
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Local Eigenmotion Control for Near Rectilinear Halo Orbits
Elango, Purnanand; Di Cairano, Stefano; Kalabic, Uros; Weiss, Avishai

TR2022-060 June 11, 2022

Abstract
The upcoming deployment of the Lunar Orbital Platform-Gateway (LOP-G) on a Near Recti-
linear Halo Orbit (NRHO) calls for reliable, low-cost strategies for station keeping and relative
motion tailor-made for NRHO. This paper proposes a control approach which harnesses the
eigenvectors of state transition matrices (STM) associated with a high-fidelity NRHO solu-
tion in the ephemeris model to design long-term station keeping and bounded relative motion.
The proposed method effectively utilizes the natural motion of the spacecraft so that control
actions are infrequent and fuel efficient. The performance of the proposed approach is demon-
strated via simulations with a state estimator that uses simulated mea- surements from the
Deep Space Network.

American Control Conference (ACC) 2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Local Eigenmotion Control for Near Rectilinear Halo Orbits

Purnanand Elango1, Stefano Di Cairano2, Uroš Kalabić3, Avishai Weiss4

Abstract— The upcoming deployment of the Lunar Orbital
Platform-Gateway (LOP-G) on a Near Rectilinear Halo Orbit
(NRHO) calls for reliable, low-cost strategies for station keeping
and relative motion tailor-made for NRHO. This paper proposes
a control approach which harnesses the eigenvectors of state
transition matrices (STM) associated with a high-fidelity NRHO
solution in the ephemeris model to design long-term station
keeping and bounded relative motion. The proposed method
effectively utilizes the natural motion of the spacecraft so
that control actions are infrequent and fuel efficient. The
performance of the proposed approach is demonstrated via
simulations with a state estimator that uses simulated mea-
surements from the Deep Space Network.

I. INTRODUCTION

The Lunar Orbital Platform-Gateway (LOP-G), also re-
ferred to as the Gateway, will play an important role in fa-
cilitating missions in cis-lunar space and beyond [1], [2]. The
Gateway will be deployed in proximity to a near rectilinear
halo orbit (NRHO), a closed periodic trajectory in the Earth-
Moon circular-restricted three-body problem (CR3BP), due
to its favourable stability properties and visibility from Earth
[3].

The Gateway will be deployed near and not on an NRHO,
because the NRHO of the CR3BP does not take into account
perturbations such as the gravitational attraction of the Sun,
solar radiation pressure (SRP), or lunar J2 effects. Instead
of attempting to follow the NRHO of the CR3BP and using
fuel to compensate for predictable perturbations, standard
practice is to solve via multiple shooting or collocation-
based techniques for a high-fidelity trajectory near an NRHO
that accounts for all major predictable forces in cis-lunar
space [4], [5]. This high-fidelity solution is also referred to
as an NRHO, even though it is no longer closed, periodic,
nor stable. The benefit of this high-fidelity NRHO solution,
however, is that in the absence of any additional perturbing
forces, a spacecraft could naturally follow the trajectory
without expending any fuel, which is a key performance
metric to ensure the long term viability of the Gateway.

In recent years, several station-keeping strategies have
been developed for high-fidelity NRHOs, including target
point methods [6]–[8], crossing control [9]–[11], Hamilto-
nian structure preserving strategy [8], [12] and Floquet mode
control [6], [8], [13]. While the Gateway itself could make
use of such control strategies, these methods can not be
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directly applied to visiting spacecraft such as cargo resupply,
human transport, or inspection and maintenance missions,
which may need to perform long-term bounded, collision-
free relative motion about the Gateway. Given this need,
we propose local eigenmotion-based control: a strategy for
reliable, fuel-efficient station keeping and bounded relative
motion control for the Gateway and its visiting spacecraft.
While formation control for multiple spacecraft on halo
orbits has been developed [14]–[16], for NRHO in particular,
these methods propose control schemes based on the periodic
solution in the CR3BP [17] and rely on the computationally
expensive process of generating a high-fidelity solution for
each spacecraft in the formation [18], [19]. The approach
proposed in this work makes use of a single precomputed
high-fidelity NRHO solution while ensuring safe separation
distance between spacecraft.

While a nonlinear optimal control problem could be solved
to obtain the optimal station-keeping maneuver for the entire
duration of the spacecraft mission, such an approach is
computationally prohibitive. The local eigenmotion-based
control, on the other hand, exploits natural motion to provide
a tractable method for fuel-efficient maneuvering, while also
reducing the frequency of control action, which is another
key performance metric for the long term viability of the
Gateway due to thruster lifecycle. In contrast, LQR-based
station keeping requires frequent control action, and re-
planning a new trajectory in the high-fidelity model using
multiple shooting or collocation whenever the spacecraft
diverges away is prohibitively expensive for on-board com-
putation.

Following the notation in this section, the paper proceeds
in Section II with a description of NRHOs and the dynamical
system model. Section III introduces the notion of local
eigenmotion and develops the control algorithm. Section IV
demonstrates the approach via a case study of two spacecraft
in bounded relative motion about a high-fidelity NRHO that
take simulated measurements from the Deep Space Network.
Finally, concluding remarks are provided in Section V.

A. Notation

The set of natural numbers is N and the set of real numbers
is R. All vectors are column vectors. A real vector of length
n ∈ N belongs to the set represented by Rn. Vectors are
represented as comma separated list of elements enclosed in
[·]. A vector with two elements [a, b] with real numbers a
and b such that a ≤ b also represents a closed interval on the
real line. Similarly, (a, b) denotes an open interval. A vector
constructed by vertically stacking two vectors c and d can
be compactly represented as [c> d>]>. The vector of length



n containing zeros is denoted by 0n.
The kth element of a vector θ of length n ≥ k is denoted

by θ[k]. Given a matrix Θ with n ≥ k rows and m ≥ k
columns, row k is denoted by Θ[k, :], while column k is
denoted by Θ[:, k]. If κ is a vector consisting of elements
from {1, . . . , n}, then θ[κ] is a vector of elements of θ
indexed by the elements in the vector κ. Similarly, Θ[:, κ]
and Θ[κ, :] are matrices composed of columns and rows of
Θ, respectively, indexed by the elements in the vector κ.

The identity matrix is denoted by I , with its dimension
inferred by context. An eigenvalue of a matrix is denoted by
λ unless otherwise specified.

II. NRHO MODEL

Near rectilinear halo orbits (NRHO) are periodic trajec-
tories around the L1 and L2 Lagrange points of the Earth-
Moon circular restricted three-body problem (CR3BP). Ow-
ing to their favorable stability properties and relatively low
station-keeping cost, the NRHO about the L2 point with 9:2
synodic resonance and perilune radius of about 3150 km has
been chosen for deploying the Gateway [1], [20]. However,
NRHOs don’t exist in reality since the CR3BP ignores solar
radiation pressure (SRP), gravitational forces due to celestial
bodies other than Earth and Moon, and effects like lunar J2
zonal harmonics. Ignoring these higher order effects during
mission design would lead to an unacceptably high amount of
fuel consumption. Thus, a high-fidelity astrodynamics model
with ephemeris data is used in practice to generate a solution
which is closest to the NRHO in the CR3BP. This high-
fidelity solution is aperiodic and consists of a finite number
of revolutions around the Moon. The astrodynamics model
considered in this work is based on the one used in [21],
which accounts for all major predictable forces acting on a
spacecraft in cis-lunar space. Any major predictable force has
magnitude larger than that of the largest unpredictable force.
For the model considered here, the largest unpredictable
force influencing a spacecraft is determined to be the indirect
disturbance caused by navigation error feeding into the
spacecraft’s controller [22]. The navigation error is quantified
under the assumption that the spacecraft state is estimated
using measurements from the Deep Space Network (DSN)
[23], [24]. Under these assumptions, the force-magnitude
analysis in [21] determined that the major predictable forces
acting on a spacecraft in the region of space occupied by the
NRHO of the CR3BP are SRP, lunar J2 zonal harmonics,
and gravitational forces due to the Earth, Moon and Sun.

Let the high-fidelity dynamical system be represented by

θ̇(t) = g(t, θ(t), u(t)), (1)

which describes the equations of motion of a spacecraft in
the non-inertial rotating frame (henceforth referred to as the
rotating frame) considered in the CR3BP. The origin of this
frame is at the Earth-Moon barycenter, with x-axis pointing
towards the center of mass of Moon and z-axis along the
angular momentum vector of the Earth-Moon system in the
CR3BP. This frame is commonly chosen for the analysis of
NRHOs since it is relevant for observation and communi-

cation from Earth [4, Section 2.1.2]. The right-hand-side of
the model in (1) accounts for the major predictable external
forces acting on the spacecraft mentioned above. Interested
readers can refer to [25, Section 2.3] for further details. The
state vector θ , [r> v>]> consists of the spacecraft position
vector r and velocity vector v in the rotating frame, and u
represents the control input vector.

A. Control Model

The control approach developed in the following section
makes use of impulsive thrusters to execute maneuvers,
wherein a thrust impulse is modelled to cause an instan-
taneous change in velocity of the spacecraft. Consider the
motion of the spacecraft in the time interval [t1, t2] with a
thrust impulse ζ ∈ R3 applied at t′ ∈ (t1, t2). The control
input u(t) can be represented as

u(t) =

[
03

ζ

]
δ(t− t′), for t ∈ [t1, t2], (2)

where δ(t) is the Dirac delta function. The right-hand-side
of (1) can be rewritten as

g(t, θ(t), u(t)) = f(t, θ(t)) + u(t), (3)

for t ∈ [t1, t2], where f includes the previously mentioned
external forces acting on the spacecraft. The (uncontrolled)
natural motion of the spacecraft is thus given by

θ̇(t) = f(t, θ(t)). (4)

The spacecraft state at t2 obtained after the impulse at t′

can be then determined as follows

θ(t2) = θ(t1) +

∫ t2

t1

g(τ, θ(τ), u(τ))dτ, (5)

= θ(t1) +

∫ t2

t1

([
03

ζ

]
δ(τ − t′) + f(τ, θ(τ))

)
dτ,

= θ(t′) +

∫ t2

t′
f(τ, θ(τ))dτ,

where

θ(t′) = θ(t1) +

[
03

ζ

]
+

∫ t′

t1

f(τ, θ(τ))dτ. (6)

While the propagation of spacecraft dynamics with impulsive
thrust (6) is used in the subsequent development, with
minor modifications, the control approach of Section III can
be adapted for thrust pulses of finite-duration. Note that
finite-duration thrust pulses on the order of minutes can
be approximated fairly well by thrust impulses due to the
sufficiently slow time scales of the system dynamics (4).

B. Baseline Solution and Linearization

Denote the high-fidelity NRHO solution of (4) as the
baseline solution θ̄(t). The baseline solution is an uncon-
trolled, natural motion trajectory which lies near the NRHO
of the CR3BP, and is estimated using the multiple shooting
approach in [4]. The baseline solution θ̄(t) consists of
K , 60 revolutions around the Moon spanning tmax , 394



days, where t ∈ [0, tmax] with t = 0 corresponding to the
Julian date epoch of January 13, 2023. The position in each
revolution which is farthest from the moon is referred to
as an apolune, and the corresponding time instants are of
particular importance to the control strategy of Section III.
Apolune approach times for K revolutions of θ̄(t) are given
by t0apo < t1apo < . . . < tKapo, where t0apo = 0 and tKapo = tmax.

In addition to the baseline, the following section makes
use of the linear time-varying system,

θ̇(t) ≈ A(t)θ(t) + b(t), (7)

where,

A(t) =
∂f(τ, ω)

∂ω

∣∣∣∣
(t,θ̄(t))

, (8a)

b(t) = (I −A(t))θ̄(t), (8b)

which approximates solutions of (4) near θ̄(t).
The proposed control strategy aims to keep the spacecraft

in the region of the state space close to the baseline1 where
the linear approximation (7), which, along with θ̄(t), can be
computed a priori, is valid. Hence, the linear model, although
imperfect, is useful for predicting future evolution of the
nonlinear dynamics (4) and for determining appropriate
control action.

The finite-time behavior of solutions to (4) near the
baseline solution is particularly useful and can be analyzed
using the discrete-time counterpart of (7). More precisely,
if the spacecraft is at θ1 in the vicinity of θ̄(t1) for some
t1 ∈ [0, tmax], then its state at t2 > t1, denoted by θ2, can be
approximated as

θ2 ≈ Φ(t2, t1)θ1 + χ(t2, t1), (9)

where Φ(t2, t1) is the state transition matrix (STM) for
the time interval [t1, t2] obtained by propagating the linear
system

Φ̇(t, t1) = A(t)Φ(t, t1), t ≥ t1, (10)

over the time interval [t1, t2] with initial condition
Φ(t1, t1) = I , and χ(t2, t1) is the residual

χ(t2, t1) =

∫ t2

t1

Φ(t2, τ)b(τ)dτ. (11)

For an eigenvector ν of Φ(t2, t1), there exists a complex
number λ such that

Φ(t2, t1)ν = λν. (12)

If |λ| ≤ 1 then ν is said to be a non-expanding eigenvector,
whereas if |λ| > 1 then ν is said to be an expanding
eigenvector. The STM provides useful local information
about the solutions to (4) near θ̄(t). The natural motion that
results from an initial condition along the expanding and non-
expanding eigenvectors of an STM is termed as expanding
and non-expanding local eigenmotion, respectively. Ideally,

1The region where deviation of the spacecraft from the baseline is much
smaller than the scale of the baseline.

a non-expanding local eigenmotion associated with Φ(t2, t1)
does not diverge away from the baseline for the time interval
[t1, t2], whereas an expanding local eigenmotion diverges
away during the same interval. In practice, a non-expanding
local eigenmotion can still diverge away for t < t2 ow-
ing to the fact that the linear estimate in (9) is only an
approximation of the propagated nonlinear dynamics (4).
Since the linear model is only valid close to the baseline,
the performance of a non-expanding local eigenmotion can
deteriorate when the initial condition is far away from θ̄(t).

III. LOCAL EIGENMOTION CONTROL

The proposed control approach utilizes STMs com-
puted for a sequence of adjacent time intervals spanning
[0, tmax], termed as receding-horizon STMs, to determine
non-expanding local eigenmotion corresponding to those
intervals. Whenever the spacecraft is predicted to diverge
beyond a specified threshold from the baseline θ̄(t), it
is maneuvered to an initial condition of one of the non-
expanding local eigenmotions in a fuel-efficient manner. In
principle, we could compute an STM for the entire duration
of the baseline, and pick a non-expanding eigenmotion to
obtain a bounded relative motion trajectory for the entire
duration of the baseline in one shot. However, this approach
is computationally infeasible because the condition number
of the STM increases as the time duration for which it holds
increases. In practice, the longest time duration for which
the STM is reliable is typically the time required for 12
revolutions around the Moon, which is about 78 days.

The strategy developed in this work considers maneuvers
at apolune [21], but not necessarily every time the spacecraft
visits apolune. The reason for this is as follows. For some
G ≤ 12 and k ≤ K − G, assume that the spacecraft is
initialized on a desirable local eigenmotion in proximity
to the baseline by precisely placing it on an appropriate
eigenvector of Φ(tk+G

apo , tkapo). Numerical simulations of (4)
indicate that the spacecraft exhibits satisfactory bounded
motion relative to the baseline for at least the following G
revolutions around the Moon.

As previously mentioned, the longest time duration
for which the STM is numerically reliable, which here
means a condition number smaller then 108, is the time
required for H , 12 revolutions around the Moon.
The eigenvalues of the STM estimated for [t0apo, t

H
apo] are

spec(Φ(tHapo, t
0
apo)) = {1.14× 104, 4.48, − 0.88 + i0.46, −

0.88 − i0.46, 0.22, 8.75 × 10−5}. Observe that this STM
has two expanding and four non-expanding eigenvectors.
Owing to a significantly large eigenvalue, small perturbations
to a spacecraft on the baseline NRHO solution can cause
it to diverge away rapidly. This is in stark contrast to
the favorable stability properties of the NRHO in CR3BP
model. Furthermore, it is observed that the spectrum of the
STM estimated for [tkapo, t

k+H
apo ] for any k ≤ K − H is

qualitatively similar that of the first H revolutions. As a
result, typically any vector in the span of the four non-
expanding eigenvectors of Φ(tk+H

apo , tkapo) give rise to a non-
expanding local eigenmotion for any k ≤ K −H . Let these



eigenvectors, indexed by the set Ik, be denoted by νki for
i ∈ Ik, k ≤ K −H .

The spacecraft maneuvers occur over a short time interval,
referred to as the control horizon, just before the spacecraft
reaches an apolune. A maneuver to return the spacecraft state
to a non-expanding local eigenmotion is initiated when a
trigger condition is met. Let the position deviation of the
spacecraft at t = tkapo be denoted by ∆rk for k ≤ K−H . The
trigger condition adopted in this work considers the change
in distance between the spacecraft and the baseline solution
since t = 0 and since its recent visit to apolune, and is given
by

∆rk > min
{
ρ∆r0,min{2∆rk−1,∆r0}

}
, (13)

where, ρ is a tuning parameter that contributes to determining
the nature of the generated bounded motion trajectory near
the baseline.

If the trigger condition (13) is satisfied by ∆rk for
some k < K, a fuel-efficient maneuver for transferring the
spacecraft to a non-expanding local eigenmotion starting at
tkapo is computed by solving the discrete-time optimal control
problem

minimize
{αi}i∈I ,
{uj}N−2

j=0

N−2∑
j=0

‖uj‖2 (14a)

subject to θ(τkj+1) = θ(τkj ) +

[
03

uj

]
+

∫ τk
j+1

τk
j

f(γ, θ(γ))dγ, (14b)

0 ≤ j ≤ N − 1,

θ(τkN−1) = θ̄(τkN−1) +
∑
i∈Ik

αiν
k
i , (14c)

θ(τk0 ) = θ̂(τk0 ), (14d)

for the time grid T kN , [τk0 , . . . , τ
k
N−1], where τkj ,

tkapo − (N − 1− j)∆t for j = 0, . . . , N − 1. The maneuver
consists of N − 1 thrust impulses {uj}N−2

j=0 applied at
intervals of ∆t starting from τk0 . Under the assumption
of impulsive input, the representation of the propagated
equations of motion in (6) is utilized for constraint (14b).
The boundary condition (14c) stipulates that the state at end
of the control horizon lies in the span of the non-expanding
eigenvectors of Φ(tk+H+1

apo , tk+1
apo ), which would give rise to a

non-expanding local eigenmotion. Furthermore, in a practical
implementation, the controller will not have access to the
true state of the spacecraft. It receives an estimate, denoted
by θ̂(τk0 ) in (14d), by the state estimator.

The proposed control approach results in the automatic
routine summarized by Algorithm 1. The key components
are described below.

• The input to Algorithm 1 consists of the following

– The baseline solution θ̄(t).
– The time instants tkapo for k = 0, . . . ,K, corre-

sponding to K+1 visits to apolune in the baseline.

Algorithm 1 Local Eigenmotion Control

Input: θ̄(t), {tjapo}Kj=0,∆r0, H, {T jN}Kj=1

1: T 0
H ← [t0apo, t

H
apo]

2: t0 ← t0apo

3: θ ← EigenMotion(∆r0, 0, H)

4: ∆v ← 0

5: (l, k)← (1, 0)

6: while k ≤ K − 1−H do
7: ψ̄ ← θ̄(tk+1

apo )

8: T ← [tkapo, T
k+1
N [1]]

9: θ̃ ← Propagate(θ, T )

10: T ← T k+1
N [[1, N ]]

11: θ ← Propagate(θ̃, T )

12: ∆rk+1 ← PosDev(θ, ψ̄)

13: if Trigger(∆rk+1,∆rk,∆r0) then
14: T k+1

H ← [tk+1
apo , t

k+H+1
apo ]

15: (Ul,∆vl)← OptCtrl(θ̃,∆rk+1, T
k+1
N , T k+1

H )

16: θ ← PropagateCtrl(θ̃, Ul, T
k+1
N )

17: (∆v,∆rk+1)← (∆v + ∆vl,PosDev(θ, ψ̄))

18: l← l + 1

19: end if
20: k ← k + 1

21: end while
22: M ← l − 1

Output: ∆v,
{
Uj ,∆vj

}M
j=1

– The initial distance ∆r0 of the spacecraft from the
baseline.

– Number of downstream revolutions H for which
the STM is computed.

– The time intervals before each visit to apolune in
the baseline solution (excluding the first), T kN for
k = 1, . . . ,K, each with N grid points uniformly
spaced by ∆t.

• Propagate(ψ, T ) returns the state after propagating
the high-fidelity prediction model (4) with initial con-
dition ψ for the time interval specified by the two-
element vector T . When Algorithm 1 operates alongside
a state-estimator, as demonstrated in Section IV, the
first argument of Propagate, ψ, is an estimate of the
spacecraft’s current state.

• PosDev(θ, ψ) returns the position deviation between
states θ and ψ.

• EigenMotion(∆r, k,H) returns the state with a po-
sition deviation of ∆r from the state at the kth apolune
of the baseline, and lying along the vector

∑
i∈Ik νi,

where νi for i ∈ Ik are the non-expanding eigenvectors
of Φ(tk+H

apo , tkapo).



• Trigger evaluates to true if the trigger condition (13)
is satisfied.

• OptCtrl(ψ,∆r, T kN , T
k
H) solves the discrete-time op-

timal control problem (14) for the time interval T kN , i.e.,
for a maneuver to take place right before the spacecraft’s
kth apolune visit. Constraint (14c) is constructed using
the non-expanding eigenvectors of the STM for the
interval T kH = [tkapo, t

k+H
apo ], and the initial condition

(14d) is specified by ψ. OptCtrl returns the control
effort required for the maneuver, and the control solu-
tion estimated as a matrix with the control input for
each τkj for j = 0, . . . , N − 2 stacked row-wise.

• PropagateCtrl(ψ,U, T kN ) propagates (1) over the
control horizon T kN using the control solution U re-
turned by OptCtrl with initial condition ψ.

• ∆vj for j = 1, . . . ,M is the cost for M maneuvers
initiated in Algorithm 1 over the duration [0, tmax]. The
cumulative cost of the M maneuvers is given by ∆v.

IV. RESULTS

This section demonstrates a practical implementation of
the proposed control strategy by augmenting Algorithm 1
with a Kalman Filter which estimates states using simulated
range and range-rate measurements from the Deep Space
Network (DSN). The measurements are received at a rate
of 6 hr which is reasonable for the DSN, and adequate for
accurate state estimation. The errors in range and range-rate
measurements come from standard normal distributions with
standard deviation of 10 m and 1 mm s−1, respectively. More
details on the DSN error statistics can be found in [21].

The simulations were implemented in MATLAB ver.
2019b running on a MacBook Pro with 16 GB RAM and
2.6 GHz Intel 6-Core i7 processor. The proposed approach
is demonstrated for the case of two spacecraft executing
bounded relative motion in the vicinity of the baseline
solution. In particular, the Gateway is subjected to tight
station keeping about the baseline while a visiting spacecraft
is made to execute collision-free relative motion near the
Gateway.

The trajectory computed for the Gateway, referred to as
Solution 1, uses ρ = 10, ∆t = 6 hr, ∆r0 = 0.5 km, and
N = 4, whereas the trajectory for the visiting spacecraft,
referred to as Solution 2, is computed with ρ = 2, ∆t = 12
hr, ∆r0 = 50 km, and N = 6. Certain parameters in
Algorithm 1 influence the nature of the bounded motion
solution. In particular, the choice of ρ in (13) and ∆r0

for the two Solutions are instrumental in ensuring that they
remain collision-free. These parameters are tuned such that
the resulting solutions are infrequent and fuel efficient.

It is worthwhile to note that the effect of navigation uncer-
tainty is more prominent for tight station-keeping maneuvers
near the baseline. When a maneuver is initiated close to the
baseline, the final state (which lies close to the baseline and is
aligned with the desired eigenvector) is more easily corrupted
by navigation uncertainly owing to its small magnitude

TABLE I: Annual station-keeping performance

Solution 1 Solution 2
Maneuvers 13 15

Control duty cycle 0.8 2.05
[% time annually]

Fuel consumption [m s−1] 0.05 0.7

measured relative to the baseline. As a consequence, the
spacecraft could be maneuvered to a state which is not
properly aligned with the desired eigenvector, which will
then cause the spacecraft to diverge prematurely. Hence, tight
station keeping could potentially necessitate more annual
maneuvers. This pitfall is avoided while generating Solution
1 by choosing a small value of ∆r0 and a large value for ρ.
This allows the spacecraft to slowly offset from the baseline
over a duration of 150 days and settle at a distance of about
9 km from the baseline where maneuvers are not triggered
too often.

The annual station-keeping performance of Solutions 1
and 2 are shown in Table I, and the distance of the Solutions
from the baseline as a function of time is shown in Fig.
1. With the proposed strategy, the annual station-keeping
cost for the Gateway is comparable to that of state-of-the
art techniques for station keeping on NRHO [21], [26].
The fuel required for the visiting spacecraft is significantly
higher since it maintains a larger distance from the baseline
than the Gateway. As such, each maneuver for transferring
to a non-expanding local eigenmotion of the baseline is
more expensive. Although the annual cost for Solution 2
is significantly higher than that for Solution 1, it is still
comparable to the cost reported by competing techniques
[21].

Another notable benefit of the proposed approach is the
relatively few maneuvers required to sustain annual bounded
motion. The black segments on Solutions 1 and 2 in Fig. 1
highlight the significantly small annual control duty cycle.
Furthermore, Solutions 1 and 2 do not pose a risk of
collision between the Gateway and the visiting spacecraft.
The distance between the solutions is never smaller than 8
km, as shown in Fig. 2.

V. CONCLUSIONS

This work proposes a control strategy for bounded motion
in the vicinity of a near rectilinear halo orbit (NRHO) where
the Gateway will be deployed. The key idea is to initiate
fuel-efficient thruster firing to transfer the spacecraft to a
state which yields bounded natural motion for a finite time
whenever the spacecraft diverges significantly away from
the baseline solution. The effectiveness of the strategy is
demonstrated via a realistic simulation which includes a
state estimator taking simulated measurements from the Deep
Space Network. The annual station-keeping performance in
terms of total fuel consumption and the total maneuver
duration is shown to be at par or better than competing state-
of-the art techniques.



Fig. 1: Position deviations of Solution 1 (for Gateway) and Solution
2 (for the visiting spacecraft) with respect to the baseline are shown.
The 13 maneuver segments of Solution 1 and 15 maneuver segments
of Solution 2 are marked in black in black. The solutions seem to
intersect at around 150 days, but that is only due to the log scale
of the plot. Fig. 2 confirms that the least separation between the
two solutions is at least 8 km.

Fig. 2: Position deviation of Solution 1 (for Gateway) with respect
to Solution 2 (for the visiting spacecraft) is shown. The two
Solutions maintain a separation distance of at least 8 km at all
times.
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