
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

PYROBOCOP: Python-based Robotic Control
&Optimization Package for Manipulation

Raghunathan, Arvind; Jha, Devesh K.; Romeres, Diego

TR2022-057 June 03, 2022

Abstract
PYROBOCOP is a Python-based package for con-trol, optimization and estimation of robotic
systems described by nonlinear Differential Algebraic Equations (DAEs). In par-ticular, the
package can handle systems with contacts that are described by complementarity constraints
and provides a gen-eral framework for specifying obstacle avoidance constraints. The package
performs direct transcription of the DAEs into a set of nonlinear equations by performing
orthogonal collocation on finite elements. PYROBOCOP provides automatic reformu-lation
of the complementarity constraints that are tractable to NLP solvers to perform optimization
of robotic systems. The package is interfaced with ADOL-C [1] for obtaining sparse deriva-
tives by automatic differentiation and IPOPT [2] for performing optimization. We evaluate
PYROBOCOP on several manipulation problems for control and estimation.

IEEE International Conference on Robotics and Automation (ICRA) 2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





PYROBOCOP: Python-based Robotic Control & Optimization Package
for Manipulation

Arvind U. Raghunathan1, Devesh K. Jha1and Diego Romeres1

Abstract— PYROBOCOP is a Python-based package for con-
trol, optimization and estimation of robotic systems described
by nonlinear Differential Algebraic Equations (DAEs). In par-
ticular, the package can handle systems with contacts that are
described by complementarity constraints and provides a gen-
eral framework for specifying obstacle avoidance constraints.
The package performs direct transcription of the DAEs into a
set of nonlinear equations by performing orthogonal collocation
on finite elements. PYROBOCOP provides automatic reformu-
lation of the complementarity constraints that are tractable to
NLP solvers to perform optimization of robotic systems. The
package is interfaced with ADOL-C [1] for obtaining sparse
derivatives by automatic differentiation and IPOPT [2] for
performing optimization. We evaluate PYROBOCOP on several
manipulation problems for control and estimation.

I. INTRODUCTION

Most manipulation applications are characterized by pres-
ence of constrained environments while dealing with chal-
lenging underlying phenomena like unilateral contacts, fric-
tional contacts, impact and deformation [3]. With this under-
standing, we present a python-based robotic control and opti-
mization package (called PYROBOCOP) that allows solution
to a large class of mathematical programs with nonlinear and
complementarity constraints. The current paper and package
only considers systems which can be represented by DAEs.
Integration with physics engines is left as a future work as
that requires additional development.

Contact-rich robotic manipulation tasks could be modeled
as complementarity systems. Obtaining a feasible, let alone
an optimal trajectory, can be challenging for such systems.
An effective integration of the high-level trajectory plan-
ning in configuration space with physics-based dynamics is
necessary in order to obtain optimal performance of such
robotic systems. To the best of author’s knowledge, none of
the existing python-based open-source optimization packages
can provide support for trajectory optimization with support
for complementarity constraints that arise from contact-rich
manipulation and the easy specification of obstacle avoidance
constraints. Such optimization capability is, however, highly
desirable to allow easy solution to optimization problems for
a large-class of contact-rich robotic systems.

In this paper, we present PYROBOCOP , a lightweight but
powerful Python-based package for control and optimization
of robotic systems. The formulation in PYROBOCOP allows
us to handle contact and collision avoidance in an unified
manner. PYROBOCOP uses ADOL-C [1] and IPOPT [2]

1All authors are with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA 02139. Email– {raghunathan,jha,
romeres}@merl.com

at its backend for automatic differentiation and optimization
respectively. The main features of the package are:
• Contact modeling by complementarity constraints
• Obstacle avoidance modeling by complementarity con-

straints
• Automatic differentiation for sparse derivatives
• Support for minimum time problems
• Support for optimization over fixed mode sequence

problems with unknown sequence time horizons
• Support for parameter estimation in linear complemen-

tarity systems.
The features described above should convince the reader
that PYROBOCOP addresses lots of important optimization
problems for manipulation systems. By bringing together
ADOL-C [1] and IPOPT [2] we believe that PYROBOCOP
would be very useful for real-time model-based control of
manipulation systems. Codes and instructions for installing
and using PYROBOCOP could be found in [4] under a
research only license.
Contributions. The main contributions of the paper are:

1) We present a python-based package for optimization
and control of robotic systems with contact and colli-
sion constraints.

2) We evaluate our proposed package, PYROBOCOP ,
over a range of different manipulation systems for
control and estimation.

For the sake of space, we do not report the formulation of
collision avoidance with complementarity constraints. The
interest reader can refer to the arXiv version of the work [5].

II. RELATED WORK

Our work is closely related to various optimization
techniques proposed to solve contact-implicit trajectory opti-
mization. Some related examples could be found in [6], [7],
[8], [9], [10], [11], [12], [13]. In a more general setting, our
work is related to trajectory optimization in the presence of
non-differentiable constraints. These problems are common
in systems with constraints like non-penetrability [14], min-
imum distance (e.g., in collision avoidance) [15], or in some
cases robustness constraints [16].

Some of the existing open-source software for dynamic
optimization are Optimica [17], ACADO Toolkit [18],
TACO [19], pyomo.dae [20], Drake [21] and CasADi [22].
All of the cited software leverage automatic differentiation
to provide the interfaced NLP solvers with first and second-
order derivatives. However, these software do not provide
convenient interfaces for handling complementarity con-
straints and obstacle-avoidance which are key requirements



in robotic applications. More recently, some packages have
been proposed to perform contact-rich tasks in robotics [23].
However, the solver proposed in [23] uses DDP-based [24]
techniques which suffer from sub-optimality and difficulty in
constraint satisfaction. Compared to most of the other tech-
niques in open literature, PYROBOCOP implements different
formulations for handling complementarity constraints using
NLP solvers robustly.

The optimization method presented in our work is most
closely related to the direct trajectory optimization method
for contact-rich systems earlier presented in [11], [12], [13].
The authors pose contact dynamics as a measure differential
inclusion and employ an augmented Lagrangian to solve the
resulting complementarity constrained optimization problem.
[14] handle the complementarity constraint by relaxing to
an inequality and solving using an active-set solver. In an
analogous manner, other optimization packages like CasADi
and Pyomo can also be extended for the solution to trajec-
tory optimization in presence of complementarity constraints
through a similar reformulation of the complementarity
constraints. We provide an adaptive approach for relaxing
the complementarity constraints. Further, we also provide a
novel formulation for trajectory optimization in the presence
of minimum distance constraints for collision avoidance. To
the best of our knowledge, there is no other existing open-
source, python-based optimization package that can handle
constraints arising due to frictional contact interaction and
collision avoidance.

III. PROBLEM DESCRIPTION

PYROBOCOP solves the dynamic optimization problem

min
x,y,u,p

tf∫
t0

c(x(t), y(t), u(t), p)dt+ φ(x(tf ), p) (1a)

s.t. f(ẋ(t), x(t), y(t), u(t), p) = 0, x(t0) = x̂ (1b)
([y(t)]σl,1

− νl,1)([y(t)]σl,2
− νl,2) = 0 ∀ l ∈ L (1c)

x ≤ x(t) ≤ x, y ≤ y(t) ≤ y, u ≤ u(t) ≤ u (1d)

where x(t) ∈ Rnx , y(t) ∈ Rny , u(t) ∈ Rnu , ẋ(t) ∈ Rnx ,
p ∈ Rnp are the differential, algebraic, control, time deriva-
tive of differential variables and time-invariant parameters
respectively. The function φ : Rnx+np → R represents
Mayer-type objective function [25] term and is not a function
of the entire trajectory. In addition, x, x, y, y, u, u are the
lower and upper bounds on the differential, algebraic and
control variables. The initial condition for the differential
variables is x̂. Constraints (1b)-(1c) are the Differential
Algebraic Equations (DAEs) modeling the dynamics of the
system with f : R2nx+ny+nu → Rnx+ny−nc with nc = |L|.
Each l ∈ L defines a pair of indices σl,1, σl,2 ∈ {1, . . . , ny}
that specifies the complementarity constraint between the
algebraic variables [y(t)]σl,1

and [y(t)]σl,2
. In (1c) νl,1, νl,2

correspond to either the lower or upper bounds on the
corresponding algebraic variables. For example, if they are
set respectively to the lower and upper bounds of correspond-
ing algebraic variables then (1c) in combination with the

bounds (1d) model the complementarity constraint

0 ≤ [y(t)− y]σl,1
⊥ [y − y(t)]σl,2

≥ 0.

The dynamic optimization problem in (1) is transcripted to
a NonLinear Program (NLP) using the Implicit Euler time-
stepping scheme. The time interval [t0, tf ] is discretized into
Ne finite elements of width hi such that

∑Ne

i=1 hi = tf − t0.
Let ti = t0 +

∑
i′≤i hi′ denote the ending time of the finite

elements i. The NLP that results is

min

Ne∑
i=1

hic(xi, yi, ui−1) + φ(xNe
, p) (2a)

s.t. f(ẋi, xi, yi, ui−1) = 0, x0 = x̂ (2b)
([yi]σl,1

− νl,1)([yi]σl,2
− νl,2) = 0 ∀ l ∈ L (2c)

x ≤ xi ≤ x, y ≤ yi ≤ y, u ≤ ui ≤ u (2d)

xi+1 = xi + hiẋi (2e)

where the decision variables in (2) are xi, ẋi, yi and ui.
The subscript i approximates the value of the corresponding
variable at time ti. The constraints (2b)-(2c) are imposed
for i ∈ Ne. The constraint in (2e) models Implicit Euler
time-stepping scheme and is imposed for i ∈ Ne \ {Ne}.
If complementarity constraints are present then (2) is an
instance of a Mathematical Program with Complementarity
Constraints (MPCC).

MPCCs are well known to fail the standard Constraint
Qualification (CQ) such as the Mangasarian Fromovitz CQ
(MFCQ), see [26]. Hence, solution of MPCCs has warranted
careful handling of the complementarity constraints when
used in Interior Point Methods for NLP (IPM-NLP) using
relaxation [27], [28] or penalty formulations [29]. In the case
of active set methods, the robust solution of MPCC relies on
special mechanism such as the elastic mode [30].

PYROBOCOP implements two possible relaxation
schemes for complementarity constraints

αl([yi]σl,1
− νl,1)([yi]σl,2

− νl,2) ≤ δ ∀ l ∈ L (3a)∑
l∈L

αl([yi]σl,1
− νl,1)([yi]σl,2

− νl,2) ≤ δ (3b)

where αl = 1 if the involved bounds (νl,1, νl,2) are either
both lower or both upper bounds. If one of the bounds is a
lower bound and other is an upper bound then αl is set to
−1. Note that the choice of αl ensures that the resulting
product is nonnegative whenever (2d) are satisfied. The
first approach relaxes each complementarity constraint by a
positive parameter δ [27] while the second approach imposes
the relaxation on the summation of all the complementarity
constraints over a finite element i [30]. In addition, we also
have flexibility to keep the δ fixed to a constant parameter
through out the optimization or link this with the barrier
parameter in IPM-NLP [27], [28].

IV. SOFTWARE DESCRIPTION

Figure 1 provides a high-level summary of the flow
of control in PYROBOCOP. Detailed descriptions on the



User

                 Environment

Dynamics
Constraints
Cost Function
Derivatives                        
(Optional)

           Main execution file

Optimization param           
Visualization

PyRoBoCOP

                OCP2NLP

MPCC Formulation
Collocation methods     
Explicit Euler

Output

       Control & Optimization

Optimal Trajectory.        
Contact Forces

Backend

                IPOPT

MPCC Solver.          

               ADOL-C

Automatic
Differentiation           

Fig. 1: Workflow in PYROBOCOP. The dynamics provided
by the user to create a MPCC which is then optimized
using IPOPT and the gradients are evaluated using automatic
differentiation via ADOL-C.

software API and classes are available in the Software De-
scription in [4]. A user provided class specifies the dynamic
optimization problem (1). This is also briefly described in
Figure 1. The user needs to provide the equality constraints
for the dynamical system. These constraints could include
the dynamics information for the system, the bounds on the
system state and inputs, and information about complemen-
tarity constraints, if any. Furthermore, a user needs to provide
the objective function, and also has the option to provide
derivative information (note the derivative information is
optional). PYROBOCOP expects the user provided class to
implement the following methods in order to formulate an
MPCC (or NLP) (also shown in Figure 1).
• get info: Returns information on (1) including nd,
na, nu, |L|, np, Ne, hi.

• bounds: Returns the lower and upper bounds on the
variables x(t), ẋ(t), y(t), u(t) at a time instant t.

• initialcondition: Returns the initial conditions
for the variables x(t0), i.e. values of the differential
variables at initial time instant t0.

• initialpoint: Returns the initial guess for the
variables x(t), ẋ(t), y(t), u(t) at a time instant t. This
initial guess is passed to the NLP solver.

• objective: Implements method to evaluate and re-
turn c(x(t), y(t), u(t), p) at a time instant t.

• constraint: Implements method to evaluate and
return (f(x(t), ẋ(t), y(t), u(t), p) at a time instant t.

We provide a description of optional methods that are
expected if certain specified conditions are satisfied.
• bounds finaltime: Returns the bounds on the vari-

ables x(tf ) at the final time. This method allows to
specify a final time condition on a subset or all of the
differential variables.

• bounds params: Returns information on lower and
upper bounds on the parameters p. This method must
be implemented if np > 0.

• initialpoint params: Returns the initial guess
for the parameters p. This method must be implemented
if np > 0. This initial guess is passed to the NLP solver.

• get complementarity info: Returns information
on the complementarity constraints in (1) i.e. L and also

information on whether the lower or upper bound is
involved in the complementarity constraint. This method
must be implemented if L 6= ∅.

• objective mayer: Implements method to evaluate
and return φ(x(tf ), p).

• get objects info: Returns the information on
number of objects nO, flags to indicate if these obstacles
are static or dynamic and the number of vertices nvi for
the polytope bounding the objects.

• get object vertices: Implements and returns the
matrix Vi(x(t), y(t)) ∈ R3×nvi representing the vertices
of the polytope bounding the objects. This method is
called only when get objects info is implemented
and nO > 0.

PYROBOCOP is interfaced with ADOL-C [1] to compute
derivatives (see the Backend block in Figure 1). Note that
the ADOL-C can also provide the sparsity pattern of the
constraint Jacobian and Hessian of the Lagrangian. As men-
tioned earlier, the exploitation of sparsity in computations
of the NLP is critical to solve large problems. To provide
derivatives PYROBOCOP used ADOL-C to set up tapes [1]
for evaluating: (i) the objective (2a), (ii) constraints including
the DAE (2b) and a reformulation of (2c), and (iii) the
Hessian of the Lagrangian of the NLP (2). The set-up of the
tape is done prior to passing control to the NLP solver. The
advantage of this approach is that evaluation of (2a), (2b) are
now C-function calls instead of Python-function calls. This
considerably reduced the time spent in function evaluations
for the NLP solver. As shown in Figure 1, PYROBOCOP
uses IPOPT as the optimization solver. The choice of the
solver agrees with our desire of having an open source
software package, for this reason IPOPT is chosen over other
competitors like SNOPT [31] and filterSQP [32].

The user has flexibility in specifying how the comple-
mentarity constraints are solved. The choices are: (i) (3a)
with δ fixed, (ii) (3b) with δ fixed, (iii) (3a) with δ set
equal to the interior point barrier parameter, (iv) (3b) with
δ set equal to the interior point barrier parameter, and (v)
the objective function is appended with complementarity
terms as

∑Ne

i=1

∑
l∈L

αl([yi]σl,1
− νl,1)([yi]σl,2

− νl,2). The

convergence behavior of formulations can be quite different
and we provide these implementations so the user can choose
one that works best for the problem at hand. As empirical
guidelines, we recommend options (iii) and (iv) since they
enforce the complementarity constraints in a gradual manner
as the algorithm converges to a solution.

V. NUMERICAL RESULTS

In this section, we test PYROBOCOP in several robotic
simulations providing solutions to trajectory optimization
problems including several systems with complementarity
constraints. To foster reproducibility, the source code for
each of the following examples is available in [4].

A. Planar Pushing

In this section, we show some results for planar pushing.
We briefly describe the dynamic model here .For more de-



0.0 0.1
X [m]

0.0

0.1

0.2

0.3

0.4

0.5

Y
 [m

]

(a) Trajectory for xg = (0, 0.5, π)

0 2 4 6 8 10
0.0

0.5

f→ n
 [N

]

0 2 4 6 8 10
−0.25
0.00
0.25

f→ t
 [N

]

0 2 4 6 8 10
t [s]

−0.025
0.000
0.025

̇
p y

[m
/s

]

(b) Optimal Controls

−0.05 0.00 0.05 0.10
X [m]

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Y
 [m

]

(c) Trajectory for xg = (0, 0, π)

0 2 4 6 8 10
0.0

0.5

f→ n
 [N

]

0 2 4 6 8 10
−0.25
0.00
0.25

f→ t
 [N

]

0 2 4 6 8 10
t [s]

−0.025
0.000
0.025

̇
p y

[m
/s

]

(d) Optimal Controls

Fig. 2: Optimal pushing sequences and control inputs obtained by solving the MPCC for two different goal conditions. The
switching sequence between sticking and slipping contact formation could be visualized by the trajectory of ṗy . The pusher
maintains a sticking contact with the slider when ṗy = 0. For clarity, we show only few frames of the trajectory in Fig. 2c.

Fig. 3: A schematic of cartpole with softwalls and planar
pusher-slider system we study in this paper.

tailed description of the pushing model, readers are referred
to [33] and [34]. A schematic for a pusher-slider system is
shown in Figure 3. The pusher interacts with the slider by
exerting forces in the normal and tangential direction denoted
by f−→n , f−→

t
(as shown in Figure 3) as well as a torque τ

about the center of the mass of the object. Assuming quasi-
static interaction, the limit surface [35] defines an invertible
relationship between applied wrench w and the twist of
the slider t. The applied wrench w causes the object to
move in a perpendicular direction to the limit surface H(w).
Consequently, the object twist in body frame is given by
t = ∇H(w), where the applied wrench w = [f−→n , f−→t , τ ]

could be written as w = JT (−→n f−→n +
−→
t f−→

t
). For the contact

configuration shown in Figure 3, the normal and tangential
unit vectors are given by −→n = [1 0]T and

−→
t = [0 1]T .

The equations of motion of the pusher-slider system are

ẋ = f(x,u) =
[
Rt ṗy

]>
(4)

where R is the rotation matrix. Since the wrench ap-
plied on the system depends of the point of contact of
pusher and slider, the state of the system is given by
x = [x y θ py]

T and the input is given by u =
[f−→n f−→

t
ṗy]

T . The elements of the input vector must
follow the laws of coulomb friction which can be expressed
as complementarity conditions as follows:

0 ≤ ṗy+ ⊥ (µpf−→n (t)− f−→t (t)) ≥ 0

0 ≤ ṗy− ⊥ (µpf−→n (t) + f−→
t
(t)) ≥ 0 (5)

where ṗy = ṗy+ − ṗy− and the µp is the coefficient
of friction between pusher and slider. The complementarity

conditions in Eq. (5) mean that both ṗy+ and ṗy− are non-
negative and only one of them is non-zero at any time instant
and ṗy is non-zero only at the boundary of friction-cone.

Two pushing trajectories with different goal configura-
tions from the same initial state are shown in Figure 2.
In both these examples, the initial pose of the slider is
xinit = (0, 0, 0) and the desired goal pose of the slider
is xg = (0, 0.5, π) and (0, 0, π). The initial point of contact
between the pusher and the slider is py = 0. For all these
examples, the maximum normal force is set to 0.5 N and
the coefficient of friction is µp = 0.3. The corresponding
control trajectory shows the sequence of forces fn and ft
used by the slider to obtain the desired trajectory. The plot
of ṗy shows the sequence of sticking and slipping contact
as found by PYROBOCOP and thus this also decides the
contact point between the pusher and the slider. Note that
the pusher maintains sticking contact with slider whenever
ṗy = 0, and slipping contact otherwise.

B. Assembly of Belt Drive Unit

An example of a complex manipulation problem that
involves contacts, elastic objects and collision avoidance
is provided by the Belt Drive Unit system. This assembly
challenge was presented as one of the most challenging
competition in the World Robot Summit 20181 [36]. The real
world system is represented in Figure 4a where the objective
of the manipulation problem is to wrap the belt, held by a
robotic manipulator around the two pulleys. The elastic belt
is modeled through a 3D keypoint representation. The hybrid
behavior of the model generated by the contacts between the
belt and the pulleys and the elastic properties of the belt is
captured by the complementarity constraints.

The full manipulation task has been divided into two
subtasks as shown in Figure 4b. The goals of the first
and second subtask are to wrap the belt around the first
and second pulley, respectively. We formulate two trajectory
optimization problems one for each of the two subtasks as a
MPCC of the form in (1).

Details on the modeling assumptions, the division into the
two subtasks, the exact formulation including the explanation
of the dynamics and complementarity constraints can be

1https://worldrobotsummit.org/en/about/

https://worldrobotsummit.org/en/about/


6 DOF robot

F/T sensor
Parallel jaw gripper

Pulleys

Belt

P2

P1

(a) Real Setup of the Belt Drive Unit system.

K1

K2
K1

K2P1 P1P2P2

S1 S2

(b) Visualization of two subtasks decompo-
sition, S1 and S2. P1 and P2 are the pulleys. (c) Optimal trajectory to assemble the belt.

Fig. 4: BDU system is shown in (a). In (b) the blue lines represent the belt gripped by a robot at keypoint K1, and K2 is
the lower keypoint. In figure (c) the orange points represent the trajectory of the upper keypoint, K1, and the blue points
represent the lower keypoint, K2, which together represent the model of the belt. The green and red points are the starting
and the final points, respectively. The belt approaches the first pulley (not shown), then there is a downwards movement to
hook the pulley with the lower keypoint during S1. K1 is now hooked onto the pulley and will not move. Then, the higher
keypoint, K2, moves toward the second pulley (not shown) stretching the belt and wraps around the pulley to conclude S2.

−0.2 0.0 0.2 0.4 0.6
X[m]

−0.2

0.0

0.2

0.4

0.6

Y
[m
]

(a) Pushing sequence with xinit
(0, 0, 0) and xg = (0.5, 0.5, 0)

0 2 4 6 8 10
0.0

0.5

f→ n
 [N

]

0 2 4 6 8 10
−0.1
0.0
0.1

f→ t
 [N

]

0 2 4 6 8 10
t [s]

−0.025
0.000
0.025

̇
p y

[m
/s

]

(b) Optimal Controls obtained for
Example 5a

−0.2 0.0 0.2 0.4 0.6
X[m]

−0.2

−0.1

0.0

0.1

0.2

Y
[m
]

(c) Pushing sequence xinit (0, 0, 0)
and xg = (0.45,−0.1, 3π

2
)

0 5 10 15 20 25 30
0.0

0.5

f→ n
 [N

]

0 5 10 15 20 25 30
−0.1
0.0
0.1

f→ t
 [N

]

0 5 10 15 20 25 30
t [s]

−0.025
0.000
0.025

̇
p y

[m
/s

]

(d) Optimal Controls obtained
for Example 5c.

Fig. 5: Planar pushing in the presence of obstacles. Our proposed formulation in PYROBOCOP allows us to solve the
collision avoidance. The trajectory of ṗy shows the slipping contact sequence between the pusher and the slider. Pusher
maintains a sticking contact when ṗy = 0.

found in our previous paper [37]. In Figure 4c we report
successful trajectories computed by PYROBOCOP to assem-
ble the belt drive unit combining the optimal trajectories
obtained in the two subtasks. The optimal trajectory was
implemented on the real system with a tracking controller,
see [37] for further details.

C. Planar Pushing With Obstacles
In this section, we show the solution to some planar

pushing scenarios in the presence of obstacles and show that
our proposed method can handle complementarity constraints
as well as obstacle avoidance constraints simultaneously. We
demonstrate our approach on two different pushing scenarios
with same initial condition for the slider but different location
of the obstacles and different goal states for the slider.
In particular, the initial state of the slider in both these
examples was set to xinit = (0, 0, 0) and the goal state for
the two conditions was specified as xg = (0.5, 0.5, 0) and
(−0.1,−0.1, 3π/2). We add the obstacles next to the goal
state so that PYROBOCOP has to find completely different
solution compared to the case when there are no obstacles.
The initial point of contact between the pusher and the slider
is py = 0. The optimal pushing sequence to reach the goal
states for the slider are shown in Figures 5a and 5c. To

provide more insight about the solution, we also provide the
plot of the input sequences in Figures 5b and 5d. The slipping
contact sequence between the slider and the pusher is seen
in the plot of ṗy . Sticking contact occurs when ṗy = 0. We
show that the proposed solver can optimize for the desired
sequence of contact modes in order to reach the target state.
For the example in Figure 5a, the objective is a function of
target state and control inputs. For the example in Figure 5c,
the Mayer objective function is used.

D. Optimization with Mode Enumeration
We show our optimization approach over fixed mode

sequences using the quasi-static pushing model presented in
Section V-A while considering sticking contact at the 4 faces
of the slider (see Figure 3). In particular, we use the dynamics
model and the problem described in [38] to show solutions
obtained by PYROBOCOP in the case the mode sequence is
pre-specified and the resulting problem is feasible.

The contact model in this case can be obtained from the
model described in Section V-A, Eq 4 with ṗy = 0. The
modes appear based on which face the pusher contacts with
the slider, and thus we have four different modes that could
be used during any interaction. For a given mode, state-
space of the pusher-slider system is then 3 dimensional while



−0.1 0.0 0.1 0.2 0.3
X [m]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Y
 [m

]

(a) Optimal pushing sequence.

0.0 2.5 5.0 7.5 10.0 12.5

0.3

0.4

0.5

f→ n
 [N

]

0.0 2.5 5.0 7.5 10.0 12.5
t [s]

0.0

0.1

f→ n
 [N

]

(b) Optimal control inputs.

Fig. 6: Optimal pushing sequence and control inputs obtained
by optimizing mode sequence with PYROBOCOP.

the input is only 2 dimensional. The optimization process
ensures continuity of dynamics and selection of final time
for each mode in a trajectory. The initial state of the slider
is xinit = (0, 0, 0) and the goal state of the slider is
xg = (0, 0, π). The two modes we use for this example are
pushing from the left face followed by pushing from the top
face of the slider. The trajectory obtained by PYROBOCOP
is shown in Figure 6a. The inputs used in different modes is
shown in Figure 6b. The objective function used is the Mayer
objective function, i.e., the minimum-time problem. The time
spent in mode 1 is 12.36[s] and in mode 2 is 0.56[s].

E. System Identification For Complementarity Systems

The system identification problem for systems with com-
plementarity constraints is a particular case of the optimiza-
tion problem (2) and therefore can be solved in PYROBO-
COP. The objective is to identify the physical parameters of
a system given a set of collected data. As a case of study,
we consider the cart-pole with softwalls depicted in Figure 3.
The interactions of the pole with the soft walls is modeled
as complementarity constrains. The dynamical equations and
more details on the system can be found in [39].

We formalize the parameter estimation problem as MPCC
(2) where the cost function is the normalized Root Mean
Square Error (nRMSE) between the observed trajectory and
the trajectory obtained from the estimation procedure. The
parameters we aim to identify are the mass of the pole,
mp, and the spring constants of the two walls k1 and k2.
In PYROBOCOP these parameters are implemented as time
independent parameters p. We validated the method with a
Monte Carlo simulation on 4 different sets of parameters
pi = [mi

p, k
i
1, k

i
2] with i = {1, . . . , 4} sampled independently

from a uniform distribution, each of which was tested with
different levels of independent Gaussian noise added to the
trajectories collected. The trajectories are generated with an
input sequence that is computed as a sum of sinusoids. Each
MC simulation has 50 random realization of the noise. The
results are shown in Figure 7 where on the x-axis we have
the cart-pole system defined with one of the parameter set
pi and the standard deviation of the noise for each system
is in order [0.0001, 0.001, 0.01, 0.05]. We can observe how
PYROBOCOP is able to identify both the parameters in
the dynamics equations as well as in the complementarity
constraints with the lower levels of noise. As seen in the

Fig. 7: Distributions of the estimation errors for 4 different
cart-pole with softwalls with increasing noise level.

figure, we observe that with higher amounts of noise, the
estimation method starts diverging.

VI. CONCLUDING REMARKS

This paper presented PYROBOCOP , a Python-based op-
timization package for model-based control of robotic sys-
tems. We showed that PYROBOCOP can be used to solve
trajectory optimization problems of a number of dynamical
systems in different configurations in presence of contact
and collision avoidance constraints. A description of the
functions that a potential user needs to implement in order
to solve their control or optimization problem has been pro-
vided. More details are available in the software package [4].

Strengths of PYROBOCOP PYROBOCOP can handle
systems with contact as well as collision constraints with a
novel complementarity formulation. PYROBOCOP also al-
lows automatic differentiation by using ADOL-C. To the best
of our knowledge, PYROBOCOP is the only Python-based,
open-source software that allows handling of contact &
collision constraints and automatic differentiation for control
and optimization. Unlike most of the competing optimization
solvers which are available in Python, PYROBOCOP allows
users to provide dynamics information in Python through a
simple script, refer to the software description in [4].

Limitations of PYROBOCOP Since PYROBOCOP uses
IPOPT as the solver for the resulting MPCC problems, it
borrows limitations of IPOPT. In particular, one of the main
limitations is that only local solutions can be found. Fur-
thermore, good initialization to find even the local solutions
might be required. Finally, infeasibility of the underlying
optimization problem provided by the user cannot be de-
tected. Another possible limitation is given by interfacing
PYROBOCOP with ADOL-C. While, as described above,
this is one of the strengths of PYROBOCOP it also carries
some limitations as we have to rely on an external code to do
automatic differentiation, while other software like CasADi
have built-in source code transformation into C and can
handle the differentiation internally with faster performance.



REFERENCES

[1] A. Griewank, D. Juedes, and J. Utke, “Algorithm 755: Adol-c: A
package for the automatic differentiation of algorithms written in
c/c++,” ACM Trans. Math. Softw., vol. 22, no. 2, p. 131–167, Jun.
1996.

[2] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Math. Program., vol. 106, p. 25–57, 2006.

[3] M. T. Mason, “Toward robotic manipulation,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[4] A. U. Raghunathan, D. K. Jha, and D. Romeres. (2021)
Pyrobocop. [Online]. Available: https://www.merl.com/research/
license/PyRoboCOP

[5] ——, “Pyrobocop : Python-based robotic control & optimization
package for manipulation and collision avoidance,” 2021.

[6] Z. Manchester and S. Kuindersma, “Variational contact-implicit tra-
jectory optimization,” in Robotics Research. Springer, 2020, pp. 985–
1000.

[7] A. Patel, S. L. Shield, S. Kazi, A. M. Johnson, and L. T. Biegler,
“Contact-implicit trajectory optimization using orthogonal colloca-
tion,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2242–
2249, 2019.

[8] T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4914–
4919.

[9] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation, 2012, pp.
137–144.

[10] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[11] K. Yunt and C. Glocker, “Trajectory optimization of mechanical hybrid
systems using sumt,” in 9th IEEE International Workshop on Advanced
Motion Control, 2005, p. 665–671.

[12] ——, “A combined continuation and penalty method for the de-
termination of optimal hybrid mechanical trajectories,” in IUTAM
Symposium on Dynamics and Control of Nonlinear Systems with
Uncertainty. Netherlands: Springer, 2007, p. 187–196.

[13] K. Yunt, “An augmented lagrangian-based shooting method for the
optimal trajectory generation of switching lagrangian systems,” Dy-
namics of Continuous, Discrete and Impulsive Systems Series B:
Applications & Algorithms, vol. 18, p. 615–645, 2011.

[14] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[15] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2018, pp. 4327–4332.

[16] P. Kolaric, D. K. Jha, A. U. Raghunathan, F. L. Lewis, M. Benos-
man, D. Romeres, and D. Nikovski, “Local policy optimization for
trajectory-centric reinforcement learning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
5094–5100.

[17] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and
H. Tummescheit, “Modeling and optimization with optimica
and jmodelica.org—languages and tools for solving large-scale
dynamic optimization problems,” Computers & Chemical Engineering,
vol. 34, no. 11, pp. 1737–1749, 2010. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S009813540900283X

[18] B. Houska, H. Ferreau, and M. Diehl, “Acado toolkit – an open source
framework for automatic control and dynamic optimization,” Optimal
Control Applications and Methods, vol. 32, no. 3, p. 298–312, 2011.

[19] S. Leyffer and C. Kirches, “Taco - a toolkit for ampl control optimiza-
tion,” Mathematical Programming Computation, p. 1–39, 2013.

[20] B. Nicholson, J. Siirola, J. Watson, Z. V.M., and L. Biegler, “py-
omo.dae: a modeling and automatic discretization framework for
optimization with differential and algebraic equations,” Mathematical
Programming Computation, vol. 10, p. 187–223, 2018.

[21] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[22] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[23] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 2536–2542.

[24] D. M. Murray and S. J. Yakowitz, “Constrained differential dynamic
programming and its application to multireservoir control,” Water
Resources Research, vol. 15, no. 5, pp. 1017–1027, 1979.

[25] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization,
Estimation, and Control, 1st ed. Talor & Francis, 1975.

[26] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with
equilibrium constraints. Cambridge University Press, 1996.

[27] A. Raghunathan and L. Biegler, “An interior point method for math-
ematical programs with complementarity constraints (mpccs),” SIAM
J. Optimization, vol. 15, no. 3, pp. 720–750, 2005.

[28] A. De Miguel, M. Friedlander, F. Nogales, and S. Scholtes, “A two-
sided relaxation scheme for mathematical programs with equilibrium
constraints,” SIAM J Optimization, vol. 16, no. 2, p. 587—609, 2005.

[29] S. Leyffer, G. López-Calva, and J. Nocedal, “Interior methods for
mathematical programs with complementarity constraints,” SIAM J.
Optimization, no. 1, p. 52–77, 2006.

[30] M. Anitescu, P. Tseng, and S. Wright, “Elastic-mode algorithms for
mathematical programs with equilibrium constraints: global conver-
gence and stationarity properties,” Mathematical Programming, vol.
110, no. 2, pp. 337–371, 2007.

[31] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[32] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty
function,” Mathematical programming, vol. 91, no. 2, pp. 239–269,
2002.

[33] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manip-
ulation with convex hybrid mpc,” 2018.

[34] M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach
to precise and controlled pushing,” in Proceedings of The 2nd
Conference on Robot Learning, ser. Proceedings of Machine Learning
Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds.,
vol. 87. PMLR, 29–31 Oct 2018, pp. 336–345. [Online]. Available:
http://proceedings.mlr.press/v87/bauza18a.html

[35] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with
dry friction part 1. limit surface and moment function,” Wear,
vol. 143, no. 2, pp. 307–330, 1991. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0043164891901043

[36] F. von Drigalski, C. Schlette, M. Rudorfer, N. Correll, J. Triyonoputro,
W. Wan, T. Tsuji, and T. Watanabe, “Robots assembling machines:
Learning from the world robot summit 2018 assembly challenge,”
2019.

[37] S. Jin, D. Romeres, A. Ragunathan, D. K. Jha, and M. Tomizuka,
“Trajectory optimization for manipulation of deformable objects:
Assembly of belt drive units,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021. [Online]. Available:
https://arxiv.org/abs/2106.00898

[38] N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential
dynamic programming for planar manipulation primitives,” 2020.

[39] A. Aydinoglu, V. M. Preciado, and M. Posa, “Stabilization of com-
plementarity systems via contact-aware controllers,” arXiv preprint
arXiv:2008.02104, 2020.

https://www.merl.com/research/license/PyRoboCOP
https://www.merl.com/research/license/PyRoboCOP
https://www.sciencedirect.com/science/article/pii/S009813540900283X
https://www.sciencedirect.com/science/article/pii/S009813540900283X
https://drake.mit.edu
http://proceedings.mlr.press/v87/bauza18a.html
https://www.sciencedirect.com/science/article/pii/0043164891901043
https://www.sciencedirect.com/science/article/pii/0043164891901043
https://arxiv.org/abs/2106.00898

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-057.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


