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Abstract

We consider the object recognition problem in au-
tonomous driving using automotive radar sensors. Com-
paring to Lidar sensors, radar is cost-effective and robust in
all-weather conditions for perception in autonomous driving.
However, radar signals suffer from low angular resolution
and precision in recognizing surrounding objects. To en-
hance the capacity of automotive radar, in this work, we
exploit the temporal information from successive ego-centric
bird-eye-view radar image frames for radar object recogni-
tion. We leverage the consistency of an object’s existence
and attributes (size, orientation, etc.), and propose a tempo-
ral relational layer to explicitly model the relations between
objects within successive radar images. In both object detec-
tion and multiple object tracking, we show the superiority of
our method compared to several baseline approaches.

1. Introduction
Autonomous driving utilizes sensing technology for ro-

bust dynamic object perception, and sequentially uses the
perception for reliable and safe vehicle decision-making [34].
Among various perception sensors, camera and Lidar are the
two dominant ones exploited for surrounding object recogni-
tion. The camera provides semantically rich visual features
of traffic scenarios, while Lidar provides high-resolution
point clouds that can capture the reflection from objects.
Compared with camera and Lidar, radar enjoys the following
unique advantages when applied in automotive applications.
Primarily operating at 77 GHz, radar transmits electromag-
netic waves at a millimeter wavelength to estimate the range,
velocity, and angle of objects. At such a wavelength, it can
penetrate or diffract around tiny particles in conditions such
as rain, fog, snow, and dust, and offer long-range perception
in these adverse weather conditions [35]. In contrast, laser
sent by Lidar at a much shorter wavelength may bounce off
these tiny particles, which leads to a significantly reduced
operating range. Compared with the camera, radar is also
resilient to light conditions, e.g., night and sun glare. Fur-
thermore, radar offers a cost-effective and reliable option
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Figure 1. Showcasing of two successive radar images and the
corresponding camera recording from Radiate dataset [20]. From
top to bottom, we display examples in the normal, foggy, and snowy
weather. The bounding boxes are the ground-truth annotations of
objects where its color implies the object ID. The plotted arrows
show the consistency of the object’s appearance and attributes
within a short time period, e.g., length, width, and orientation.

to complement other sensors. For the cost of Lidar, accord-
ing to an aggressive estimate by Luminar, is expected to
be the range of $500 - $1000 [1]. In contrast, automotive
radar is expected to be less than $100 in 2022 [8]. However,
as a disadvantage of radar-assisted automotive perception,
a high angular resolution in the azimuth and elevation do-
mains are indispensable. In recent open-access automotive
radar datasets, an azimuth resolution of 1◦ becomes avail-
able, while the elevation resolution is still lagging behind.
With 1◦ azimuth resolution, semantic features for objects
in a short range, e.g., corners and shapes, can be observed,
while an object at far distances can still be blurred due to
the cross-range resolution. In summary, the capability of
localizing and identifying objects for radar is still falling
behind from full-level autonomous driving.

Some recent efforts have been taken to leverage and en-
hance automotive radar for object recognition from an algo-
rithmic perspective. [14] proposes a deep-learning approach
using range-azimuth-doppler measurement. [16] detects ob-



jects via synchronous radar and Lidar signals. Similarly,
[12, 30] exploit the multi-modal sensing fusion. Besides
deep learning, Bayesian learning has also attempted to solve
extended object tracking with radar point clouds [28, 31].
The above works mainly focus on multi-modal sensing fu-
sion for robust perception [12, 16, 30]. Differently, in this
paper, we take our attempt to enhance the perception only
using radar information, which requires fewer perception
resources and avoids a complicated synchronized process
for signals among multi-modal sensors.

In this paper, we consider ego-centric bird-eye-view radar
point clouds presented in a Cartesian frame, where pixel
values indicate the strength of reflections. We develop an
approach to enhance radar perception using temporal in-
formation. Based on the observation in Fig. 1, we assume
that the same objects detected by radar within successive
frames are consistent and share almost the same attributes,
such as the object’s existence, length, orientation, etc. As
a result, the detection at one frame can be facilitated by a
previous/future frame through object-level correlations. To
compensate for the blurriness and low angular resolution
raised by radar sensors, we involve temporality and incor-
porate customized temporal relational layers to explicitly
handle the object-level relations across successive frames.
The temporal relational layer takes feature vectors at the
potential object’s centers and conducts a temporal as well as
a self-attention over the object features which are wrapped
with their locality. Colloquially, this layer links temporally
similar objects and transmits their representations, and is
akin to feature smoothing. Hence, temporal relational layers
could insert the inductive bias from object temporal consis-
tency. Afterward, the object heatmap (indicating the center
of objects) and relevant attributes are inferred upon the up-
dated feature representation from temporal relational layers.

In this work, we consider the object recognition problem
using radar in autonomous driving, which is a crucial alter-
native sensing technology that owes unique advantages. We
underline major contributions of our work as follows:

• We facilitate the radar perception with additional tem-
poral information to compensate for the blurriness and
low angular resolution raised by radar sensors.

• We design a customized temporal relational layer,
where the networks are inserted with an inductive bias
that the same object in successive frames should share
consistent appearance and attributes.

• We evaluate our method in object detection and multiple
object tracking on Radiate dataset. With the compre-
hensive comparison to baseline methods, we show the
consistent improvements brought by our method.

2. Radar Perception: Background
Automotive radar dominantly uses frequency modulated

continuous waveform (FMCW) to detect objects and gener-

(a) Transmitter (Tx)

(b) Receiver (Rx)

Figure 2. FMCW-based automotive radar.

ate point clouds over multiple physical domains. As shown
in Fig. 2 (a), it transmits a sequence of FMCW pulses
through one of its M transmitting antennas:

sm(t) =

Q−1∑
q=0

cm(q)sp (t− nTPRI) e
j2πfct, (1)

where m and q are the indices for transmitting antenna and
pulse, TPRI is pulse repetition interval, fc is the carrier fre-
quency (e.g., 79 GHz), and sp(t) is baseband FMCW wave-
form (shown as the sinusoids in Fig. 2 (a)).

An object at a range of R0 with a radial velocity vt and
a far-field spatial angle (i.e. azimuth, elevation, or both) in-
duces amplitude attenuation and phase modulation to the
received FMCW signal at each of N receiver RF chains
(including the low noise amplifier (LNA), local oscillator
(LO), and analog-to-digital converter (ADC)) of Fig. 2 (b).
The induced modulation from the target is captured by the
baseband signal processing block (including fast Fourier
transforms (FFTs) over range, Doppler, and spatial domains)
in Fig. 2 (b). All these processes lead to a multi-dimensional
spectrum. With the constant false alarm rate (CFAR) de-
tection step that compares the spectrum with an adaptive
threshold, radar point clouds are generated in the range,
Doppler, azimuth, and elevation domains [3, 10, 25].

Considering the computing and cost constraints, automo-
tive radar manufactures may define the radar point clouds in
a subset of the full four dimensions. For instance, traditional
automotive radar generates detection points in the range-
Doppler domain, whereas some produce the points in the
range-Doppler-azimuth plane [17]. In Radiate dataset [20]



considered in this paper, the radar point cloud is defined in
the range-azimuth plane with a 360◦ field view. The result-
ing polar-coordinate point cloud is further transformed into
an ego-centric Cartesian coordinate system, then a standard
voxelization can convert the point cloud into an image.

3. Radar Perception with Temporality

We present our framework in Fig. 3. Corresponding to
Fig. 3 from top to bottom, in the subsequent sections, we in-
troduce the temporal feature extraction from two successive
frames, the temporal relational layers, the learning method,
followed by the extension to multiple object tracking.

Notation We clarify the following notations. θ denotes the
learnable parameters in neural networks, and for simplifi-
cation, we unify the notations of parameters with θ for all
modules. We use a bracket following a three-dimensional
matrix to represent the feature gathering process at certain co-
ordinates. Consider a feature representation Z ∈ RC×H×W

with C, H , and W represent channel, height, and width,
respectively. Let P represent a coordinate (x, y) or a set
of two-dimensional coordinates {(x, y)}K with cardinality
equal to K and x, y ∈ R. Z[P ] means taking the feature at
a coordinate system indicated by P along width and height
dimensions, with the returned features in RC or RK×C .

3.1. Temporal Feature Extraction

Denote a single radar frame as I ∈ R1×H×W . We
concatenate two successive radar images: a current frame
and its previous frame, along the channel dimension to in-
volve temporal information at the input level. The channel-
concatenated temporal input image for the current and
previous frames can be respectively written as Ic+p and
Ip+c ∈ R2×H×W . The order of ‘current’ c and ‘previous’ p
in the subscript indicates the feature-concatenating order of
these two frames. We obtain the feature representations for
the two frames by forwarding the formulated inputs through
a backbone neural network Fθ(·):

Zc := Fθ(Ic+p), Zp := Fθ(Ip+c). (2)

The backbone network Fθ(·) is built in standard deep convo-
lutional neural networks (e.g., ResNet), and model parame-
ters are shared for processing two inputs Ip+c and Ic+p.

To jointly involve high-level semantics and low-level
finer details in feature representations, we build skip con-
nections between features at different scales in neural net-
works. Specifically, for one skip connection, we up-sample
the pooled feature from a deep layer to align its size with the
feature from previous shallow layers via bilinear interpola-
tion. A list of operations including convolution, non-linear
activation, and batch normalization are afterward applied to
the up-sampled feature. Next, the up-sampled features are

concatenated with those from shallow layers along the chan-
nel dimension. Three skip connections are inserted into the
networks to drive the features embrace semantics at four dif-
ferent levels. The final feature representation from the back-
bone neural networks are resulted in Zc, Zp ∈ RC×H

s ×W
s ,

where s is the down-sampling ratio over the spatial dimen-
sion. We add an illustrative figure in Appendix A.

3.2. Modeling Object Temporal Relations

We design a temporal relational layer to model the corre-
lation and consistency between potential objects in succes-
sive frames. The temporal relational layer receives multiple
feature vectors from the two frames with each vector rep-
resenting a potential object in a radar image. We apply a
filtering module Gpre-hm

θ : RC×H
s ×W

s → R1×H
s ×W

s on fea-
tures Zc and Zp to select top K potential object features
for the relational modeling. The set of coordinates Pc for
potential objects in Zc is obtained via the following equation:

Pc := {(x, y) | Gpre-hm
θ (Zc)xy ≥ [Gpre-hm

θ (Zc)]K}, (3)

where [Gpre-hm
θ (Zc)]K is the K-th largest value in Gpre-hm

θ (Zc)
over the spatial space H

s × W
s , and the subscript xy denotes

taking value at coordinate (x, y). Clearly, the cardinality of
Pc is |Pc| = K. By substituting Zp into Eq. (3), Pp for Zp

can be obtained similarly. We do not include features from
all coordinates into the temporal relational layer due to that
the computational complexity of the subsequent attention
mechanism grows quadratically towards the value K.

By taking the coordinate sets Pc and Pp into feature rep-
resentations, we have the selective feature matrix as:

Hc := Zc[Pc], Hp := Zp[Pp]. (4)

Sequentially, let Hc+p :=
[
Hc,Hp

]⊤ ∈ R2K×C denote the
matrix concatenation of top-K selected features in the two
frames that forms the input to the temporal relational layer.

We supplement the positional encoding into feature vec-
tors before passing Hc+p into the temporal relational layer.
The reason is that Convolutional neural networks do not en-
compass absolute positional information into output feature
representation since CNNs enjoy the translational invariance
property. However, the position is crucial in object temporal
relations because objects at a certain spatial distance in two
successive frames are more likely to be associated and would
share similar object’s attributes. The spatial distance between
the same object is conditional on the frame rate and vehicle’s
motion, and can be learned through a data-driven approach.
Denote Hpos

c+p ∈ R2K×(C+Dpos) as the feature supplemented
by the positional encoding via feature concatenation, where
Dpos is the dimension of positional encoding. Positional
encoding is projected from the normalized 2D coordinate
(x, y) that takes values in [0, 1] via linear mappings.



Figure 3. The framework of radar object recognition with temporality. Viewing from left to right, our method takes two consecutive radar
frames and extracts the temporal feature from each frame. Then, we select features that could be potential objects and learn the temporal
consistency between them. Finally, several regression objectives are conducted upon the updated features for training.

Having the formulations above, we have our main opera-
tion for modeling the relations across frames. For a single
l-th temporal relational layer, we use a superscript l to denote
the input feature and l + 1 to denote the output feature:

Hl+1
c+p = softmax

(
M + q(Hl,pos

c+p )k(H
l,pos
c+p )

⊤
√
d

)
v(Hl

c+p),

(5)
where q(·), k(·), and v(·) are linear transformation layers
applied to features and are referred as, respectively, query,
keys, and values. d is the dimension of query and keys and
is used to scale the dot product between them. The masking
matrix M ∈ R2K×2K is defined as:

M := σ ·
([

1K,K , 0K,K

0K,K , 1K,K

]
− 12K

)
, (6)

where 1K,K is the all-one matrix with size K × K, 0K,K

is the all-zero matrix with size K ×K, 12K is the identity
matrix of size 2K, and σ is a negative constant which is set
to −(1e+10) in our implementation to guarantee a near-zero
value in the output through softmax. The diagonal matrices
of 1K,K disable the attention between features from the same
frame, while the off-diagonal matrices of 0K,K allow the
cross-frame attention. Also, the identity matrix 12K unlocks
the object self-attention. The logic behind self-attention is
that the same object co-occurrence cannot always be guaran-
teed in successive frames since an object can move out of the
scope, thereby self-attention is desirable when an object is
missing in only one frame. Noticeably, the positional encod-
ing is only attached to keys and query but not to values, so
the output feature does not involve locality. Other technical
details follows the design of Transformer [24], and here we
omit the detailed descriptions for simplification.

After executing the object temporal attention across

frames in Eq. (5), we sequentially apply a feed-forward func-
tion that consists of two linear layers, layer normalization,
and shortcut on features. The relational modeling is built
with multiple temporal relational layers with the identical
design. At the end, we split the updated features Hl+1

c and
Hl+1

p from Hl+1
c+p and refill the feature vector to Zc and Zp

in the corresponding spatial coordinates from Pc and Pp.
Regressions in the next subsection are conducted on top of
the refilled feature representations.

Discussion The above feature operations share some sim-
ilarities with Transformer [24]. Transformer is designed
for language representation learning, intending to map the
words into a similar latent representation if two words are
sharing correlations among the training corpus, including
the co-existence, word positions, and semantics. The multi-
head attention operations in the stacked architecture can be
understood as smoothing over the feature of semantically
similar words [4, 6, 11]. In our context, the feature of ob-
jects with an identical ID in successive frames should be
correlated and share a similar latent representation. This is
particularly crucial since the latent representation store all
object-relevant attributes and will be used for the subsequent
decoding purpose, as elaborated in Section 3.3. The smooth-
ing over two feature vectors of the same object in successive
frames satisfies our basic temporal consistency assumption,
and can enhance the detection when the object information
is partially lost in one frame due to the blurriness from radar.

3.3. Learning

We pick the object’s center coordinates from the heatmap,
and learn its attributes (i.e. the width, length, orientation,
and center coordinate offset) from feature representations
through regression.



Heatmap To localize objects, the 2D coordinate of a peak
value in the heatmap is considered as the center of an object.
The heatmap is obtained by a module Ghm

θ : RC×H
s ×W

s →
R1×H

s ×W
s followed by a sigmoid function. We generate the

ground-truth heatmap by placing the 2D radial basis func-
tion (RBF) kernel on the center of every ground-truth object,
while the parameter σ in the RBF kernel is set proportional
to the object’s width and length. Considering the sparsity
of objects in radar images, we use focal loss [13] to balance
the regression of ground-truth centers and background, and
drive the predicted heatmap to approximate the ground-truth
heatmap. Let hi and ĥi denote the ground-truth and pre-
dicted value at i-th coordinate, N the total number of values
in the heatmap, we express the focal loss as:

Lh :=− 1

N

∑
i

(
1hi=1(1− ĥi)

α log(ĥi)

+ 1hi ̸=1(1− hi)
βĥα

i log(1− ĥi)
)
,

(7)

where α and β are hyper-parameters and are chosen empiri-
cally with 2 and 4, respectively, following the prior work [32].
The same loss function is conducted for Gpre-hm

θ to rectify
the feature selection of the relational modeling. During in-
ference, a threshold is set on the heatmap to distinguish the
object center from backgrounds. Non-maximum suppression
is applied to avoid excessive bounding boxes.
Width & Length We predict the width and length of an
oriented bounding box from the feature vector positioned
at the center coordinate in the feature map through another
regression head Gb

θ : RC → R2. Let P k
gt denote the coor-

dinate (x, y) of the center of k-th ground-truth object, bk

the ground-truth vector containing width and length of k-th
object, and Z a unified notation for Zc and Zp. We have:

Lb :=
1

N

N∑
k=1

SmoothL1

(
∥Gb

θ(Z[P k
gt ])− bk∥

)
, (8)

where the L1 smooth loss is defined as:

SmoothL1(x) :=

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(9)

Orientation All vehicles are presented with an orientation
in the bird-eye-view image. An angle range in [0◦, 360◦)
can be measured by the deviation between the object’s
orientation and the boresight direction of the ego vehicle.
We regress the sine and cosine values of the angle ϑ via
Gr
θ : RC → R2:

Lr :=
1

N

N∑
k=1

SmoothL1(∥Gr
θ(Z[P k

gt ])− (sin(ϑ), cos(ϑ))∥).

(10)
During the inference stage, the orientation can be predicted
by sin(ϑ̂) and cos(ϑ̂)) via arctan(sin(ϑ̂)/cos(ϑ̂)).

Offset Down sampling in the backbone networks could
incur a center coordinate shift for every object. The center
coordinates in the heatmap are integers while the true coordi-
nates are likely to be off the heatmap grids due to the spatial
down sampling. To compensate for the shift, we calculate a
ground-truth offset for the k-th object as:

ok :=

(
ckx
s

−
[
ckx
s

]
,
cky
s

−

[
cky
s

])
, (11)

where ckx and cky is the k-th center coordinate, s is the down
sampling ratio, and the bracket [·] is the rounding operation
to an integer. Having Go

θ : RC → R2, the regression for
center positional offset can be similarly expressed as:

Lo :=
1

N

N∑
k=1

SmoothL1(∥Go
θ(Z[P k

gt ])− ok∥). (12)

Training All above regression functions compose the final
training objective by a linear combination:

min
θ

L := Lh + Lb + Lr + Lo. (13)

We omit the balanced factors for each term for simplification.
For each training step, our training procedure calculates

the loss L and does the backward for both the current and pre-
vious frame simultaneously. Standing at the current frame,
objects in the current frame receives information from the
past for object recognition. On the other hand, from the
previous frame perspective, objects utilize the temporal in-
formation from the immediate future frame. Therefore, the
optimization can be viewed as a bi-directional backward-
forward training towards two successive frames. For now,
we do not extend the current framework to multiple frames,
since an intermediate frame do not have a proper concate-
nated order of input images for temporal feature extraction
(neither from past to future or nor from future to past) and
would reduce the training efficiency.

3.4. Extending to Multiple Object Tracking

Our framework can be easily extended to online multiple
object tracking by adapting a similar tracking procedure as
in [36]. For multiple object tracking, we add a regression
head to the center feature vector to predict a 2D moving
offset between the center of an object holding the same
tracking ID in current and previous frames. We simply use
Euclidean distance to accomplish the association in tracking
decoding. We defer a detailed illustration and algorithm for
Multiple Object Tracking to Appendix B.

4. Experiment
4.1. Experimental Setup

Dataset We use the radar dataset Radiate [20] in our ex-
periments for the following reasons: (1) it contains high-



Table 1. Experimental results of object detection on Radiate dataset. TRL is the abbreviation of ‘temporal relational layer.’

Split: train good weather Split: train good and bad weather

mAP@0.3 mAP@0.5 mAP@0.7 mAP@0.3 mAP@0.5 mAP@0.7

RetinaNet-OBB-ResNet18 52.50± 1.81 37.83± 1.82 8.46± 0.61 49.44± 1.32 31.57± 1.54 6.97± 1.24

RetinaNet-OBB-ResNet34 50.79± 3.10 35.61± 3.35 7.67± 1.71 48.09± 3.85 31.10± 3.37 6.93± 1.60

RetinaNet-OBB-ResNet34-T. 52.52± 4.68 37.30± 3.35 8.75± 1.50 42.95± 3.46 24.50± 3.72 3.98± 1.55

CenterPoint-OBB-EfficientNetB4 61.15± 1.23 51.43± 1.45 20.31± 1.73 54.97± 2.59 42.37± 2.14 13.15± 0.98

CenterPoint-OBB-ResNet18 58.69± 3.09 49.41± 2.94 19.02± 1.80 55.83± 3.28 44.48± 3.19 14.43± 2.56

CenterPoint-OBB-ResNet34 59.42± 1.92 50.17± 1.91 18.93± 1.46 53.92± 3.44 42.81± 3.04 13.43± 1.92

BBAVectors-ResNet18 59.38± 3.47 50.53± 2.07 19.72± 1.10 56.84± 3.45 45.43± 2.87 15.07± 1.76

BBAVectors-ResNet34 60.88± 1.79 51.26± 1.99 19.86± 1.36 55.87± 2.90 44.61± 2.57 14.67± 1.45

Ours-EfficientNetB4-w/o TRL 60.77± 0.97 50.93± 1.27 20.31± 1.73 54.97± 2.59 42.37± 2.14 13.15± 0.98

Ours-EfficientNetB4-w. TRL 61.59± 1.54 50.98± 1.52 17.91± 1.48 55.28± 2.32 43.05± 2.63 13.48± 2.01

Ours-ResNet18-w/o TRL 57.48± 4.82 47.90± 4.77 16.85± 2.98 55.64± 2.32 44.48± 2.76 15.10± 1.68

Ours-ResNet18-w. TRL 62.79± 2.01 53.11± 1.96 20.57± 1.47 58.87± 3.31 46.42± 3.24 15.59± 2.31

Ours-ResNet34-w/o TRL 60.98± 1.89 49.98± 2.28 18.89± 1.46 57.21± 3.76 45.93± 3.52 15.51± 2.71

Ours-ResNet34-w. TRL 63.63± 2.08 54.00± 2.16 21.08± 1.66 56.18± 4.27 43.98± 3.75 14.35± 2.15

Table 2. Comparison on object detection to [20]. Results of [20]
are directly copied from the original paper.

split: train good weather mAP@0.5

FasterRCNN-ResNet50 [20] 45.31
FasterRCNN-ResNet101 [20] 45.84
Ours-ResNet18-w. TRL 48.02
Ours-ResNet34-w. TRL 48.66

resolution radar images; (2) it provides well-annotated ori-
ented bounding boxes with tracking IDs for objects; and (3)
it records various real driving scenarios in adverse weather.
Radiate is consist of video sequences recorded in adverse
weather including sun, night, rain, fog, and snow. The driv-
ing scenarios vary from the motorway to the urban. The data
format radar images generated from point clouds, where
pixel values indicate the strength of radar signal reflections.
Radiate adopts mechanically scanning Navtech CTS350-X
radar, providing 360◦ high-resolution range-azimuth images
at 4 Hz. Currently, the radar does not afford doppler or veloc-
ity information. The whole dataset has in total 61 sequences
and we follow the official 3 splits: train in good weather (31
sequences, 22383 frames, only in good weather, sunny or
overcast), train good and bad weather (12 sequences, 9749
frames, both good and bad weather conditions), and test (18
sequences, 11305 frames, all kinds of weather conditions).
We separately train models on the former two training sets
and evaluate on the test set. Numerical results from both two
splits are reported. We also comprehensively review other
public radar datasets and discuss why currently they are not
feasible for our experiments in Section 5.

Baseline We implement several detectors, which have been
well demonstrated in visual object detection for comparison.
These detectors include: Faster-RCNN [18], RetinaNet [13],

CenterPoint [37], and BBAVectors [32]. The comparison
is conducted with different backbone networks [7, 22]. Tra-
ditional detectors are not designed for oriented objects. To
make them fit the oriented object detection, we manually add
an extra dimension on anchors or regression to predict the
angle of the object’s orientation. We denote the adaptation
as ‘OBB’ (oriented bounding box) by the end of detector’s
names in Table 1. To highlight the benefit from temporal
modeling, we add the temporal input to baselines where ’T.’
indicates the input with two successive frames and ’Ours-
w/o TRL’ is architecturally equivalence to the CenterPoint
model with temporal input. For multiple object tracking, we
include CenterTrack [36] on oriented objects that use the
same tracking heuristics with us for comparison.
Implementation We follow [20] and exclude pedestrians
and groups of pedestrians from detection and tracking tar-
gets since only very few reflections are observed in these
two kinds of objects. We also do not distinguish the object
categories like [20] because there is no significant differ-
ence between vehicle categories presented by radar signals
(e.g., truck and bus). Regarding the computation, operations
related to oriented rectangles like the calculation of the over-
lapping of oriented bounding boxes are conducted in CPU
using DOTA benchmark toolkit [27], while the rest part on
deep neural networks is running on a single RTX 3090. For
all numerical results in Table 1, we apply a center crop with
size 256×256 upon input images and exclude the targets
outside this scope. This helps us to conduct comprehensive
evaluations using our computational resource and numbers
are averaged over 10 random seeds. For results in Table 2
and 3, we keep the original resolution with size 1152×1152
to make a fair comparison to the results from [20]. We set
the gap of frames between two successive frames to 3 for
detection and 1 for tracking, the position dimension Dp to



64, the number of temporal relational layers to 2, the batch
size to 64 for cropped images with a gradient accumulation
to every 2 steps, the learning rate to 5e-4 and weight decay
to 1e-2 for Adam optimizer with five training epochs.

We adopt mean Average Precision (mAP) with Intersec-
tion over Union (IoU) at 0.3, 0.5, and 0.7 for the evaluation
of oriented object detection. For multiple object tracking,
we adopt the series of MOT metrics [15] including MOTA,
MOTP, IDSW, Frag., MT and PT, but defer the descriptions
to Appendix B due to the page limitation.

4.2. Result and Analysis

Detection We report detection results in Table 1 and 2.
Our method consistently achieves better results on both two
training splits among different levels of IoU thresholds. Be-
sides, the margin between the performance with or without
tempporal relational layers further confirms the contribution
from modeling the temporal object consistence in succes-
sive frames. Regarding the two training splits, intuitively,
adding more weather conditions into training could enhance
the robustness of detection and tracking, since the testing
set contains various weather. However, for radar, there is
no significant difference in the presentation of data among
diverse weather. The margin between two training splits
mainly comes from the margin of the number of training
samples. Regarding the difference in image size, there is a
slight performance drop when involving a larger scope for
detection. The drop comes from the cross-range resolution,
where further objects might suffer from a heavier blurriness.
Tracking We report results on multiple object tracking
in Table 3, where our methods achieve better performance
comparing to baseline. For the baseline method, Center-
Track also considers the temporal information by adding the
heatmap of the previous frame and the previous image into
input during the inference stage. They use the ground-truth
heatmap for training and the predicted heatmap for infer-
ence. This kind of learning can work well for RGB video
tracking since the detection is mostly accurate. However, the
detection on radar cannot achieve such accuracy so far, and
therefore breaking the alignment of the heatmap in training
and inference. The tracking performance with or without
temporal relational layers highlights the effectiveness of
modeling temporal object-level relations.
Visualization We present visualization results in Fig. 4 on
both object detection and multiple object tracking, and more
visualizations are attached in Appendix C. We observe many
predictions hit the annotations with a slight shift. Except
the correct predictions, it is noticeable that our model brings
some false positive predictions. However, when looking into
these false positives, with a high probability, they will be a
cluster of reflections inside the box that can be viewed as a
ghost object. This may be the main reason for creating these
false positives. Meanwhile, our model miss some objects

in the outer space. The reflections of missed objects are
drowning in the reflections of static surroundings due to the
low angular resolution. How to enhance the detection on
ghost objects and blurriness would be an interesting problem.

We add an experiment in Appendix D to analyze the best
amount of selective features in temporal relational layers.
The empirical results guide the heuristic setting of K.

5. Related Work

Radar Perception in Autonomous Driving There is an
increasing attention on the adoption of radar in autonomous
driving. We review some recent work from both algorith-
mic and radar resource perspectives. The work [14] pro-
poses a deep-learning approach for automotive radar object
detection using range-azimuth-doppler measurement. [16]
focus on sensor fusion and propose a method to incorporate
synchronous radar and Lidar signals for object detection.
[12, 30] also exploit the multi-modal sensing fusion in au-
tonomous driving. Besides deep learning, Bayesian learn-
ing has also been used for extended object tracking using
radar [28, 31]. Our work only leverages radar signals but
enhances the recognition with the temporal consistency on
objects, which has not been explored by previous works. We
defer a short review of current radar dataset in Appendix E.

Detection with Temporality Consecutive video frames
could provide spatial-temporal cues for object recognition.
[26] leverage a feature bank that extends the time horizon for
spatial-temporal action localization. [21] and [2] insert the
object-level association from short or long temporal depen-
dency into Faster-RCNN [18] to capture the spatial-temporal
information in object detection. Other techniques such as
video pixel flow or 3D convolutions [29, 38, 39] are applied
for visually rich video sequences but too heavy and not effi-
cient for radar images. Our work shares the same philosophy
that using spatial-temporal object-level correlation along the
time horizon. However, all studies mentioned above are fo-
cusing on RGB video data but not design for oriented objects.
The object’s size and scale may not be consistent if an object
is approaching or leaving the scope of the camera. Differ-
ently, we put our emphasis on radar data in autonomous
driving, where the bird-eye-view point cloud-based images
provide significant object property comparing to RBG video
data. We design an anchor-free one-stage detector with tem-
porality, which is efficient and does not have to tackle the
pre-defined anchor parameters. The center-based detector
is suitable for the bird-eye-view presentation since there is
no object overlap from this view, hence the central feature is
fully exposed to represent an object. Moreover, we do not
explore the long-range dependency but restrict the consis-
tency in only one successive frame, since vehicles can move
out of the scope if the timescale is too long and consequently
no more temporal relation is available.



Table 3. Experimental results of multiple object tracking on Radiate dataset. TRL is the abbreviation of ‘temporal relational layer.’

split: train good weather MOTA↑ MOTP↑ IDSW↓ Frag.↓ MT↑ PT↑
CenterTrack-ResNet18 0.1301 0.7026 873 920 269 254
CenterTrack-ResNet34 0.1455 0.7005 802 831 282 279
Ours-ResNet-18-w/o TRL 0.3293 0.7135 513 593 151 324
Ours-ResNet-18-w. TRL 0.3359 0.7349 349 498 145 330
Ours-ResNet-34-w/o TRL 0.3569 0.7080 557 640 179 362
Ours-ResNet-34-w. TRL 0.3791 0.7188 474 527 219 332

Figure 4. Visualizations on radar perception on Radiate dataset. The upper two figures show the object detection while the lower four sets of
successive visualizations show multiple object tracking. In detection, green bounding boxes are ground-truth annotations, while red are
model predictions. In multiple object tracking, bounding boxes are model predictions, colors indicate the object IDs, and plotted arrows
show the moving of objects. Regarding the figure source, the left detection figure is from night-1-4, while the right one is from rain-4-0.
From left to right and top to bottom, the tracking sequences are from city-7-0, rain-4-0, fog-6-0, and junction-1-10.

Multiple Object Tracking A well-established paradigm
for visual multiple object tracking [15] is tracking-by-
detection [9, 19, 23]. The detected object bounding boxes
are provided by an external detector, then data association
techniques based on object appearance or motion are applied
to detection to associate identical objects among candidates
in multiple consecutive frames. Recent developments in
multiple object tracking convert detectors into tracking al-
gorithms to jointly detect and track objects [5, 33, 36]. We
follow the simple tracking rule that is purely based on the
cost of euclidean distance [33, 36] to extend our framework
to multiple object tracking. Differently, [33, 36] only stack
frames at multiple time steps as input, while our networks
explicitly consider the object-level consistency.

6. Conclusion
We studied the object recognition problem using radar

in autonomous driving. We facilitated the radar perception
with temporality from video frames based on the assump-
tion that the same object within successive frames should
be consistent and share almost the same attributes. We de-
signed a framework inserted with temporal relational layers
to explicitly model the object-level consistency. We showed
the effectiveness of our method by experiments in object
detection and multiple object tracking.
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