [3] derived the
LogitBoost algorithm as a way of understanding AdaBoost in
terms of additive logistic regression. Another notable paper
by Zhu et al. [12] proposed a multi-class boosting algorithm
called SAMME (Stagewise Additive Modeling using a Multi-
class Exponential loss function) that is similar to AdaBoost but
differs in how it computes the weight of each weak classifier
and how it updates the example weights in each round.

In the early work on boosting, decision trees were typically
used as weak classifiers although boosting applies to any
type of classifier. Some examples of early work on boosting
decision trees include [9], [12]–[14]. These and many more
works demonstrated the interesting result that larger and larger
ensembles with growing numbers of parameters usually did
not overfit the training data. In other words, testing error
continued to decrease along with training error as the number
of weak classifiers increased. In contrast, it was known that as
the number of parameters of a single decision tree increased, it
would eventually overfit, i.e. the testing error would eventually
increase as the training error decreased [15]. Combating this
problem is a major reason why boosted decision trees are
so useful - they allow the training of classifiers with large
numbers of parameters, usually without overfitting.

There have also been many papers on applying boosting to
neural networks. Early papers applied boosting to multilayer
perceptrons (MLPs) such as [5], [16]–[18] and showed that
boosted ensembles of MLPs got significantly lower errors rates
than a single MLP on problems such as character recognition
and the UCI classification datasets. More recently, boosting
has been applied to deep convolutional neural networks [6]–
[8], [19], [20]. Many of these papers have proposed different
boosting algorithms that are tailored for CNNs, but they all
result in a linear combination of CNNs. For example, Moghimi
et al. [8] derived a boosting algorithm for CNNs for multi-class
classification problems in which the CNN weak learner was
trained to estimate the example weights since this was shown
to be equivalent to taking a step in the direction of the negative
gradient of the error. Mosca and Magoulas [20] use the

multiclass AdaBoost.M2 algorithm of Freund and Schapire [9]
but initialize each subsequent CNN weak classifier using the
weights learned in the previous boosting round which leads to
both higher accuracy and faster network training times.

Recent advances in boosting are mainly focused on very
fast and efficient implementations of gradient boosting, for
example XGBoost [21] and CatBoost [22] are popular gradi-
ent boosting packages. For a more comprehensive survey of
various boosting algorithms, please see [23], [24].

Past work on boosting neural networks has not analyzed
whether an ensemble of MLPs or CNNs is a ”win” in terms
of decreasing the testing error below what is achievable with a
single network with the same number of total parameters as in
an ensemble. Unlike decision trees which are very susceptible
to overfitting, this is less of a problem with highly over-
parameterized CNNs [25], [26]. Typically, training CNNs with
more parameters does not result in worse generalization error.
Although it is certainly true that CNNs can overfit especially
when trained on very small datasets (such as hundreds of
examples), one of the reasons they have revolutionized ma-
chine learning is because they usually generalize well even
when only trained on thousands of examples with networks
containing millions of parameters. While this phenomenon
may be counter-intuitive, there is a growing body of re-
search attempting to explain this surprising behavior [25]–[28].
Despite our incomplete understanding, the fact remains that
networks with more parameters tend to generalize better (see
Figures 3, 5, 6, 7, for example).

So the incentive to use boosting to avoid overfitting may
not be so important for neural networks. Then the question
becomes whether boosted ensembles of neural networks can
achieve better accuracy than simply using standard deep
learning methods on a single, large neural network. This is
the main question we will address here.

III. BOOSTING/ADABOOST

Boosting is a meta-learning algorithm that uses a base
learning algorithm (also called a weak learner) to build an
ensemble of (weak) classifiers such that the ensemble classifier
(also called a strong classifier) is more accurate than any of
the weak classifiers. The main idea is to assign each training
example a weight and use the weak learner to return a weak
classifier that minimizes the weighted error. The example
weights are initially uniform but are updated on each round
of boosting to give more weight to examples that the previous
weak classifier got wrong and less weight to examples that it
gets right. This forces the next weak classifier to get more of
the examples right that the previous weak classifier got wrong.
The final strong classifier gives more weight to the more
accurate weak classifiers. Many versions of this basic boosting
method have been published with the main differences being
how the margin for each example is computed and the weight
assigned to each weak classifier in the ensemble.

In our experiments, we tested different multi-class versions
of boosting, which all worked similarly, but we found the
following version (Algorithm 1) which is slightly modified

from the AdaBoost.M1 algorithm of Freund and Schapire [4]
to perform best. We follow the notation used in the generalized
version of AdaBoost described in Schapire and Singer ([14]).

In our multi-class version, weak classifiers output a prob-
ability distribution over output classes represented as a C
element real-valued vector. On each round, t, of boosting, a
weak classifier is found that minimizes a weighted error over
examples based on the current weights of examples, Dt. In our
case, the weak learning algorithm is either the decision tree
training algorithm or a neural network training algorithm. For
training neural networks, we sample batches according to the
distribution Dt so that the neural network training algorithm
does not have to use example weights directly.

Once a weak classifier is trained, we compute the margin
of each example which is essentially how correct the weak
classifier is on each example. We use a margin, M, similar
to the one defined in [29], which is equal to the probability
of the correct class minus the average probability of the other
classes on the training examples.

mi =M(ht(xi), yi) = pi[yi]−
1

C − 1
(1− pi[yi]) (1)

where yi is the correct label for input sample xi, C is the
number of classes and ht(xi) = pi = [p1, p2, · · · pC] ∈ RC is
the probability over the classes output by the weak classifier
for input xi.

In step 6 of the algorithm, a weight αt is chosen as the
weight of weak classifier ht. In [14], theoretical justification
is given for choosing αt = 1

2 log(
1+rt
1−rt) where rt is the

weighted average of the margin computed over the training
set. In our experiments, we found that the sigmoid function,
αt = 1

1+e−rt
, worked better for both neural networks and

decision trees.
Finally, the weights on the examples are updated according

to the negative exponential of the margin for each example.
The whole process is repeated to train the next weak classifier.

IV. DECISION TREE EXPERIMENTS

In this section we present some experiments on image clas-
sification datasets comparing boosted ensembles of decision
trees to single decision trees with the same number of total
leaves. There have been very many papers published that plot
the error rate of a boosted ensemble of decision trees as a
function of the number of weak classifiers. The vast majority
of these plots show the error rate continuing to decrease as
more weak classifiers are added to the ensemble. We also
examine the error rates of single decision trees as the number
of leaves increases. A comparison of the error rates of boosted
decision tree ensembles and single decision trees with the
same number of leaves is interesting here because it confirms
that single decision trees often overfit as the number of leaves
increases while boosted decision tree ensembles often do not,
and as a consequence that boosted ensembles generalize much
better than single decision trees. We will show in Section V
that boosted neural network ensembles exhibit very different
behavior.

Algorithm 1 A Multi-class Version of AdaBoost
1: Given: (x1, y1), (x2, y2), · · · , (xm, ym); xi ∈ X , yi ∈
Y,Y = {1, ..., C} where C is the number of classes

2: Initialize D1(i) =
1
m

3: for t = 1, 2, · · · , T do
4: Train weak classifier using distribution Dt which yields

weak classifier ht : X → RC where RC is a vector of
C reals representing a probability distribution over C
classes

5: Compute margins, mi, for each training example
(xi, yi) according to equation 1

6: Choose αt ∈ R
7: Update:

Dt+1(i) =
Dt(i)e

−αtmi

Zt

where Zt is a normalization factor (chosen to make
Dt+1 a distribution).

8: end for
9: Output the final hypothesis

H(x) = argmax(
T∑
t=1

αtht(x))

We use binary decision trees with multi-class outputs. The
output is a probability distribution over all possible output
classes. Each node computes a Haar-like filter on the input
image and thresholds the filter value to determine whether
the input goes to the left or right child node. When a leaf
node is reached, the output class is the class with the highest
probability. The probability distribution for any leaf node is
computed from the training examples that fall into that leaf
as the count of each class divided by the number of training
examples in the leaf.

We use a set of Haar-like filters that are very similar to the
Haar-like filters used in [30]. We use 2-rectangle, 3-rectangle
and 4-rectangle Haar-like filters as illustrated in Figure 1. The
value of a Haar-like filter applied to an image is the sum of the
pixel values (in a single color channel) in the white rectangles
minus the sum of the pixel values in the gray rectangles.

For the CIFAR-10 and CIFAR-100 datasets in which each
example is 32x32 pixels, we used 2912 Haar-like filters
sampled from all possible 2-rectangle, 3-rectangle and 4-
rectangle filters that can fit within a 32x32 pixel image. The
minimum rectangle size within any filter was 5 pixels. Because
a filter can be applied to any of the three color channels

Fig. 1: Examples of 2, 3 and 4 rectangle Haar-like filters.
The sum of pixel values in shaded rectangles are subtracted
from the sum of pixel values in white rectangles. Each Haar-
like filter has two versions: one with absolute value and one
without. A Haar-like filter can be applied to any color channel
in the case of color input images (CIFAR-10 and CIFAR-100).

250 500 750 1000 1250
Total number of leaves

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Accuracy on MNIST

Single DT on train set
Single DT on test set
Boosted DT on train set
Boosted DT on test set

(a)

250 500 750 1000 1250
Total number of leaves

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Accuracy on CIFAR10
Single DT on train set
Single DT on test set
Boosted DT on train set
Boosted DT on test set

(b)

500 1000 1500 2000 2500
Total number of leaves

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Accuracy on CIFAR100
Single DT on train set
Single DT on test set
Boosted DT on train set
Boosted DT on test set

(c)

Fig. 2: Classification accuracy on MNIST [2a], CIFAR-10 [2b] and CIFAR-100 [2c] training and testing sets for single decision
tree and boosted decision tree versus total number of leaves in the tree/ensemble.

independently, there were effectively 3× 2912 = 8736 filters
used for training.

For the MNIST dataset with 28x28 pixel examples, we used
3512 Haar-like filters with a minimum size of 4 pixels for any
single rectangle within a filter. There is only a single gray-level
channel for MNIST.

We use the following decision tree learning algorithm to
build a tree with a fixed number of leaf nodes. Initially, a
leaf node is created containing all of the training examples.
On each iteration of the learning algorithm, the leaf node
with the minimum ”peak” is chosen to split where ”peak”
is defined as the probability of the highest probability class
minus the average probability of all other classes. The peak
value is similar to negative entropy. To split a node, all Haar-
like filters in the given filter set are used to find the optimal
filter and threshold that splits the examples in the node so that
the sum of the peaks for the examples going into the children
nodes is maximized. The Haar-like filter and threshold that
maximize the sum of peaks of the children nodes is chosen as
the decision function for the node. Splitting of nodes continues
until the desired number of leaves is reached.

We use the multi-class boosting algorithm described in
Section III. We conducted experiments on three standard
image classification datasets: MNIST, CIFAR-10 and CIFAR-
100.

MNIST: The MNIST dataset [31] is a handwritten digit
(from 0 to 9) recognition task consisting of 28 × 28 pixel
gray scale images. The dataset contains 60,000 training images
(6000 images of each digit) and 10,000 testing images (1000
images of each digit).

CIFAR-10: The CIFAR-10 dataset [32] represents an object
recognition task. It contains 60,000 32×32 color images with
each image containing one of 10 different classes. The 10
different classes represent airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. There are 6,000 images
of each class from which 5,000 are used for training and 1,000
are used for testing.

CIFAR-100: This dataset [32] represents a similar object
recognition task as the CIFAR-10 dataset, except there are
100 object classes instead of 10. Each class contains 600 color
images. Each image is 32 × 32 × 3, and the 600 images are
divided into 500 training, and 100 test for each class.

For each dataset, we trained boosted decision trees for 20
rounds with a fixed number of leaves (64 for MNIST and
CIFAR-10, 128 for CIFAR-100) in each weak classifier. We
also trained a series of single decision trees with the same
number of total leaves as in each ensemble. To train a single
decision tree with 128 leaves, for example, we start with one
already trained with 64 leaves and continue the decision tree
training algorithm until 128 leaves are reached. Since there is
no randomness in the training algorithm, each experiment is
run only once. (Rerunning the same experiment would yield
the exact same classifier.)

In each of the Figures 2a-2c, the red curves are for single
decision trees and the black curves are for boosted decision
trees. The solid curves show accuracy on the training set and
the dashed curves show accuracy on the testing set.

Figure 2a shows that on the MNIST dataset, the boosted
decision trees are significantly more accurate on the testing
set than the single decision trees with the same number of
leaves. On the training set, the boosted and single trees are
more comparable, with the boosted trees being a little more
accurate until the number of leaves becomes greater than 1000
or so.

On CIFAR-10 (Figure 2b) and CIFAR-100 (Figure 2c), we
again see that the boosted decision trees are significantly more
accurate on the testing sets, but not on the training sets as
the number of leaves grows. The fact that the single decision
trees continue to improve accuracy on the training set while
worsening accuracy on the testing sets is clear evidence of
overfitting. The boosted decision trees, on the other hand,
avoid overfitting as both training and testing accuracy continue
to increase with increasing numbers decision trees.

These experiments confirm that boosted decision trees usu-

ally generalize better than single decision trees with the same
number of total leaves. They also confirm that training single
large decision trees is prone to overfitting while boosted
ensembles of decision trees are resistant to overfitting.

V. NEURAL NETWORK EXPERIMENTS

In this section we explore empirically whether boosted
neural networks are similar to boosted decision trees and result
in better accuracy compared to using a single network with an
equivalent number of parameters. We experiment with three
network architectures described below and three datasets. As
with the experiments using decision trees, we use the CIFAR-
10 and CIFAR-100 object recognition datasets. Because even
the small base networks we use achieve nearly 100% training
accuracy on MNIST, we instead use the Street View House
Numbers (SVHN) dataset for our third dataset. SVHN [33]
is a real-world image dataset obtained from house numbers in
Google Street View images. The dataset contains over 600, 000
training images, and about 20, 000 test images, each of size
32× 32 pixels.

CNN: The first architecture is a CNN base classifier. We
adopt a similar architecture as LeNet [31], as a base learner,
for our experiments. Boosting such a model for N rounds
makes the total number of parameters N times the number
of parameters of the base classifier. For training a single
model with an equal number of parameters, we increase the
number of filters in each hidden layer until the total number
of parameters is less than or equal to the required number. To
increase the number of parameters in the CNN for creating
larger single networks, we add convolutions (width) to each
existing layer but do not add new layers (depth).

For a single CNN for which we want n times more
parameters than the base CNN, one way to increase the number
of parameters, for a network with odd number of layers (which
is true in our case), is to multiply the number of convolutional
filters in every other layer by n. This increases the number
of parameters by exactly n. However for higher values of n,
this method results in a tight bottleneck in the intermediate
layers. To alleviate this issue, we use this method only for
smaller values of n (n ∈ {1, · · · , 5}) and for larger values of
n, we multiply the number of filters in each layer of the base
CNN by

√
n (rounding to the nearest integer). Multiplying

the number of filters in layers L and L+1 by
√
n, multiplies

the number of parameters in layer L + 1 by n (except for
the first and last layers). Since the number of parameters in
the first and last layers only increases by a factor of

√
n, we

multiply the number of neurons in the penultimate layer by a
factor c

√
n to make the total number of parameters about the

same as in the boosted counterpart. We use c = 1.35 in this
work for CNN base classifiers. It is likely that the architectures
could be optimized to produce even higher accuracy in our
experiments, but this is not the point of the current work.
The CNN base classifier has 5954 trainable parameters for
CIFAR-10, SVHN (c = 1.05) and 8834 trainable parameters
for CIFAR-100 (c = 1.35). Refer to Table I for exact details
of the architecture.

SVHN & CIFAR-10 CIFAR-100
Ensemble Single CNN Ensemble Single CNN
params. hid dims # params # params hid dims # params

5954 [6, 16, 32] 5954 8834 [6, 16, 32] 8834
11908 [12, 16, 64] 11908 17668 [12, 16, 64] 17668
17862 [18, 16, 96] 17862 26502 [18, 16, 96] 26502
23816 [24, 16, 128] 23816 35336 [24, 16, 128] 35336
29770 [30, 16, 160] 29770 44170 [30, 16, 160] 44170
35724 [14, 39, 82] 34894 53004 [14, 39, 105] 52647
41678 [15, 42, 88] 40219 61838 [15, 42, 114] 60567
47632 [16, 45, 95] 46337 70672 [16, 45, 122] 68522
53586 [18, 48, 100] 52462 79506 [18, 48, 129] 76890
59540 [18, 50, 106] 57346 88340 [18, 50, 136] 83386

TABLE I: Table enumerating hidden dimensions and number
of trainable parameters of the ensemble and single CNN
classifier on CIFAR-10/SVHN and CIFAR-100.

SVHN & CIFAR-10 CIFAR-100
Ensemble Single MLP Ensemble Single MLP
params. hid dims # params # params hid dims # params

410880 [128, 128] 410880 422400 [128, 128] 422400
821760 [246, 246] 818688 844800 [247, 247] 844493
1232640 [358, 358] 1231520 1267200 [358, 358] 1263740
1643520 [463, 463] 1641335 1689600 [464, 464] 1687104
2054400 [563, 563] 2052135 2112000 [565, 565] 2111405
2465280 [658, 658] 2460920 2534400 [661, 661] 2533613
2876160 [750, 750] 2874000 2956800 [753, 753] 2955525
3287040 [838, 838] 3284960 3379200 [841, 841] 3374933
3697920 [923, 923] 3696615 3801600 [927, 927] 3799773
4108800 [1005, 1005] 4107435 4224000 [1010, 1010] 4223820

TABLE II: Table enumerating hidden dimensions and number
of trainable parameters of the ensemble and single MLP
classifier on CIFAR-10/SVHN and CIFAR-100.

MLP: We adopt a four-layer MLP with two hidden layers.
To increase the number of parameters in the MLP to ap-
proximately match the number of parameters in each boosted
ensemble of MLPs, we assume the same number, n, of
neurons in both the MLP hidden layers and solve for n
analytically. The total number of parameters in the MLP is
p(n) = 3072 ∗ n + n2 + Cn = n2 + (3072 + C) ∗ n,
where C is the number of output neurons. We do not consider
the bias terms in our experiments. To obtain a network with
N parameters, we solve the quadratic equation p(n) = N
and round the solution to the lowest integer. Each MLP base
classifier has 410880 trainable parameters for CIFAR-10 and
SVHN and 422400 trainable parameters for CIFAR-100 (due
to more output classes). Refer to Table II for exact details of
the architecture and number of trainable parameters.

CIFAR-10 CIFAR-100
Ensemble Single VGG-8 Ensemble Single VGG-8
params. hid dims # params # params hid dims # params

87234 [6, 16, 32, 64, 64] 87234 98844 [6, 16, 32, 64, 64] 98844
174648 [8, 22, 45, 90, 133] 190142 197688 [8, 22, 45, 90, 153] 220532
261972 [10, 27, 55, 110, 164] 272163 296532 [10, 27, 55, 110, 188] 310629
349296 [12, 32, 64, 128, 189] 356215 395376 [12, 32, 64, 128, 217] 403693
436620 [13, 35, 71, 143, 211] 435156 494220 [13, 35, 71, 143, 243] 492078
523944 [14, 39, 78, 156, 232] 516055 593064 [14, 39, 78, 156, 266] 579787
611268 [15, 42, 84, 169, 250] 596331 691908 [15, 42, 84, 169, 287] 668991
698592 [16, 45, 90, 181, 267] 677620 790752 [16, 45, 90, 181, 307] 759550
785916 [18, 48, 96, 192, 284] 761294 889596 [18, 48, 96, 192, 326] 850898
873240 [18, 50, 101, 202, 299] 838108 988440 [18, 50, 101, 202, 344] 937333

TABLE III: Table enumerating hidden dimensions and number
of trainable parameters of the ensemble and single VGG-8
classifier on CIFAR-10/SVHN and CIFAR-100.

VGG-8: To demonstrate results using a deeper architecture,
we adopt a VGG [34] style architecture as the base learner. We
follow a similar strategy to increase the number of parameters
as with the CNN mentioned above. VGG-8 classifier has
87234 and 98844 trainable parameters for CIFAR-10 (c =

Fig. 3: Comparison of averaging and boosting
with/without reset of a CNN base classifier on
CIFAR-10 train & test sets

0 2 4 6 8
Number of Boosting Rounds

66

68

70

72

74

76

Te
st

 A
cc

ur
ac

y

Comparison of choices of for AdaBoost

= 1
2 log(1 + r

1 r)
= log((K 1) * r

1 r)
= 1

1 + e r

Fig. 4: Comparison of different choices
of α for AdaBoost on CIFAR-10 test set.

1.48) and CIFAR-100 (c = 1.70), respectively. We show the
exact details of the architecture in Table III.

Network Training Parameters: For all experiments using
the CNN base classifier, we use a batch size of 128 with an
initial learning rate of 0.1 (0.0001) with SGD (ADAM) opti-
mizer trained for 300 epochs. The learning rate is decreased by
a factor of ten after 95 epochs for each optimizer. We do not
perform any hyperparameter optimization. We boost the base
classifier for ten rounds. We report results using two optimizers
(SGD and Adam) for the CNN classifier and only SGD (which
yields better accuracy) for MLP and VGG networks. The MLP
classifiers are trained with a batch size of 128 for 300 epochs
with an initial learning rate of 0.01 using an SGD optimizer.
The learning rate is decreased by a factor of 10 after 95 epochs.
VGG-8 classifiers are trained for 200 epochs with a batch size
of 256 using an SGD optimizer. We begin training with a
learning rate of 0.1 and decrease by a factor of 5 after 60,
120 and 160 epochs. We repeat all experiments in Figure 5, 6
and 7 for 5 rounds and plot the mean and standard deviation.

Boosting vs Averaging Models: We start by comparing
training and testing set accuracy of averaging and boosting
with/without reset on the CIFAR-10 dataset. Boosting with
reset, similar to the one in [8], initializes the models in every
round of boosting randomly. Boosting without reset initializes
the model with the weights of the first model. From Figure 3,
it is clear that boosting with reset is most accurate, and that
boosting offers improvement over naive averaging of models
which is often used as a simple way to improve accuracy.

Choice of α: [14] prove that choosing α = 1
2 ln(1+rt1−rt) in

step 6 of Algorithm 1 minimizes the training error. However,
in our experiments, we observe empirically that a different
choice of α works better for neural networks. In Fig. 4, we
compare the CIFAR-10 test set performance of a CNN base
classifier boosted using three choices of α for 10 rounds
using the multi-class Adaboost described in Algorithm 1. We

experiment with 1) α = 1
2 log(1+rt1−rt) originally proposed in

[14], 2) α = log((K−1)∗rt
1−rt) (K is the number of classes) as

proposed in [35] for another multi-class boosting algorithm
SAMME and 3) α = 1

1+e−rt
. From the figure, choosing

α = 1
1+e−rt

performs better than 1
2 log(1+rt1−rt) for higher rounds

of boosting. Unless otherwise mentioned, we use 1
1+e−rt

for
AdaBoost for the rest of the experiments.

A. Main Experiments

Boosting Algorithms: In this section, we experiment with
three boosting algorithms namely AdaBoost, SAMME [35]
and LogitBoost [3]. While we re-implement the exact algo-
rithm of SAMME [35] we had to make a few modifications to
the LogitBoost algorithm [3] to work with a Neural Network
base classifier. LogitBoost [3] requires training a regression
model. We use the Mean Squared Error (MSE) loss for
CIFAR-10 and SVHN datasets. However, for more than 10
classes, in the case of CIFAR-100, this training loss didn’t
converge. For CIFAR-100, we train a classification network
using soft labels instead of one-hot-encoded targets. This can
be achieved by minimizing the KL-Divergence between the
soft labels and the network outputs. Additionally, for rounds
greater than 1, we clamp the output of the networks to be no
greater than 3.

1) CNN experiments: Figure 5 shows results comparing
a series of single CNNs with their Adaboost, SAMME and
LogitBoost ensemble counterparts on CIFAR-10, CIFAR-100
and SVHN using the SGD and ADAM optimizers. The solid
lines are results with the SGD optimizer while the dotted lines
are for ADAM. Red lines show results for a single network
and black, green and cyan lines depict results of boosting using
AdaBoost, SAMME and LogitBoost algorithms respectively.
Using AdaBoost, a single CNN classifier (with equal number
of parameters) outperforms the boosted ensemble after 10
rounds of boosting by 5.8, 12 and 0.1 percentage points

2 4 6 8 10
Number of Parameters (x5954)

0.60

0.65

0.70

0.75

0.80
Te

st
 A

cc
ur

ac
y

Comparison of Boosted and Single CNN on CIFAR10 dataset

Single Model: SGD Optimizer
Single Model: Adam Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(SAMME): Adam Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(LogitBoost): Adam Optimizer
Boosting(AdaBoost): SGD Optimizer
Boosting(AdaBoost): Adam Optimizer

(a)

2 4 6 8 10
Number of Parameters (x8834)

0.30

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single CNN on CIFAR100 dataset
Single Model: SGD Optimizer
Single Model: Adam Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(SAMME): Adam Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(LogitBoost): Adam Optimizer
Boosting(AdaBoost): SGD Optimizer
Boosting(AdaBoost): Adam Optimizer

(b)

2 4 6 8 10
Number of Parameters (x5954)

0.84

0.86

0.88

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single CNN on SVHN dataset

Single Model: SGD Optimizer
Single Model: Adam Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(SAMME): Adam Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(LogitBoost): Adam Optimizer
Boosting(AdaBoost): SGD Optimizer
Boosting(AdaBoost): Adam Optimizer

(c)

Fig. 5: Classification accuracy on CIFAR-10 [5a], CIFAR-100 [5b] and SVHN [5c] testing sets for single and boosted CNN
classifiers versus number of parameters.

on CIFAR-10, CIFAR-100 and SVHN, respectively, using an
SGD optimizer. Using ADAM, the single classifier is better
than the boosted ensemble by 7.5, 14 and 0.5 percentage points
on CIFAR-10, CIFAR-100 and SVHN, respectively.

Using SAMME, a single CNN classifier (with equal number
of parameters) outperforms the boosted ensemble after 10
rounds of boosting by 7.49 and 12.57 percentage points
on CIFAR-10 and CIFAR-100 respectively using an SGD
optimizer. Using ADAM, the single classifier is better than
the boosted ensemble by 9.28 and 12.50 percentage points on
CIFAR-10 and CIFAR-100 respectively. On the SVHN dataset,
the SAMME algorithm fails after two rounds because neural
network training fails to find a classifier with weighted error
better than chance. We think this is due to the nature of the
discrete margin computed in SAMME which puts almost all
of the weight on the most difficult examples.

Using LogitBoost, a single CNN classifier (with equal num-
ber of parameters) outperforms the boosted ensemble after 10
rounds of boosting by 5.30, 13.79 and 3.04 percentage points
on CIFAR-10, CIFAR-100 and SVHN, respectively, using an
SGD optimizer. Using ADAM, the single classifier is better
than the boosted ensemble by 6.70, 15.37 and 1.66 percentage
points on CIFAR-10, CIFAR-100 and SVHN, respectively.

2) MLP experiments: Figure 6 shows results of single
MLPs and their boosted counterparts, trained using Adaboost,
SAMME and LogitBoost, on each of the three test sets. The
single networks are more accurate than the equivalent boosted
ensemble of networks for almost all values of the number
of parameters. After 10 rounds of boosting, using Adaboost,
the equivalent single networks are about 1%, 1.2% and 0.2%
more accurate on CIFAR-10, CIFAR-100 and SVHN, respec-
tively. Using SAMME, the single networks are about 4.22%
and 3.59% more accurate than the boosted counterparts on
CIFAR-10 and CIFAR-100 test sets respectively. Similar to
the CNN architecture, the boosted MLP ensemble failed to
converge on SVHN. Finally, using LogitBoost, the single
networks are about 3.22% and 1.64% more accurate than the
boosted counterparts on CIFAR-10 and CIFAR-100 test sets
respectively. On SVHN, we observe that the ensemble trained

using LogitBoost outperforms the single MLP architecture
by 0.46%. This is the only case out of 3 architectures and
3 datasets where a boosted ensemble outperformed a single
neural network. We believe this is the case because the
inductive bias of MLPs is not as suitable for structured data
like images resulting in lower performance than the boosted
ensembles. This can also be seen in the comparison of MLP
and CNN single models on SVHN (88.74% vs 93.50%).

VGG experiments: Figure 7 shows results comparing sin-
gle VGG-8 classifiers with the boosted ensembles on CIFAR-
10 and CIFAR-100. We do not show results for VGG-8 on
SVHN as the single base classifier attains 100% training accu-
racy, leaving little room for improvement for either boosting or
larger networks. It is clear from the plots that the single models
outperform the boosted ensembles, trained using Adaboost,
by a significant margin (4 and 12 percentage points after 10
boosting rounds on CIFAR-10 and CIFAR-100, respectively).
Using LogitBoost, the single models outperform the boosted
ensemble by 4.83% and 16.14% points on CIFAR-10 and
CIFAR-100 test sets. We observe a similar pattern with the
boosted ensembles trained using SAMME algorithm as with
the other two architectures above.

Boosting rounds: Finally, to verify that boosting a larger
ensemble would not change the results, we boost a CNN base
classifier for 50 rounds (297700 parameters) on CIFAR-10 and
compare it with a single VGG-8 classifier enlarged to 297680
parameters. The boosted ensemble achieves 77.00% accuracy
on the test set while the single network achieves 85.81%. We
compare an ensemble of CNN classifiers to a single VGG-8
network because of the difficulty of increasing the number of
parameters in the CNN base classifier by 50 times to create a
single network.

Final thoughts: These experiments show that boosting
neural networks, unlike boosting decision trees, does not lead
to better accuracy compared to simply using a larger neural
network. One caveat to this statement that ”bigger is better”
for neural networks is that training set size and difficulty also
matter. In cases where a single neural network is able to
achieve near 100% accuracy on the training set, we observed

2 4 6 8 10
Number of Parameters (x410880)

0.52

0.54

0.56

0.58

0.60

0.62
Te

st
 A

cc
ur

ac
y

Comparison of Boosted and Single MLP on CIFAR10 dataset

Single Model: SGD Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(AdaBoost): SGD Optimizer

(a)

2 4 6 8 10
Number of Parameters (x422400)

0.25

0.26

0.27

0.28

0.29

0.30

0.31

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single MLP on CIFAR100 dataset

Single Model: SGD Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(AdaBoost): SGD Optimizer

(b)

2 4 6 8 10
Number of Parameters (x410880)

0.84

0.85

0.86

0.87

0.88

0.89

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single MLP on SVHN dataset

Single Model: SGD Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(AdaBoost): SGD Optimizer

(c)

Fig. 6: Classification accuracy on CIFAR-10 [6a], CIFAR-100 [6b] and SVHN [6c] testing sets for a single and boosted MLP
classifiers versus number of parameters.

2 4 6 8 10
Number of Parameters (x87234)

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single VGG11 on CIFAR10 dataset

Single Model: SGD Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(AdaBoost): SGD Optimizer

(a)

2 4 6 8 10
Number of Parameters (x98844)

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

Comparison of Boosted and Single VGG11 on CIFAR100 dataset
Single Model: SGD Optimizer
Boosting(SAMME): SGD Optimizer
Boosting(LogitBoost): SGD Optimizer
Boosting(AdaBoost): SGD Optimizer

(b)

Fig. 7: Classification accuracy on CIFAR-10 [7a] and CIFAR-100 [7b] testing sets for a VGG-8 single and boosted classifiers
versus number of parameters.

that adding more parameters to the single network can lead to
either overfitting or test error just not improving as much as
it does using boosting. In these cases, boosting is not a big
improvement over training a single larger network, but neither
is it true that a single large network is an improvement over
a boosted ensemble.

VI. DISCUSSION AND CONCLUSIONS

Through empirical evidence, we have demonstrated some
limits of boosted ensembles of neural networks. In particular,
this research suggests that larger networks often yield higher
accuracy than ensembles of smaller networks with the same
total number of parameters. This does not imply that boosting
does not work with neural nets. It does. Boosted ensembles of
neural nets have higher accuracy than any single neural net in
the ensemble. However, it is likely that a single, large neural
net would have even greater accuracy.

An important reason for why boosted CNNs do not produce
greater accuracy gains is because linear combinations of CNNs
do not add any new expressive power over a single (larger)

CNN, unlike boosted decision trees. Another way to view this
fact is to think of a single CNN as an ensemble in itself. To
see this, consider a convolution layer with K input channels,
and D filters (wd, d ∈ {1, 2, · · · , D}). The output of the layer
can be written as

O[d] =

K∑
k=1

wd[k] ∗ I[k] d ∈ {1, 2, · · · , D} (2)

where ∗ is the convolution operator, [.] is the channel slicing,
wd is the dth filter and O, I are the output and input of the
layer respectively. This is an ensemble over feature channels
analogous to the score ensemble used in boosting. In a similar
fashion, the matrix vector product in multilayer perceptrons
(MLP) (or a fully connected layer in a CNN) can be viewed
as an ensemble over features. This view of neural networks
as ensembles may provide another way of understanding the
robustness of overparameterized networks against overfitting.
The same theory that has been developed for understanding
the robustness of classifier ensembles against overfitting can
be applied to single neural networks.

REFERENCES

[1] R. Schapire, “The strength of weak learnability,” Machine Learning,
vol. 5, no. 2, 1990.

[2] Y. Freund, “Boosting a weak learning algorithm by majority,” Informa-
tion and Computation, vol. 12, no. 2, 1995.

[3] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Annals of Statistics, vol. 28, no. 2, 2000.

[4] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, 1997.

[5] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural Com-
putation, vol. 12, no. 8, p. 1869–1887, Aug. 2000.

[6] D. Medera and S. Babinec, “Incremental learning of convolutional
neural networks,” in International Joint Conference on Computational
Intelligence (IJCCI), 2009.

[7] A. Mosca and G. Magoulas, “Deep incremental boosting,” in 2nd
Global Conference on Artificial Intelligence (GCAI), ser. EPiC Series
in Computing, vol. 41, 2016, pp. 293–302.

[8] M. Moghimi, M. Saberian, J. Yang, L.-J. Li, N. Vasconcelos, and
S. Belongie, “Boosted convolutional neural networks,” in Proceedings
of the British Machine Vision Conference (BMVC), September 2016.

[9] Y. Freund and R. Schapire, “Experiments with a new boosting algo-
rithm,” in International Conference on Machine Learning (ICML), 1996.

[10] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, 1999.

[11] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems (NIPS), 1999.

[12] J. Zhu, S. Rosset, H. Zou, and T. Hastie, “Multi-class boosting,”
Statistics and its Interface, vol. 2, no. 3, 2006.

[13] R. Quinlan, “Bagging, boosting and c4.5,” in Proceedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI), 1996.

[14] R. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning, vol. 37, p. 297–336,
1999.

[15] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced
Books & Software, 1984.

[16] H. Drucker, R. Schapire, and P. Simard, “Improving performance in
neural networks using a boosting algorithm,” in Proceedings of the
International Conference on Neural Information Processing Systems
(NIPS), 1993.

[17] H. Schwenk and Y. Bengio, “Adaboosting neural networks: Applica-
tion to on-line character recognition,” in International Conference on
Artificial Neural Networks (ICANN), 1997.

[18] R. Banfield, L. Hall, K. Bowyer, and W. P. Kegelmeyer, “A comparison
of decision tree ensemble creation techniques,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 29, 2007.

[19] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra,
“Why m heads are better than one: Training a diverse ensemble of deep
networks,” arXiv preprint arXiv:1511.06314 [cs.CV], 2015.

[20] A. Mosca and G. D. Magoulas, “Boosted residual networks,” in En-
gineering Applications of Neural Networks. Springer International
Publishing, 2017, pp. 137–148.

[21] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
22nd SIGKDD Conference on Knowledge Discovery and Data Mining,
2016.

[22] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” in Workshop on ML Systems at NIPS,
2017.

[23] Z. He, T. Lin, Danchen ad Lau, and M. Wu, “Gradient boosting machine:
A survey,” arXiv preprint arXiv:1908.06951 [stat.ML], 2019.

[24] R. Schapire, “The boosting approach to machine learning: An overview,”
Nonlinear Estimation and Classification, Lecture Notes in Statistics, vol.
171, 2003.

[25] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in International Conference on
Machine Learning (ICML), 2019.

[26] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine
learning practice and the classical bias-variance trade-off,” Proceedings
of the National Academy of Sciences, 2019.

[27] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in International
Conference on Learning Representations (ICLR), 2017.

[28] T. Poggio, K. Kawaguchi, Q. Liao, B. Miranda, L. Rosasco, X. Boix,
J. Hidary, and H. Mhaskar, “Theory of deep learning iii: explaining the
non-overfitting puzzle,” MIT Center for Brains, Minds and Machines,
Memo No. 073, 2018.

[29] M. J. Saberian and N. Vasconcelos, “Multiclass boosting: Theory and
algorithms,” in Proceedings of the 24th International Conference on
Neural Information Processing Systems (NIPS), 2011, p. 2124–2132.

[30] P. Viola and M. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, 2004.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[32] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015.

[35] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost ,”
Statistics and Its Interface, vol. 2, pp. 349–360, 2009.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-075.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

