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Safe multi-agent motion planning via filtered reinforcement learning

Abraham P. Vinod∗, Sleiman Safaoui, Ankush Chakrabarty, Rien Quirynen,
Nobuyuki Yoshikawa, and Stefano Di Cairano

Abstract— We study the problem of safe multi-agent mo-
tion planning in cluttered environments. Existing multi-agent
reinforcement learning-based motion planners only provide
approximate safety enforcement. We propose a safe reinforce-
ment learning algorithm that leverages single-agent reinforce-
ment learning for target regulation and a subsequent convex
optimization-based filtering that ensures the collective safety of
the system. Our approach yields a safe, real-time implementable
multi-agent motion planner that is simpler to train and enforces
safety as hard constraints. Our approach can handle state
and control constraints on the agents, and enforce collision
avoidance among themselves and with static obstacles in the
environment. Numerical simulations and hardware experiments
show the efficacy of the approach.

I. INTRODUCTION

Multi-agent motion planning in cluttered environments is
an essential component of safe autonomy for transportation,
logistics, precision agriculture, search and rescue operations,
and monitoring. In all of these applications, we need real-
time implementable algorithms that can simultaneously plan
trajectories for multiple agents to their respective targets and
adapt to changing environments using collected data, while
ensuring collision avoidance with static obstacles and other
agents moving in the environment.

Researchers have proposed several approaches to address
the multi-agent motion planning problem, drawing from
optimization, robotics, control, and learning. Some of these
approaches include mixed-integer programming [1], adaptive
roadmaps [2], buffered Voronoi cells [3], sequential convex
programming [4], and barrier certificates [5]. Specialized
algorithms to tackle certain aspects of the planning problem
like collision avoidance have also been proposed [4], [6]. A
common limitation among these planning algorithms is that
they do not leverage data collected from past trajectory ex-
ecutions in order to improve future motion plans. Learning-
based approaches, especially using reinforcement learning
(RL) [7]–[11], have been designed to systematically exploit
prior data, but in most cases incorporate safety via soft con-
straints for computational tractability, thereby discouraging,
yet not eliminating the risk of potentially unsafe operation.
Additionally, multi-agent RL algorithms face the challenge of
non-stationarity of the environment arising from concurrent
learners [12].

The problem of ensuring safety in RL-based motion
planning has gained more attention in recent years [13]–
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Fig. 1. Existing reinforcement learning-based motion planners (red arrows)
treats safety as soft constraints, which is undesirable in safety-critical
applications. We propose a quadratic program-based safety filter that renders
such motion planners safe (long green arrows) by enforcing safety as
hard constraints. See supplementary material for the video of the hardware
experiments using CrazyFlies.

[15]. Among these works, the closest work to the proposed
approach is that in [15]. Here, a two-player game is solved
offline to synthesize a “shield” that ensures that the actions
of the RL-based controllers are congruent with the safety
objectives of the problem. Due to the inherent computational
limitations in solving two-player games, the approach in [15]
is limited to problems with discrete state and action space.
In contrast, we propose an optimization-based safety filter
that can accommodate continuous state and action spaces for
stabilizable linear dynamics and is real-time implementable.

The main contribution of this work is a safe multi-agent
motion planner that enforces safety as hard constraints
in planning while leveraging prior data. Specifically, we
develop a quadratic programming-based safety filter that
ensures collective safety of a multi-agent system, while
minimizing the deviation from the control input prescribed
by a RL-based motion planner. Here, collective safety refers
to avoidance of collision between agents and between agents
and obstacles, and satisfaction of constraints on the states
and inputs of the agents at all times. Our approach can
accommodate agents with any stabilizable linear dynamics,
collision avoidance constraints (typically non-convex state
constraints), convex input constraints, and is real-time imple-
mentable. We demonstrate the proposed motion planner in
simultaneous navigation of six Crazyflie quadrotors to their
desired target locations in a crowded static environment.

II. PROBLEM FORMULATION AND PRELIMINARIES

Notation: 0d denotes the zero vector in Rd, Id denotes
the d-dimensional identity matrix, N[a,b] denotes the subset



of natural numbers between (and including) a, b ∈ N,
a ≤ b, and ⊕,	 denotes Minkowski sum and difference
respectively. We denote the support function of a convex and
compact set A by SA(`) , supx∈A ` ·x for any ` ∈ Rd [16].
We denote continuous time instants with τ, t ∈ R, τ, t ≥ 0,
and discrete time sampling instants with k ∈ N.

A. Problem setup

Consider NA ∈ N homogeneous agents with the following
stabilizable, continuous-time linear dynamics,

ẋi = Axi +Bui, (1)

with agent state xi ∈ Rn and input ui ∈ U ⊆ Rm for
each i ∈ N[1,NA], and A ∈ Rn×n, B ∈ Rn×m. We define
performance objectives and safety constraints based on the
position pi(t) of the agents,

pi(t) = Cxi(t) ∈ Rd, (2)

where C ∈ Rd×n. We also assume that the number of inputs
m is no smaller than the dimension of the position vector d,
and that the admissible input set U is a convex polytope.
Additionally, for the ease of exposition, we assume that
the agents have identical convex and compact rigid bodies,
denoted by A ⊂ Rd, such that 0d ∈ A.

We represent the bounds on the environment using a
polytopic set K. For some NK ∈ N and {hi, gi}NK

i=1 with
hi ∈ Rd and gi ∈ R, K =

⋂
i∈N[1,NK]

{
p ∈ Rd : hi · p ≤ gi

}
.

The obstacles in the environment are located at cj ∈ Rd with
convex and compact rigid bodies Oj ⊂ Rd, with 0d ∈ Oj .

We seek to drive the agents towards their respective target
positions qi ∈ Rd. Additionally, we require that the agents
are collectively safe at all times, as formalized below.

Definition 1 (COLLECTIVE SAFETY). The agents are col-
lectively safe at time t, if all of the following criteria are
met:

1) Keep-in constraints: We require pi(t)⊕A ⊆ K.
2) Static obstacle avoidance constraints: We require the

agents to avoid NO ∈ N static obstacles present in the
environment. The ith agent and the jth obstacle are in
collision when (pi(t)⊕A) ∩ (cj ⊕Oj) is non-empty.

3) Inter-agent collision avoidance: We require that all
agents avoid collision among themselves. Agents i, j ∈
N[1,NA] are in collision, when (pi(t)⊕A)∩(pj(t)⊕A)
is non-empty.

Problem 1 (STABILIZABLE LINEAR DYNAMICS). Design
a multi-agent motion planner that navigates the agents (1)
to their respective targets {qi}NA

i=1 such that the agents are
collectively safe at discrete times kδ, k ∈ N, for some user-
specified sampling time δ.

While the proposed solution to Problem 1 can handle a
broad class of dynamical systems, the safety properties of the
approach are limited to user-specified discrete-time steps due
to computational limitations. We can recover the continuous-
time safety by specializing the proposed approach for double
integrator-based dynamics. In this case, for the ease of

exposition, we focus on motion planning problems over two-
dimensional space (d = 2), with double integrator dynamics
for each of the dimensions. Specifically, we describe the
dynamics of the agents with states x(t) = [p(t) v(t)] ∈ R4

(two-dimensional position and velocity),

A =

[
02 I2
02 02

]
, B =

[
02

I2

]
, C =

[
I2 02

]
. (3)

Several robotic platforms including quadrotors are typically
controlled via a combination of a high-level planner that ab-
stracts the dynamics using double integrator-based dynamics,
and a low-level controller for trajectory tracking realizing
such dynamics [4].

Problem 2 (DOUBLE INTEGRATOR DYNAMICS). Design a
multi-agent motion planner that navigates the agents with
dynamics (3) to their respective targets {qi}NA

i=1 such that
the agents are collectively safe at all times t ≥ 0.

B. Reinforcement learning for single-agent motion planning

We briefly discuss the design of a RL-based motion
planner for a single agent with linear dynamics (1) that can
avoid static obstacles. First, we discretize (1) in time using a
zero-order hold with a user-specified sampling time ∆ > 0,

x(k + 1) = A∆x(k) +B∆u(k). (4)

Here, A∆ = eA∆ ∈ Rn×n and B∆ =
∫∆

0
eA(∆−t)Bdt ∈

Rn×m are functions of ∆. We define a low-level controller
for (4) that is held constant between sampling times,

uRL(k) , Kx(k) + Fr(k). (5)

Here, K is a stabilizing gain matrix (i.e., all eigenvalues
of (A+BK) have magnitudes smaller than 1), F ∈ Rm×d
satisfies C(I−(A+BK))−1BF = Id, and r(k) is a discrete-
time command position set by the RL-based motion planner.
From (4) and (5),

x(k + 1) = (A∆ +B∆K)x(k) +B∆Fr(k). (6)

For any constant reference position r(k) = r ∈ Rd, the
closed-loop dynamics (6) guarantees limk→∞ p(k) = r [17].

We consider the following deterministic Markov decision
process for an agent with linear dynamics (6) with a pre-
specified target position q ∈ Rd:

1) Observation space: We define the observation vector
o(k) ∈ Rn+d+NOd as the concatenated vector contain-
ing x(k) ∈ Rn, the displacement of the agent’s current
position to the target (p(k) − q) ∈ Rd and to the NO
static obstacles (p(k)− cj) ∈ Rd, for all j ∈ N[1,NO].

2) Action space: The action a(k) ∈ A ⊂ Rd determines
the reference position as a bounded perturbation a(k)
to the target q, r(k) = q + a(k).

3) Step function: We obtain the next state x(k+1) by (6).
4) Reward function: The instantaneous reward function is

R(p(k)) = αobs

NO∑
j=1

1

‖p(k)− cj‖2 − γ2
j

+ αtgt‖p(k)− q‖



with reward parameters αobs, αtgt ≤ 0 and γj ≥ 0.
Here, γj is the radius of the smallest volume origin-
centered ball that covers the setOj⊕(−A) for each j ∈
N[1,NO]. We terminate an episode (denoted by k =∞)
when the agent either reaches the target, violates the
keep-in constraints, or collides with a static obstacle
with a terminal reward or penalty,

R(p(∞)) =


Rtarget, if ‖p(∞)− q‖ ≤ d ,

Pkeep-in, if p(∞)⊕A 6⊆ K,
Pobstacle, if agent hits an obstacle,

with Rtarget ≥ 0 and Pkeep-in, Pobstacle ≤ 0.
In conjunction with the low-level controller uRL

i (k), a policy
that solves the Markov decision process can drive an agent
starting at an arbitrary safe position within the keep-in set
towards q without colliding with any of the static obstacles.
There are several algorithms to solve such Markov decision
problems, along with computational packages that can syn-
thesize policies based on neural networks [18], [19].

III. SAFE MULTI-AGENT MOTION PLANNING USING
LEARNING AND OPTIMIZATION

The general framework of the proposed solution to address
Problems 1 and 2 is illustrated in Figure 2. We design the
motion planner in two stages. First, every agent computes
a low-level controller uRL

i (k) based on their respective
target and the corresponding single-agent motion planners.
Next, a centralized quadratic program-based safety filter
generates usafe

i (k) that renders the overall system collectively
safe, while minimizing the deviations from their respective
learning-based controllers. Thus, we assign the task of regu-
lating towards the target to the learning-based controller and
the task of inter-agent collision avoidance to the safety filter.
Both of the modules share the remaining tasks of ensuring
static obstacle avoidance and satisfaction of the state and
control constraints like the keep-in constraints.

Our approach has several advantages over plain RL-based
motion planners: First, it utilizes convex optimization to
enforce safety as hard constraints ensuring real-time imple-
mentability. Second, it significantly reduces the dimensional-
ity of the learning problem since the policy is synthesized for
a single agent, which further simplifies the training process.
Finally, the use of a shared policy in our approach also
avoids the need for concurrent learning, typically present
in multi-agent reinforcement learning. Concurrent learning
requires the learning agent to account for how the other
agents behave, which invalidates the stationary Markovian
property typically used in the convergence proofs of RL
algorithms [12]. Concurrent learning is also known to cause
significant instability to training algorithms [11], [12].

A. Safety filter for stabilizable linear dynamics: Setup

Our objective is to ensure collective safety of the over-
all multi-agent system for a user-specified continuous-time
safety horizon Tsafe ∈ R, Tsafe > 0. Define Tsafe = [0, Tsafe].
At each discrete-time step k ∈ N, we compute usafe

i (k) for

Fig. 2. The proposed solution combines single-agent RL-based motion
planning with a safety filter for safe multi-agent motion planning.

each agent i ∈ N[1,NA] that is held constant over the time
interval {k∆} ⊕ Tsafe, while ensuring 1) collectively safe
operation during the time interval, 2) minimal deviation of
usafe
i (k) from uRL

i (k), and 3) satisfaction of actuation limits.
We solve the following optimization problem at each k,

minimize
usafe
1 (k),...,usafe

NA
(k)

∑
i∈N[1,NA]

λi‖uRL
i (k)− usafe

i (k)‖22 (7a)

subject to usafe
1 (k), . . . , usafe

NA
(k) ∈ U (7b)

i∈N[1,NA],

t∈{k∆}⊕Tsafe,

}
pi(t|k) = C

(
At|kxi(k) + Bt|ku

safe
i (k)

)
,

(7c)
t∈{k∆}⊕Tsafe, All agents are collectively safe at t, (7d)

with user-specified weighting parameters λi ≥ 0, At|k =

eA(t−k∆) ∈ Rn×m and Bt|k =
∫∆

0
eA(t−k∆−s)Bds. The

cost (7a) provides a weighted sum of the squared-deviations
between the low-level controllers. The convex constraint (7b)
enforces the control bounds. The dynamics (7c) provides the
agent positions pi(t|k) at time t ∈ {k∆}⊕Tsafe, given their
states at a continuous time instant k∆.

We now briefly discuss constraints for (convex) enforce-
ment of collective safety (7d).

1) Keep-in constraints: The keep-in constraint is equiv-
alent to pi(t|k) ∈ K 	 A by the definition of Minkowski
difference, which is easy to compute for a polytopic K [16],

K 	A = ∩i∈N[1,NK]
{p : hi · p ≤ gi − SA(hi)} . (8)

Figure 3 illustrates the (linear) keep-in constraints.
2) Static obstacle avoidance constraints: Agent i ∈

N[1,NA] must avoid collision with a static obstacle j ∈
N[1,NO] located at cj at times t ∈ {k∆} ⊕ Tsafe. Using
computational geometry arguments, we have

({pi(t|k)} ⊕ A) ∩ ({cj} ⊕ O) = ∅
⇐⇒ @yO ∈ Oj ,@yA ∈ A, pi(t|k)− cj = yO − yA
⇐⇒ {pi(t|k)− cj} 6∈ Oj ⊕ (−A), (9)

for every i ∈ N[1,NA], j ∈ N[1,NO], and t ∈ {k∆} ⊕ Tsafe.
Since the set Oj ⊕ (−A) is convex, (9) is a non-convex
constraint. We convexify (9) via a separating hyperplane for
the point {pi(t|k) − cj} and the convex set O ⊕ (−A) to
obtain linear constraints in usafe

i (k). Specifically, for any
choice of a unit vector zobs

ij ∈ Rd, ‖zobs
ij ‖ = 1 [20],

zobs
ij · (pi(t|k)− cj) ≥ SOj

(zobs
ij ) + S(−A)(z

obs
ij ) =⇒ (9).



A⊕ (−A)

Fig. 3. Collective safety constraints (Definition 1) enforced as linear constraints — (left) keep-in constraints, and (right) inter-agent collision avoidance.

3) Inter-agent collision avoidance constraints: Similarly
to (9), inter-agent collision avoidance can be enforced as a
linear constraint,

({pi(t|k)} ⊕ A) ∩ ({pj(t|k)} ⊕ A) = ∅
⇐⇒ {pi(t|k)− pj(t|k)} 6∈ A ⊕ (−A)

⇐= zagent
ij · (pi(t|k)− pj(t|k)) ≥ SA(zagent

ij ) + S(−A)(z
agent
ij )

for every i, j ∈ N[1,NA], i 6= j, and t ∈ {k∆} ⊕ Tsafe.
Figure 3 (right) illustrates the convexification for inter-agent
collision avoidance.

The above convexification steps result in a semi-infinite
quadratic program,

minimize
usafe
1 (k),...,usafe

NA
(k)

∑
i∈N[1,NA]

λi‖uRL
i (k)− usafe

i (k)‖22 (10a)

subject to (7b), (7c)
i∈N[1,NA], j∈N[1,NK]

t∈{k∆}⊕Tsafe

}
hj · pi(t|k) ≤ gj − SA(hj) (10b)

i∈N[1,NA], j∈N[1,NO ]

t∈{k∆}⊕Tsafe

} zobs
ij · (pi(t|k)− cj)
≥ SOj (zobs

ij ) + S(−A)(z
obs
ij ),

(10c)

i,j∈N[1,NA], i 6=j,

t∈{k∆}⊕Tsafe

} zagent
ij · (pi(t|k)− pj(t|k))

≥ SA(zagent
ij ) + S(−A)(z

agent
ij ).

(10d)

The optimization problem (10) has an infinite number of
constraints arising from each t ∈ {k∆} ⊕ Tsafe. In (10), we
have the following parameters: cost scalarization weights λi,
halfspace description (hj , gj)

NK
j=1 of the keep-in set K, static

obstacle information (cj ,Oj)NO

j=1, rigid body of the agents
A, and user-specified separating hyperplane direction vectors
zobs
ij , zagent

ij . Motivated by [4], we define

zobs
ij =

pi(k)− cj
‖pi(k)− cj‖

, and zagent
ij =

pi(k)− pj(k)

‖pi(k)− pj(k)‖
. (11)

B. Implementation
We show that (10) can be solved exactly for double

integrator-based dynamics, and approximately for stabiliz-
able linear dynamics. In both of the approaches, we formulate
a quadratic program with a finite number of constraints,
that can be easily solved using any off-the-shelf solver like
GUROBI [21] or OSQP [22].

1) Approximate implementation for stabilizable linear dy-
namics: We can approximately solve the semi-infinite op-
timization problem (10) by sampling the constraints (10b)–
(10d) at t ∈ {k∆}⊕{κδ : κ ∈ N, κ ≤ T disc

safe } with δ < ∆ and
T disc

safe = dTsafe
δ e. Consequently, we obtain a quadratic program

with T disc
safe (N2

A +NANO +NANK) constraints.

2) Exact implementation for double integrator-based
dynamics: Under the constant input (acceleration) ui ∈ R2

over an interval {k∆} ⊕ Tsafe, the continuous-time position
of an agent with double integrator-based dynamics (3) is

pi(t|k) = pi(k) + vi(k)(t− k∆) + ui(k)((t− k∆)2/2), (12)

when starting from pi(k) with velocity vi(k) at time k∆.
For any ` ∈ Rd and s ∈ R with `·pi(k) = `·pi(k∆|k) ≤ s,

consider the constraint ` · pi(t|k) ≤ s for all t ∈ {k∆} ⊕
Tsafe. Define ξ : (0, Tsafe]→ R as ξ(τ ;α, β) , 2

(
α
τ2 − β

τ

)
,

parameterized by α, β ∈ R and α ≥ 0. Consequently, for
τ = t− k∆,

` · pi(t|k) ≤ s, ∀t ∈ {k∆} ⊕ Tsafe

⇐⇒ ` ·
(
pi(k) + vi(k)τ + ui(k)(τ2/2)

)
≤ s, ∀τ ∈ (0, Tsafe]

⇐⇒ ` · ui(k) ≤ ξ(α, β), ∀τ ∈ (0, Tsafe]⇐⇒ ` · ui(k) ≤ ξ∗(α, β)

where α = s− ` · pi(k), β = ` · vi(k), and

ξ∗(α, β) , inf
0<τ≤Tsafe

ξ(τ ;α, β). (13)

Note that α is non-negative by the choice of `, and ξ has
a non-trivial critical point τcritical = 2α/β when β > 0. The
optimization problem (13) has the following solution,

ξ∗(α, β) =


−∞, α = 0 and β > 0

0, α = 0 and β = 0

ξ(τcritical;α, β), α, β > 0 and τcritical < Tsafe

ξ(Tsafe;α, β), otherwise.

We summarize the exact reformulation of (10) below,

minimize
∑

i∈N[1,NA]

λi‖uRL
i (k)− usafe

i (k)‖
2

2 (14a)

subject to (7b), (7c)
i∈N[1,NA]

j∈N[1,NK]

}
hj · usafe

i (k) ≤ ξ∗(αkeep
ij , β

keep
ij ), (14b)

i∈N[1,NA]

j∈N[1,NO ]

}
− zobs

ij · u
safe
i (k) ≤ ξ∗(αobs

ij , β
obs
ij ), (14c)

i,j∈N[1,NA]

i 6=j

}
z

agent
ij · (usafe

j (k)− usafe
i (k)) ≤ ξ∗(αagent

ij , β
agent
ij ).

(14d)

with αkeep
ij = gj−SA(hj)−hj ·pi(k), βkeep

ij = hj ·vi(k), αobs
ij =

zobs
ij ·(pi(k)−cj)−SO(zobs

ij )−S(−A)(z
obs
ij ), βobs

ij = −zobs
ij ·vi(k),

α
agent
ij = z

agent
ij · (pi(k)−pj(k))−SA(z

agent
ij )−S(−A)(z

agent
ij ), and

β
agent
ij = z

agent
ij · (vj(k)− vi(k)). In contrast to the approximate

quadratic program (Section III-B.1), (14) has (N2
A+NANO+

NANK) constraints, a reduction by factor of T disc
safe .



C. Safety properties
We state the safety properties of the proposed approach.

We show that (10) provides continuous-time safety. Further-
more, the sampling-based approximation in Section III-B.1
addresses Problem 1, and (14) addresses Problem 2.

Proposition 1 (GENERAL SAFETY PROPERTY). We assume that
Tsafe > ∆ is sufficiently large such that (10) is feasible at every
discrete time step k ∈ N. Then, the application of safety filter
(10) at every k will keep the system collectively safe for all t ≥ 0.

The proof of Proposition 1 follows by induction. By
construction, the feasibility of (10) at every discrete-time
step k is sufficient to guarantee collective safety at all times.
The feasibility assumption is necessary to avoid pathological
cases where the safety filter, the choice of the horizon Tsafe,
and the control constraints precludes a safe behavior. For
example, an initial configuration where an agent is just beside
an obstacle and the initial velocity of the agent is towards
the obstacle can not be rendered safe by the safety filter.

1) Guarantees for the approximate approach: For the
approximate implementation, the collective safety guarantee
offered by Proposition 1 only holds at every discrete time kδ,
k ∈ N. Such a sampling-based quadratic program addresses
Problem 1.

In our numerical simulations, the relatively strong assump-
tion of the feasibility of (10) at all discrete time steps k ∈ N in
Proposition 1 was never violated for Tsafe sufficiently larger
than ∆ (Tsafe = 2 s, ∆ = 0.1 s, and δ = 0.01 s). Instead of uni-
form sampling, one can also obtain probabilistic guarantees
of safety via a scenario approach [23].

2) Guarantees for the exact approach: In case of the
double integrators, we show that (14) does not suffer from
trivial infeasibility due to ξ∗ = −∞.

Proposition 2 (RULING OUT TRIVIAL INFEASIBILITY OF (14)).
Assume that (14) is feasible at the initial time step k = 0, and
the sets Oj and A are balls of radius robs

j > 0, j ∈ N[1,NO]

and ragent > 0 respectively. Then, for a safety horizon Tsafe > ∆,
the constraints (14b)–(14d) defined at any time k∆ individually
defines a non-empty feasible region (or is not trivially infeasible)
for all t ∈ {k∆} ⊕ Tsafe.

Proof. Proof by induction. The base case (k = 0) holds.
(14b) never occurs with α = 0, β > 0: Assume for induction

that the constraints (14b) is not trivially empty for some time step
k ∈ N for some i ∈ N[1,NA] and j ∈ N[1,NK]. Define α(t) =

gj − hj · pi(t|k) and β(t) = hj · pi(t|k). We know α(t) ≥ 0 for
every t ∈ {k∆} ⊕ Tsafe, since Tsafe > ∆. Consequently, we have
∇tα(t) ≥ 0 whenever α(t) = 0 for some t ∈ {k∆} ⊕ Tsafe. We
observe that ∇tα(t) = −hj · vi(t|k) = −β(t). Thus, at discrete
time k + 1, we have β ≤ 0 whenever α = 0, as desired.

(14c) never occurs with α = 0, β > 0: Assume for induction
that the constraint (14c) is not trivially empty for some time step
k ∈ N for some i ∈ N[1,NA] and j ∈ N[1,NO]. Define αk(t) =

‖pi(t|k) − cj‖ − (robs
j + ragent). Consequently, we have β(t) =

−∇tαk(t) = 2(pi(t|k)−cj)·vi(t|k). By same calculus arguments
as before, we have β ≤ 0, when α = 0 (αk((k + 1)∆)).

The proof of (14d) follows similarly to that of (14c).

Since (14) is an exact reformulation of (10), (14) addresses
Problem 2 by Proposition 1. Proposition 2 does not eliminate
the possibility of infeasibility arising from the intersection
of the constraints in (14). A possible approach to guarantee
recursive feasibility of (14) is by leveraging existing results
in model predictive controls literature [24], which we will
explore in future work.

IV. EXPERIMENTS

We validate the proposed approach in simulation and
check the feasibility of the approach in hardware experi-
ments. We show that our proposed approach is real-time
implementable, reduces the training effort for obtaining a
safe RL-based motion planner without compromising on
the generalizability, and scales well with the number of
agents. All simulations and training were done on an Ubuntu
workstation with Intel Xeon 3.3 GHz 12-core CPU, 192 GB
memory, and two Nvidia RTX 2080 Ti GPUs.

A. Safe multi-agent motion planning: Software and hardware
experiments

Our experimental setup is based on the Crazyflie 2.1
quadrotors. We flew six Crazyflies in a 3m×3m×1.5m volume
using OptiTrack motion-capture system (see Figure 1). We
obtained the marker point cloud at 120Hz, and used the
Crazyswarm package to control the Crazyflies. We used
the onboard PID controllers of the Crazyflies to track the
waypoints (2D position with a constant altitude) sent at 10Hz.

We chose ∆ = 0.1 s, δ = 0.01 s, Tsafe = 2 s, and rA = 0.15

m. We designed the single-agent RL-based motion planner
using the proximal policy optimization (PPO) algorithm from
stable-baselines [19]. We trained the PPO algorithm
for a total of 107 time steps, with default parameters of
stable-baselines with the entropy coefficient modified
to 0.001. The data generation and the policy training for the
agent took around 9 hours. We used GUROBI [21] to solve
the quadratic program associated with the safety filter.

Figure 4 shows a typical run of one of the experiments.
We studied the utility of the proposed solution (RL-based
control and safety filtering) by comparing it with using the
safety filter with a proportional controller, i.e., ai(k) = 0. The
RL-based controller took significantly less time to complete
the task (navigate the agents safely towards their targets)
than the baseline controller (27.1 s instead of 60 s). The
RL-based controller leverages past experience to encourage
motion around the obstacle, as compared to the proportional
controller.

Figure 5 shows that the overall computation time per iter-
ation, including the overhead of evaluating the neural policy
and the computation of the safe actions using CVXPY [25]
and GUROBI [21]. We see that the overall computation times
per iteration in both of the approaches are below 0.1 s, which
enable a real-time implementation at 10Hz. The compute
times may be further reduced by shifting from a Python
implementation to C or C++.

Figure 6 shows the performance of the proposed algorithm
over a randomly chosen set of initial configurations. None of



Fig. 4. Safe multi-agent motion planning using the proposed safety
filter in conjunction with RL-based controllers and a classical proportional
controller. (Top two rows) Snapshots of the hardware experiments and illus-
trations of the agent trajectories when using the RL-based motion planner
at times t ∈ {90, 180, 271}. (Bottom two rows) Trajectories of the agents
when using the baseline motion planner at times t ∈ {200, 400, 600},
along with the snapshots of the hardware experiments. Red circles denote
the obstacles, shaded regions indicate static obstacle-free positions at each
iteration (determined via convexification), shaded circles denote the agent
starting points, and starred circles denote the targets.

Fig. 5. Overall computation time per iteration is always below 0.1 seconds.

these configurations led to an infeasible quadratic program
for the safety filter or a violation of the collective safety.
In more than 80% of the cases, the proposed approach
completed the task. In the rest of the cases, it still ensured
safety but resulted in a deadlock. Several strategies exist to
resolve deadlocks, including the use of KKT conditions [26],
which we will explore in future work.

B. Safety filter reduces the training effort for safe RL

Figure 7 shows the improvement in the quality of the
single-agent motion planner with the application of the safety
filter. The use of safety filter with RL-based motion planner
ensures that the agent reaches the target from almost all
feasible starting positions. For a small fraction (< 2%) of
the feasible state space, the safety filter causes the agent to

Fig. 6. Time taken by the proposed approach to complete the task from 500
random initial configurations for the agents. 80.6% of the configurations
successfully completed the task, while the rest resulted in deadlock.

Fig. 7. Safety filter significantly improves the safety and performance of the
RL-based motion planner. (Left) Original environment for the single-agent
motion planner. (Middle) Evaluation of the standalone RL-based motion
planner when starting from different feasible positions. (Right) Evaluation
of the proposed approach (RL-based motion planner with safety filter).

“loiter”, i.e., the filter ensures collective safety at the expense
of performance (reaching the target). Without the safety filter,
the RL-based motion planner suffers from collision with the
static obstacle or exits the safe region when starting in a
significant region of the state space.

C. Safety filter supports real-time implementation with a
moderately high number of agents

To perform scalability analysis of the safety filter, we
reduced rA to 0.05, and collected computational times for
the safety filter from three separate trials with randomly
initialized locations for the agents in simulation. Figure 8
shows that the compute time of the safety filter increases
only moderately with the number of agents. The scalability
of the approach can be attributed to the simplicity of the
convex quadratic program solved by the safety filter.

V. CONCLUSION

This paper proposed a novel optimization-based safety
filter that guarantees collective safety of a multi-agent system
driven by a learning-based motion planner designed for a
single agent. We formulate the safety filter as a quadratic
program that can be easily solved using off-the-shelf solvers,
enabling a real-time implementable approach to safe multi-
agent motion planning.

Fig. 8. Computation time of the safety filter increases moderately with the
number of agents
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