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ABSTRACT

This paper considers mutual interference mitigation among automo-
tive radars using frequency modulated continuous wave (FMCW) for
the signaling scheme and multiple-input multiple-output (MIMO)
for achieving a virtual array. For the first time, we derive a gen-
eral interference signal model that fully accounts for not only the
time-frequency incoherence, but also the slow-time code incoher-
ence. Together with a standard MIMO-FMCW object signal model,
we formulate the interference mitigation as a spatial-domain detec-
tion problem and propose a generalized likelihood ratio test (GLRT)
detector. Moreover, we derive the exact theoretical performance of
the proposed GLRT detector, proving that it is a constant false alarm
rate (CFAR) detector against MIMO-FMCW mutual interference.
Preliminary numerical results confirm the performance of our pro-
posed detector and show advantages to baseline detectors.

Index Terms— Automotive radar, MIMO, Interference.

1. INTRODUCTION

Automotive radars are important for detecting the range, velocity
and angles of various nearby objects (e.g., cars). For realizing low-
cost design, current automotive radar chips widely adopt the fre-
quency modulated continuous wave (FMCW) since it enables re-
ceivers with low sampling rates determined by the instantaneous fre-
quency (IF) bandwidth [1–9]. For achieving high angular resolution,
these chips further adopt the multiple-input multiple-output (MIMO)
technology to synthesize a large virtual array using a few transmit
(Tx) and receive (Rx) radio frequency (RF) chains. Undeniably, the
MIMO-FMCW radar is the first choice of the upcoming 4D auto-
motive radars and is currently under implementation in various chip
vendors [1, 2].

Assuming the dominating role of the MIMO-FMCW automo-
tive radar in the near future, mutual radar interference is a signifi-
cant concern for driving safety as it raises noise floor, overwhelms
object signals, and causes ghost objects. Mutual interference mit-
igation (MIM) has been traditionally considered in the context of
traditional FMCW radar in the range domain, the Doppler domain,
or both, and can be classified into the following categories: 1) fast-
time domain MIM, such as interference-zeroing [10–12], adaptive
noise cancellers [13], and fast-time mode reconstruction [14]; 2)
slow-time domain MIM, such as waveform randomization [8, 15]
and ramp filtering [16]; and 3) range-Doppler domain MIM, such as
neural network-based denoiser [17–20]. In contrast, there are few
efforts focusing on the spatial domain MIM. Spatial beamforming,
e.g., least mean squares based beamforming, at the Rx phased array

∗This work was done during his internship at MERL.

Fig. 1: The slow-time MIMO-FMCW automotive radar architecture
in the presence of incoherent MIMO-FMCW interference.

can be used to suppress the interference [21–25]. When the MIMO
radar is used, null steering [26], Capon beamforming [27], and slow-
time code design [28] by assuming interference FMCW configura-
tion parameters can be used for more active MIM.

In this paper, we investigate the MIMO-FMCW mutual interfer-
ence from a different perspective of spatial-domain object detection
under interference by leveraging the well-developed adaptive detec-
tion literature. The key challenge here is to derive the unique in-
terference signal model encountered in automotive radar scenarios
and develop robust detectors, e.g., constant false alarm rate (CFAR)
detectors. To this end, we derive a closed-form model for the first
time for MIMO-FMCW mutual interference by explicitly consid-
ering time-frequency incoherence, e.g., differences between victim-
interfering FMCW parameters such as time offset, pulse duration,
chirp slope, etc., as well as spatial incoherence due to the slow-time
code incoherence and MIMO array configuration differences. With
such a closed-form interference model, the MIMO-FMCW MIM can
be cast as a spatial-domain detection problem where the signal of
interest is the object while the interference shares a Kronecker struc-
ture between a complicated Tx steering vector and a Fourier-based
Rx steering vector. To derive a robust detector, we derive the general-
ized likelihood ratio test (GLRT) detector and analyze its theoretical
performance in terms of the probabilities of false alarm and detec-
tion. With both theoretical and numerical validation, we show that
the GLRT detector achieves better average detection performance
than traditional automotive radar detectors under incoherent MIMO-
FMCW mutual interference.



Throughout this paper, we use (·)T , (·)∗, and (·)H to represent
transpose, conjugate, and conjugate transpose, respectively. P⊥

H ≜
I−H(HHH)−1HH denotes the projection matrix projecting to the
space orthogonal to that spanned by the columns of H. QF (γ) de-
notes the complementary cumulative distribution function (CCDF)
of a distribution F at a value γ. The rectangular window function
Da,b(t) = 1 if a ≤ t ≤ b, otherwise Da,b(t) = 0. The indicator
function 1[l ∈ L] = 1 if l ∈ L, otherwise 1[l ∈ L] = 0.

2. OBJECT AND INTERFERENCE SIGNAL MODELS

2.1. MIMO-FMCW Source Waveform

As shown in Fig. 1, we consider a victim radar of M Tx antennas
collocated with N Rx antennas over K pulses on each Tx antenna
per coherent processing interval (CPI). The FMCW waveform of the
victim radar is

s(t) = ejπβt2D0,T (t), (1)

where β is the chirp slope, and T is the pulse duration. The RF
waveform on Tx antenna m over K pulses is [7]

sm(t) =

K−1∑
k=0

ck,ms(t− kTPRI)e
j2πfc(t−kTPRI), (2)

where ck,m is the slow-time MIMO code on the m-th Tx antenna and
k-th pulse, TPRI is the pulse repetition interval (PRI) of the victim
radar, and fc is the carrier frequency. The incoherent interference of
M̃ Tx antennas shares the same waveform expressions as (1) and (2)
but with different chirp slope β̃, pulse duration T̃ , pulse number K̃,
PRI T̃PRI, and MIMO code.

2.2. Object Signal Model

For an object of range R and velocity v, the round-trip propagation
delay from victim radar’s m-th Tx antenna to its n-th Rx antenna is
τm,n(t) = 2R+vt

c
+m dt sin(ϕt)

c
+n dr sin(ϕr)

c
, where dt and dr are

the Tx and Rx antenna element spacing, ϕt and ϕr are the Tx and Rx
angle for the object, and c is the speed of propagation [7]. At the the
n-th Rx antenna of the victim radar in Fig. 1, the backscattered object
signal α

∑M−1
m=0 sm(t− τm,n(t)) is mixed with the conjugate of the

local oscillator (LO) signal
∑K−1

k=0 s∗(t − kTPRI)e
−j2πfc(t−kTPRI)

and sampled at t = kTPRI + l∆T with ∆T , leading to the dechirped
and sampled baseband signal

as
n(l, k) = α′

τe
−j2πfrl1[l ∈ Ls]

M−1∑
m=0

ck,me−j2π(fdk+fϕt
m+fϕrn),

(3)

where α′
τ ≜ αe−j2πfcτejπβτ2

with α denoting the complex ob-
ject amplitude, Ls ≜ [τ/∆T , T/∆T ] is the set of fast-time sam-
ple indices, fϕt = dtsin(ϕt)/λ and fϕr = drsin(ϕr)/λ are, re-
spectively, the normalized spatial frequency at the Tx and Rx arrays
with λ = c/fc denoting the wavelength, τ = 2R/c is the refer-
ence round-trip propagation delay, fr ≜ (βτ + 2v/λ)∆T is the
normalized range frequency, and fd ≜ 2fcTPRIv/c is the normal-
ized Doppler frequency. To separate as

n(l, k) into M transmitter-
corresponding signals, one can first apply a range FFT to as

n(l, k)
leading to

xs
n(l

′, k) = αl′

M−1∑
m=0

ck,me−j2πfdke−j2π(fϕt
m+fϕrn), (4)

where αl′ ≜
∑L−1

l=0 α′
τ1[l ∈ Ls]e−j2π(fr+l′/L)l is the range re-

sponse of the object on range bin l′. Then, when M ≤ K, with an
orthogonal MIMO code sequence ck,mc∗k,m = 1,

∑K−1
k=0 ck,mc∗k,m′ =

0,∀ m′ ̸= m and a near-orthogonality with a Doppler modulation
(e.g., the Chu sequence) [2]

max
f

∣∣∣∣∣
K−1∑
k=0

ck,mc∗k,m′e−j2πfk

∣∣∣∣∣ ≪ K, ∀m′ ̸= m, (5)

the m-th signal corresponding to the m-th Tx antenna can be de-
coded as a weighted Doppler FFT,

ys
m,n(l

′, k′) =

K−1∑
k=0

[xs
n(l

′, k)c∗k,m]e−j2π k′
K

k (6)

≈b(l′, k′)e−j2π(fϕt
m+fϕrn),

where b(l′, k′) ≜ αl′
∑K−1

k=0 e−j2π(fd+
k′
K

)k is the range-Doppler
response of the object at range bin l′ and Doppler bin k′, and the
residual from other Tx antennas is ignored due to (5). We can stack
{ys

m,n(l
′, k′)} into an MN × 1 virtual array for the object at range-

Doppler bin (l′, k′)

ys(l′, k′) = b(l′, k′)at ⊗ ar. (7)

where at ≜ [1, . . . , e−j2πfϕt
(M−1)]T is the M × 1 Tx steering

vector of the object, and ar ≜ [1, . . . , e−j2πfϕr (N−1)]T is the N×1
Rx steering vector of the object.

2.3. Interference Signal Model

Similar to the above object signal model of (4), the range spectrum
of the received interference signal on the n-th Rx antenna, l′-th range
bin and k-th pulse of the victim radar is

xi
n(l

′, k) =

M̃−1∑
m̃=0

α̃l′,k,m̃e−j2πf̃dke−j2π(f̃ϕt
m̃+f̃ϕrn), (8)

where α̃l′,k,m̃ =
∑L−1

l=0 ejπ(β̃−β)(l∆T )2 ∑K̃−1

k̃=0
α̃′
k,k̃,m̃

1[l ∈

Li
k,k̃

]e
−j2π(f̃

r,k,k̃
+ l′

L
)l is the range response of the interference

at range bin l′, pulse k due to the interfering Tx channel m̃,
f̃d = fc

ṽTPRI
c

is the normalized interference Doppler frequency,
and f̃ϕt and f̃ϕr are the normalized Tx and Rx interference spatial
frequencies, α̃′

k,k̃,m̃
, Li

k,k̃
, and f̃r,k,k̃ are the complex amplitude, the

set of fast-time samples, and the normalized interference initial fast-
time frequency of the k̃-th interference pulse falling into the k-th
victim radar’s pulse. Notice that α̃′

k,k̃,m̃
, Li

k,k̃
, and f̃r,k,k̃ depend on

interfering radar’s system parameters, i.e., slow-time MIMO code,
PRI T̃PRI and chirp slope β̃. After MIMO decoding and Doppler
FFT, the interference spectrum on victim radar’s l′-th range bin and
k′-th Doppler bin is

yi
m,n(l

′, k′) = ã′
t,me−j2πf̃ϕrn, (9)

where the decoded interference Tx steering signal is

ã′
t,m =

M̃−1∑
m̃=0

K−1∑
k=0

α̃l′,k,m̃c∗k,me−j2π(f̃d+
k′
K

)ke−j2πf̃ϕt
m̃. (10)



Stacking {yi
m,n(l

′, k′)}m,n into a vector, we obtain the interference
range-Doppler spectrum on a MN × 1 virtual array

yi(l′, k′) = ã′
t ⊗ ãr, (11)

where we denote the M × 1 decoded interference Tx steering vector
and the N × 1 interference Rx steering as

ã′
t ≜ [ã′

t,0, ã
′
t,1, . . . , ã

′
t,M−1]

T , (12)

ãr ≜ [1, e−j2πf̃ϕr , . . . , e−j2πf̃ϕr (N−1)]T . (13)

3. MIMO RADAR DETECTION UNDER INTERFERENCE

In the following, we formulate the MIM in the MIMO-FMCW auto-
motive radar as a spatial-domain detection problem with the derived
object and interference signal models. Given the detection problem
of interest, the generalized likelihood ratio test (GLRT) detector is
derived and its theoretical performance in terms of the probabilities
of false alarm and detection is analyzed in closed-form expressions.

3.1. Problem Formulation

Given the object and interference signal models over a given range-
Doppler bin, the spatial-domain object detection under MIMO-
FMCW mutual interference is formulated as a composite hypothesis
testing problem{

H0, y = ã′
t ⊗ ãr + z

H1, y = bat ⊗ ar + ã′
t ⊗ ãr + z,

(14)

where y is the complex-valued range-Doppler spectrum at a given
range-Doppler bin (l′, k′), b is the complex-valued unknown object
amplitude, at and ar are given defined below (7), ã′

t and ãr are
given by (12) and (13), and the noise z ∼ CN (0, σ2IMN ) with
IMN denoting the identity matrix of size MN and σ2 denoting the
unknown noise power.

It is worth noting that (14) assumes the knowledge of ãr but
treats ã′

t as an unknown vector. The former assumption is motivated
by the observation that it shares the same structure, i.e., a Fourier
vector, as the object Rx steering vector (by comparing (13) with ar

defined below (7)) at the angle of the interference. The interference
angle can be estimated when the victim radar does not actively trans-
mit but passively detect the interference, e.g., in the victim radar’s
idle duration between 2 CPIs. On the other hand, the latter assump-
tion is justified by the expression of (10) as it depends on the inter-
fering radar system parameters such as the FMCW parameters (chirp
slopes and PRIs), MIMO codes, and MIMO Tx array configurations.

3.2. Clairvoyant Detector

If one assumes the perfect knowledge about the decoded interference
Tx steering vector ã′

t and the interference Rx steering vector ãr , a
clairvoyant detector can be derived as

TC(y) =
2

σ̂2
C

∣∣(y − ã′
t ⊗ ãr)

H(at ⊗ ar)
∣∣2

MN
, (15)

where

σ̂2
C =

2

MN − 1

∣∣∣P⊥
at⊗ar

(y − ã′
t ⊗ ãr)

∣∣∣2 (16)

is the unbiased estimator of the noise power σ2 [29]. The clair-
voyant detector suggests subtracting the interference signal ã′

t ⊗ ãr

before correlation, as indicated in (15). This fully eliminates the in-
terference ã′

t ⊗ ãr , while keeps the object correlation gain (at ⊗
ar)

H(at ⊗ ar) = MN .

Lemma 1 The probabilities of false alarm and detection for the
clairvoyant solution in (15) are

PC
FA = QF2,2(MN−1)

(γ), PC
D = QF2,2(MN−1)(λ

C)(γ), (17)

where γ is the detection threshold, F2,2(MN−1)) is the F-distribution
with 2 and 2(MN−1) degrees of freedom, F2,2(MN−1))(λ

C) is the
noncentral F-distribution with 2 and 2(MN−1) degrees of freedom
and noncentrality parameter

λC = 2MN |b|2/σ2. (18)

(17) shows that the clairvoyant detector is a CFAR detector.

3.3. Proposed GLRT Detector

Under the assumption that the decoded interference Tx steering vec-
tor ã′

t is unknown but interference Rx steering vector ãr is known,
we solve the GLRT solution for Problem in (14). Define

θ0 ≜ ã′
t, θ1 ≜ [b,θT

0 ]
T (19)

H0 ≜ IM ⊗ ãr, H1 ≜ [at ⊗ ar,H0], (20)

where θ0 (θ1) is the unknown vector under H0 (H1) and H0 (H1)
is the known matrix under H0 (H1). Then, the likelihood functions
under H0 and H1 are, respectively,

p(y;H0) =
exp

[
− 1

σ2 (y −H0θ0)
H(y −H0θ0)

]
(πσ2)MN

, (21)

p(y;H1) =
exp

[
− 1

σ2 (y −H1θ1)
H(y −H1θ1)

]
(πσ2)MN

. (22)

The GLRT test statistics is [29]

T (y) =

(
max

θ1,σ2 p(y;H1)

max
θ0,σ2 p(y;H0)

) 1
MN

− 1

1/(MN −M − 1)
, (23)

where the likelihood functions maximized over the unknown vari-
ables are

max
θ0,σ2

p(y;H0) = exp(−MN)
( π

MN
yHP⊥

H0
y
)−MN

, (24)

max
θ1,σ2

p(y;H1) = exp(−MN)
( π

MN
yHP⊥

H1
y
)−MN

, (25)

and the projection matrices are

P⊥
H0

= IM ⊗P⊥
ãr
, (26)

P⊥
H1

= P⊥
H0

−
at ⊗ (P⊥

ãr
ar)(at ⊗ (P⊥

ãr
ar))

H∣∣∣at ⊗ (P⊥
ãr
ar)

∣∣∣2 . (27)

By (23), (24), (25), (26) and (27), the GLRT test statistics is

T (y) =
2

σ̂2

∣∣yH
(
at ⊗ (P⊥

ãr
ar)

)∣∣2∣∣∣at ⊗ (P⊥
ãr
ar)

∣∣∣2 , (28)
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Fig. 2: Performance evaluation of ROC curves when M = 4, SNR = −5 dB and ISR = 10 dB.

where σ̂2 = 2
∣∣P⊥

H1
y
∣∣2 /(MN −M − 1) is the unbiased estima-

tor of the noise power σ2 [29]. (28) indicates to project interference
signal ã′

t⊗ãr to 0, i.e., (ã′
t⊗ãr)

H
(
at ⊗ (P⊥

ãr
ar)

)
= ((ã′

t)
Hat)⊗

(ãH
r P⊥

ãr
)ar = 0, as the interference Rx steering vector is pro-

jected to its orthogonal subspace, i.e., ãH
r P⊥

ãr
= 0. However, such

projection leads to the loss of object correlation gain, i.e., (at ⊗
ar)

H
(
at ⊗ (P⊥

ãr
ar)

)
= MN(1− |gr/N |2) < MN , where gr =

ãH
r ar and MN is the ideal object correlation gain of the clairvoyant

detector.

Lemma 2 For (14), the probabilities of false alarm and detection
for the GLRT solution in (28) can be computed as

PFA = QF2,2(MN−1))
(γ), PD = QF2,2(MN−1))(λ)

(γ), (29)

where γ is the detection threshold, F2,2(MN−1)) is the F -distribution
with 2 and 2(MN − 1)) degrees of freedom, F2,2(MN−1))(λ) is
the noncentral F -distribution with 2 and 2(MN − 1)) degrees of
freedom with noncentrality parameter

λ = 2MN |b|2(1− |gr/N |2)/σ2. (30)

It is easily seen from (29) that the proposed GLRT detector is
CFAR in the existence of interference. With the two Lemmas, one
can calculate performance loss from the clairvoyant detector of (15)
to the proposed GLRT detector of (28) λ = λC(1− |gr/N |2) given
by (18) and (30). Moreover, the performance loss stays the same
when ã′

t changes and is reduced when N increases.

3.4. Existing Automotive Radar Detector

The existing automotive radar detector follows a standard correlation
over the virtual array and compares the test statistic with the noise
power estimates [30, Chapter 9],

TMF (y) =
2

σ̂2
MF

1

MN
|yH(at ⊗ ar)|2, (31)

where σ̂2
MF =

∑Nc−1
j=0 σ̂2

MF,j

Nc
is the cell-average noise power esti-

mated from Nc neighboring training cells (range-velocity bins), and
σ̂2
MF,j = 2

MN
|yj |2 is estimated by the range-Doppler spectrum yj

on the j-th training cell. In other words, the existing detector re-
lies on an i.i.d. noise distribution over training cells and ignores the
presence of the unique MIMO-FMCW mutual interference. For this
reason, we refere to the existing detector of (31) as the mismatched
filter.

4. SIMULATION RESULTS

To evalute the performance, we set ã′
t ∼ CN (0, σ̃2R), where σ̃2

is the interference power, and R ≜ [Ri,j ]
M−1
0 is the correlation

matrix with correlation coefficient ρ and Ri,j = ρ|i−j|. We define
signal-to-noise ratio (SNR) as |b|2/σ2 and interference-to-signal ra-
tio (ISR) as σ̃2/|b|2.

The theoretical performance is validated first using receiver op-
erating characteristics (ROC) in Fig. 2. We consider a victim MIMO-
FMCW radar with M = 4 Tx antennas, Tx and Rx antenna element
spacing dr = 0.5λ and dt = Ndr; an object at 33◦ with SNR
= −5dB; an interferer with ρ = 0.3 and ISR = 10dB. We simulate
Fig. 2 (a) and Fig. 2 (b) for a given realization of ã′

t and Rx inter-
ference angle at 45◦. We simulate Fig. 2 (c) over 100 realizations
of ã′

t, and for each realization of ã′
t, we average the ROC perfor-

mance over 100 uniformly sampled Rx angles in [−90◦, 90◦]. For
the mismatched filter, we set the number of training cells for esti-
mating noise power to be 4, and ã′

t is generated randomly on each
training cell.

Fig. 2 (a) validates the theoretical ROC performance of the clair-
voyant detector and the proposed GLRT detector using Monte-Carlo
simulation over 106 runs. Fig. 2 (b) shows that the ROC performance
of the proposed GLRT detector, in general, performs better with the
increase of Rx array size N , and is close to that of the performance
of the clairvoyant detector when N is moderately large. Fig. 2 (c)
shows that the average performance of the proposed GLRT detector
performs in between the clairvoyant detector and the mismatched
filter.

5. CONCLUSION

This paper investigated mutual interference mitigation among
MIMO-FMCW automotive radars. Specifically, we derived the
MIMO-FMCW interference signal model which motivated us to
formulate the problem of interest as a spatial-domain detection
problem. The proposed GLRT detector has been verified both nu-
merically and theoretically that it achieved the CFAR against the
MIMO-FMCW mutual interference and yield consistently better
average detection performance than the existing automotive radar
detector.

6. REFERENCES

[1] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive
radars: A review of signal processing techniques,” IEEE Signal
Processing Magazine, vol. 34, no. 2, pp. 22–35, 2017.



[2] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for ad-
vanced driver-assistance systems and autonomous driving: Ad-
vantages and challenges,” IEEE Signal Processing Magazine,
vol. 37, no. 4, pp. 98–117, 2020.

[3] I. Bilik, O. Longman, S. Villeval, and J. Tabrikian, “The rise of
radar for autonomous vehicles: Signal processing solutions and
future research directions,” IEEE Signal Processing Magazine,
vol. 36, no. 5, pp. 20–31, 2019.

[4] G. Hakobyan and B. Yang, “High-performance automotive
radar: A review of signal processing algorithms and modu-
lation schemes,” IEEE Signal Processing Magazine, vol. 36,
no. 5, pp. 32–44, 2019.

[5] P. Wang, D. Millar, K. Parsons, and P. V. Orlik, “Nonlinear-
ity correction for range estimation in FMCW millimeter-wave
automotive radar,” in 2018 IEEE International Wireless Sym-
posium (IWS), 2018, pp. 1–3.

[6] P. Wang, D. Millar, K. Parsons, R. Ma, and P. V. Orlik, “Range
accuracy analysis for FMCW systems with source nonlinear-
ity,” in ICMIM, 2019, pp. 1–5.

[7] P. Wang, P. Boufounos, H. Mansour, and P. V. Orlik, “Slow-
time MIMO-FMCW automotive radar detection with imperfect
waveform separation,” in 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020,
pp. 8634–8638.

[8] S. Jin and S. Roy, “FMCW radar network: Multiple access and
interference mitigation,” IEEE Journal of Selected Topics in
Signal Processing, vol. 15, no. 4, pp. 968–979, 2021.

[9] Y. Xia, P. Wang, K. Berntorp, L. Svensson, K. Granström,
H. Mansour, P. Boufounos, and P. V. Orlik, “Learning-based
extended object tracking using hierarchical truncation mea-
surement model with automotive radar,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 15, no. 4, pp. 1013–
1029, 2021.

[10] M. Barjenbruch, D. Kellner, K. Dietmayer, J. Klappstein, and
J. Dickmann, “A method for interference cancellation in auto-
motive radar,” in 2015 IEEE International Conference on Mi-
crowaves for Intelligent Mobility (ICMIM), 2015, pp. 1–4.

[11] J. Wang, “Cfar-based interference mitigation for fmcw auto-
motive radar systems,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–10, 2021.

[12] S. Neemat, O. Krasnov, and A. Yarovoy, “An interference miti-
gation technique for FMCW radar using beat-frequencies inter-
polation in the stft domain,” IEEE Transactions on Microwave
Theory and Techniques, vol. 67, no. 3, pp. 1207–1220, 2019.

[13] F. Jin and S. Cao, “Automotive radar interference mitigation
using adaptive noise canceller,” IEEE Transactions on Vehicu-
lar Technology, vol. 68, no. 4, pp. 3747–3754, 2019.

[14] S. Jin, P. Wang, P. Boufounos, P. Orlik, and S. Roy, “Auto-
motive radar interference mitigation with fast-time-frequency
mode retrieval,” in 2022 IEEE Radar Conference (Radar-
Conf22), 2022, pp. 1–6.

[15] F. Norouzian, A. Pirkani, E. Hoare, M. Cherniakov, and
M. Gashinova, “Automotive radar waveform parameters ran-
domisation for interference level reduction,” in 2020 IEEE
Radar Conference (RadarConf20), 2020, pp. 1–5.

[16] M. Wagner, F. Sulejmani, A. Melzer, P. Meissner, and M. Hue-
mer, “Threshold-free interference cancellation method for au-
tomotive FMCW radar systems,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–4.
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