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Abstract—This paper introduces a new quantum
computing framework integrated with a two-step
compressed sensing technique, applied to a joint
channel estimation and user identification problem. We
propose a variational quantum circuit (VQC) design
as a new denoising solution. For a practical grant-free
communications system having correlated device activities,
variational quantum parameters for Pauli rotation gates
in the proposed VQC system are optimized to facilitate
to the non-linear estimation. Numerical results show that
the VQC method can outperform modern compressed
sensing techniques using an element-wise denoiser.
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I. INTRODUCTION

With the increasing number of devices that are

connected to wireless communications systems,

grant-free access schemes have been proposed to

accommodate massive connectivity. A grant-free access

scheme allows an unspecified number of devices to

transmit data instantaneously whenever they have a

transmission request. Considering the fact that the device

activity pattern is often sparse, compressed sensing (CS)

algorithms can achieve an outstanding performance

on channel estimation and device identification in

a massive connectivity channel [1]. State-of-the-art

CS techniques such as approximate message passing

(AMP) [2], vector approximate message passing [3], and

orthogonal approximate message passing (OAMP) [4]

are used to jointly recover the channel coefficients

and device activity. These CS algorithms perform

a two-step iterative process, which alternates linear

estimation (LE) and non-linear estimation (NLE) steps.

The LE step returns an estimated sequence, where the

B. Liu conducted this research during his internship at MERL.

elements can be modeled by independent and identically

distributed (i.i.d.) variables that are corrupted by additive

white Gaussian noise (AWGN). The NLE step can

be performed element-wise and a state evolution can

be derived to theoretically predict the convergence

performance of the recovery process [5]. However, an

element-wise NLE function is constructed based on the

assumption that each device’s activity is independent.

In a massive connectivity network, the activities are

generally correlated, which contradicts the assumption

of classical CS algorithms. In this paper, we investigate a

variational quantum circuit (VQC) that applies quantum

gates to address device activity correlation to improve

the compressed sensing performance.

Quantum computation has shown its promising

potential in the development of cryptography [6],

information theory [7], physics [8], and mathematics [9].

For instance, Shor’s algorithm can achieve an

exponential speedup over the classical algorithms

for prime factorization of integers for fault-tolerant

quantum processors. More recently, variational quantum

algorithms [10]–[12] have been proposed to be robust

against quantum decoherence in noisy intermediate-scale

quantum (NISQ) processors [13]. It was reported in [14],

[15] that quantum supremacy has been achieved with

a real quantum processor for some specific problems.

Accordingly, quantum computing is envisioned as a key

driver for the sixth generation (6G) applications [16]

In this paper, we consider the channel estimation and

user identification in a sparse activity system by using a

variational quantum algorithm. To explore the correlation

structure, we propose a new VQC-based denoiser in the

NLE step of the CS algorithm. Numerical results show

that our VQC ansatz is able to outperform the element-

wise soft-thresholding and minimum mean-square error

(MMSE) denoisers. The key contributions of this paper



are summarized as follows:

• We investigate practical correlated device activities

in grant-free access systems.

• We propose a quantum-based compressed sensing

to identity device activity and channel state jointly.

• We introduce a computationally efficient ansatz for

VQC to denoise correlated signals.

• We further adopt post-processing deep neural

network to improve the device detection accuracy.

• We validate the performance of VQC-based

denoising and post processing approach.

To the best of authors’ knowledge, this paper is the very

first paper employing quantum computing for CS.

II. GRANT-FREE IOT-DEVICE ACCESS SYSTEMS

A. System Model

Fig. 1 shows grant-free wireless access systems having

unspecified number of devices to communicate with a

base station which is empowered by a quantum processor

(such as the IBM quantum cloud computing). Following

most typical compressed sensing problems, we consider

a linear recovery formulation:

y = Ax+ z, (1)

where y ∈ CM represents M received symbols, A ∈
CM×N represents a pilot matrix for N devices with

M < N , and z
iid∼ CN (0, σ2I) represents the AWGN

of noise variance σ2 with 0 and I begin all-zeros vector

and identity matrix of size M , respectively. The term

x = a · h in (1) indicates an unknown device activity

a ∈ FN
2 , distorted by a fading channel coefficient

h ∈ CN . While this channel model corresponds to a

simplified version of practical narrow-band Internet of

things (NB-IoT) systems [17], extending to wide-band

scenarios is relatively straightforward.

Although most CS works assume i.i.d. device activity,

typical grant-free network may face a correlated user

activity due to shared medium environment. To model

such a correlated access network, the elements ai and

aj for i, j ∈ {1, 2, . . . , N} in the device activity

pattern a are assumed to be autoregressively correlated

by a correlation coefficient γ|i−j|. We assume that

the correlation coefficient is unknown to our VQC-

based compressed sensing (denotes as VQC-CS) and we

expect the VQC explores the correlation structure during

the learning phase, which is controlled by a classical

computer as shown in Fig. 1.

Fig. 1. Grant-free access systems empowered by a classical-quantum
hybrid processing for data/device detection.

B. Compressed Sensing: OAMP Algorithm

As a state-of-the-art CS technique, we briefly describe

the OAMP algorithm [4]. The OAMP algorithm can

usually achieve a better convergence performance

than conventional CS techniques, such as the fast

iterative soft-thresholding algorithm (FISTA) and AMP

algorithm [2]. The OAMP algorithm inherits the two-

step iterative processes, consisting of a decorrelated

LE step and a divergence-free NLE step. The iterative

process can be summarized as:

(LE): lt = x̂t +D(y −Ax̂t), (2)

(NLE): x̂t+1 = pt

(
ηt(l

t)−
( 1

N

N∑
i=1

η′t(l
t
i)
)
lt
)
, (3)

where ηt(·) is a denoiser function, η′t(·) is its first-

order derivative, and pt is a scaling factor that can be

optimized at the tth iteration [4]. Based on the pilot

matrix A, the matrix D, which decorrelates the elements

in the linear estimate, can be found by D = N
tr{D̂A}D̂,

where D̂ could be in the form of matched filtering,

pseudo-inverse, or linear MMSE: D̂MF = AH; D̂PINV =
AH(AAH)−1; D̂LMMSE = τ2AH(τ2AAH + σ2I)−1

where τ2 is an empirical MSE of the NLE. The OAMP

alternating process maintains the orthogonality between

the estimation errors of LE and NLE, achieving an

outstanding convergence performance for solving the

linear recovery problem in general.

C. Quantum Computing: Variational Quantum Circuit

Quantum computing leverages quantum physics

phenomena, such as superposition and entanglement, to

yield over classical computers [18]. The superposition

|ψ〉 of a qubit can be represented by an orthonormal

basis vector |0〉 = [1, 0]T and |1〉 = [0, 1]T as

|ψ〉 = q0 |0〉 + q1 |1〉 with |q0|2 + |q1|2 = 1. The

Hermitian transpose of |ψ〉 is denoted as 〈ψ|. In

convention, |ψ〉 can be represented by the Bloch sphere

with q0 = cos(θ/2) and q1 = eiϕsin(θ/2), where
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Fig. 2. Block diagram of the proposed VQC-CS.

θ ∈ [0, π] and ϕ ∈ [0, 2π] represent the latitude and

longitude of the sphere, respectively. Rotation gates

RX , RY and RZ in a quantum circuit over the X , Y ,

and Z-axes are defined as RX =
[ cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

]
,

RY =
[ cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

]
and RZ =

[
e−iθ/2 0

0 eiθ/2

]
,

respectively.

A VQC refers to the quantum circuit that is specified

by variational parameters. For instance, the rotation

angles of the rotation gates can be calibrated according

to a preset cost function. Similar to widely used deep

neural networks for channel estimation [17], [19], the

parameterized rotation angles for VQC are determined

through a learning phase. With the so-called parameter-

shift rule [20], VQC can be analytically differentiable,

that enables stochastic gradient optimization of

variational parameters likewise DNNs. In this paper, we

investigate a full system that embeds a VQC into the

compressed sensing technique, where the VQC behaves

as a scaling factor processor to adjust the estimate

before feeding back to the linear estimator.

III. VARIATIONAL QUANTUM COMPRESSED SENSING

A. VQC-based Compressed Sensing

The main motivation of the proposed VQC-CS

is to integrate a quantum circuit into a compressed

sensing algorithm so that the correlation between the

device activities can be exploited by the VQC-based

denoising in the NLE step. Fig. 2 shows a schematic

of the proposed VQC-based compressed sensing, whose

NLE step comprises 4 sub-processes: i) embedding; ii)

scaling; iii) error estimation; and iv) VQC.
1) Embedding: We embed the LE estimate lt in (2)

into rotation angles of the VQC by limiting the value

range in (0, π) as follows:

rti = π · tanh (|lti|2), (4)

for i ∈ {1, 2, . . . , N}.

2) Denoising: The LE estimate is refined by a

denoising function in NLE step, which employs a

scaling operation. Specifically, the ith device’s NLE

estimate in xt for i ∈ {1, 2, . . . , N} is computed as:

x̂ti =
st1,i

1 + st2,i
lti, (5)

where st1,i and st2,i are scaling factors determined by 2

VQCs. Our introduction of the two scaling factors, st1 ∈
RN and st2 ∈ RN , are motivated by the analogous form

of MMSE denoiser [1], [4], to stabilize the performance

by having more measurements from the VQCs than using

a single scaling factor. Here we assume that the scaling

factors st1 and st2 are the average measurements from

2 separate VQCs. The final denoising scale
st1,i

1+st2,i
is

determined after obtaining the averaged measurements

st1,i and st2,i for i ∈ {1, 2, . . . , N}.

3) State Preparation: In order to feed the information

of estimation error into the VQC, at each iteration we

compute the recovery error of the received symbols as:

ṽ2t = π · tanh
( 1

N
‖y −Ax̂t‖2

)
. (6)

Similar to the embedding model for the LE estimate in

(4), the empirical recovery error is converted in a range

of 0 ≤ ṽ2t ≤ π, where ṽ2t is used to initialize the quantum

state of the VQC as follows.

4) Variational Quantum Circuit: The embedding

information rt and ṽ2t will serve as the input for the

VQC, which in turn provides the scaling factors st1 and st2
for denoising. Fig. 3 illustrates our quantum gate ansatz,

which is used in two individual VQCs to return the

two scaling factors. The VQC uses trainable parameters

wt ∈ RN×N to scale the input rt before feeding into the

Y -rotation gate. The shaded blocks refer to the rotation

gates that contain such a tunable parameter to adjust the

rotation angle. ϑt
i ∈ RL, ρt

i ∈ RL and χt
i ∈ RL are

the rotation angles of three concatenated Y -rotation, Z-

rotation and Y -rotation gates in the ith qubit. L indicates

the number of layers in the VQC.

These three rotation gates help the qubit rotate

to any desired state from a given input state. As

a result, starting from state |0〉, the state of the

ith qubit after the first layer can be determined by

|φ1
i 〉 = Ξi,1RY (r

t
Nwi,N ) · · ·RY (r

t
1wi,1) |0〉, where

Ξi,1 = RZ(χ
t
i,1)RY (ρ

t
i,1)RZ(ϑ

t
i,1)RY (r

t
1w

t
i,1)RX(ṽ2t ).

Our multi-layer VQC ansatz is motivated by a data

reuploading [21], which possesses the universal
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Fig. 3. VQC ansatz for compressed sensing, with data re-uploading layers to generate the scaling factors for denoising.

approximation property encouraging that any arbitrary

denoising function can be asymptotically approximated.

Finally, we measure each qubit by a Hermitian

observable of the Pauli-Z operator:

PZ =

[
1 0
0 −1

]
. (7)

Letting |φL
i 〉 be the state of ith qubit after L layers, the

expectation value of the observable PZ is written by:

mt
i = 〈φL

i |PZ |φL
i 〉 , (8)

which is bounded as −1 ≤ mt
i ≤ 1. We adjust the

measurement output of VQC to generate the scaling

factor as follows:

st1,i =
1

2
(mt

i + 1), (9)

so that the scaling factor
st1,i

1+st2,i
in (5) is bounded by 1

to prevent a possible divergence that might occur during

the learning phase of the VQC. The overall VQC-CS

algorithm is summarized in Algorithm 1.

B. VQC Training

Analogous to deep learning, a cost value of the system

is back-propagated to train the VAC. Let T denote the

total number of compressed sensing iterations. We use

an exponentially weighted mean-square error loss:

C =
1

N

T∑
t=1

ζT−t‖x̂t − xt‖2, (10)

to accumulate the estimation errors of each iteration,

where ζ is a decay factor to adjust the loss contribution

of each iteration. In consequence, the parameters in

the rotation gates are finely tuned by back-propagation

Algorithm 1 VQC-CS Algorithm

Input: Received symbols y and initial estimate x̂0 = 0
Output: Non-linear estimate x̂t and linear estimate lt

Step 1: Compute the LE estimate lt in (2).

Step 2: Prepare VQC state by residual error in (6).

Step 3: Embed the LE estimate to VQC in (4).

Step 4: Measure VQC qubits to obtain scaling

factors in (9).

Step 5: Denoise the LE estimate in (5).

Step 6: Repeat Steps 1 through 5 for the preset

number of iterations.

during the learning phase. Once the rotation angles

are determined, the VQC is deployed for testing the

performance of compressed sensing in grant-free IoT-

device access systems.

IV. PERFORMANCE EVALUATIONS

A. System Parameters

In this section, we present the performance of VQC-

CS for joint channel estimation and user identification

over a wireless channel with sparse activity in grant-

free device access systems. We assume Rayleigh fading

channel, i.e., channel coefficients h are samples from

hi ∼ CN (0, 1/ρ), where ρ is a user activity rate. Without

loss of generality, we consider a pilot matrix A = ΛVH,

where Λ and V denote a square diagonal matrix of

singular values and corresponding right singular matrix.

We assume that the summation of singular values is

normalized to N , i.e.,
∑M

i=1 λi = N , and it holds

λi/λi+1 = κ1/M for i ∈ {1, 2, . . . ,M − 1}. κ indicates



TABLE I
HYPER-PARAMETERS OF TRAINING VQC-CS

Parameters Values

Exponential decay ζ 0.85
Learning rate 0.01

Number of layers L 3
Optimizer Root mean square propagation

the condition number of the pilot matrix and is set to

1 in the following simulations for simplicity. The right

singular matrix is modeled as VH = ΠF, where Π and

F indicate a random permutation matrix and discrete

Fourier transform matrix, respectively. We consider a

user activity rate of ρ = 0.2, a correlation coefficient

of γ = 0.6, and a channel SNR of 30 dB.

We use pseudo-inverse matrix D̂PINV in the LE

step for OAMP and VQC-CS algorithms. The training

hyper-parameters of the VQC-CS algorithm are listed

in Table I. We use at least 5,000 sample realizations for

performance evaluations.

B. Channel State Acquisition

In Fig. 4, we present the MSE performance of CS

algorithms for the network system with N = 10
devices and M = 7 received symbols. Note that these

algorithms all use an element-wise denoiser function:

OAMP employs an MMSE denoiser; and ISTA/FISTA

employs a soft-thresholding. We observe that OAMP

outperforms the ISTA and FISTA algorithms as expected.

After 3 iterations, VQC-CS shows the best performance

in channel estimation among these algorithms. This may

be because the VQC-CS can explore the correlation

structure in the user activity.

Fig. 5 shows the case with fewer received symbols

for N = 10 and M = 6 to evaluate the performance of

VQC-CS under a more severe channel condition. Similar

to the previous case, it is observed that VQC-CS can

achieve the best channel estimation performance after 3
iterations. OAMP saturates to a steady-state performance

in an early iteration, but the achieved MSE is worse

compared to the proposed VQC-CS algorithm.

C. Device Activity Detection

The CS algorithms can detect the active devices at

the same time of channel estimation. We evaluate the

user identification performance in terms of the area under

the curve (AUC) of the receiver operating characteristic

(ROC). The true positive rate and false positive rate are

calculated based on thresholding the NLE output, where

the device is determined as active if |x̂Ti | is greater than
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Fig. 4. MSE performance across CS iterations for ISTA, FISTA,
OAMP and VQC-CS algorithms in systems having N = 10 devices,
M = 7 received symbols and correlation γ = 0.6.
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Fig. 5. MSE performance across CS iterations for ISTA, FISTA,
OAMP and VQC-CS algorithms in systems having N = 10 devices,
M = 6 received symbols and correlation γ = 0.6.

a threshold. As an example, we show the AUC of ROC

in Fig. 6 for systems with N = 10 and M = 6. We

observe that VQC-CS achieves an AUC-ROC of 0.976,

which is better than the ISTA and FISTA.

Besides the direct threshold method, we use a post-

processing multi-layer perception (two hidden layers

with 4N and 2N neurons respectively) to optimize the

binary cross entropy loss for user activity recognition

after the CS-based channel estimation. The input of

the post-processing neural network is |x̂Ti | for i ∈



Fig. 6. ROC charts for ISTA, FISTA, OAMP and VQC-CS algorithms
in systems having N = 10 devices, M = 6 received symbols and
correlation γ = 0.6.

{1, 2, . . . , N}. With the post-processing, the AUC-ROC

increased from 0.976 to 0.986. Since VQC-CS uses MSE

as an objective function and the NLE may not follow

the orthogonality, the user identification performance of

VQC-CS is slightly worse than the OAMP. Nevertheless,

it was verified that the VQC-CS can outperform ISTA

and FISTA both in MSE and AUC scores.

V. CONCLUSION

In this paper, we proposed a new CS algorithm based

on VQC, that can be applied to joint channel estimation

and user identification in grant-free IoT-device access

systems. The proposed framework is a hybrid classical-

quantum computing paradigm, where the NLE step

exploits a trainable VQC processor to properly refine

the estimate of the LE step as an alternative denoiser. We

showed that VQC-CS can outperform conventional CS

techniques under a challenging system scenario where

the device activity is correlated.

This paper is the very initial proof-of-concept study

using a variational quantum computing in the area of

CS for the future quantum-ready society. Note that

the quantum processors may not be necessarily better

than classical processors in term of prediction accuracy,

but potentially more computationally efficient. This new

framework has huge potentials beyond just wireless

systems. There remain many fascinating challenges for

future work, including rigorous performance verification

with real quantum processors and quantum ansatz design

for large-scale CS problems.
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