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Abstract—Wireless networked control systems (WNCS) have
the potential to revolutionize industrial automation in smart
factories. Optimizing closed-loop performance while maintaining
stability is a fundamental challenge in WNCS due to limited
bandwidth and non-deterministic link quality of wireless net-
works. In order to bridge the gap between network design and
control system performance, we propose an optimal dynamic
transmission scheduling strategy that optimizes performance of
multi-loop control systems by allocating network resources based
on predictions of both link quality and control performance
at run-time. We formulate the optimal dynamic scheduling
problem as a nonlinear integer programming problem, which
is relaxed to a linear programming problem. We further extend
the optimization problem to balance control performance and
communication cost. The proposed optimal dynamic scheduling
strategy renders the closed-loop system mean-square stable under
mild assumptions. Its efficacy is demonstrated by simulating a
four-loop control system over an IEEE 802.15.4 wireless network
simulator – TOSSIM. The run-time network reconfiguration
protocol tailored for optimal scheduling is designed and imple-
mented on a real wireless network consisting of IEEE 802.15.4
devices. Hybrid simulations integrating a real wireless network
and simulated physical plant control are performed. Simula-
tion and experimental results show that the optimal dynamic
scheduling can enhance control system performance and adapt
to both constant and variable wireless interference and physical
disturbance to the plant.

Index Terms—Industrial internet of things, cyber-physical
system, wireless networked control system, dynamic scheduling.

I. INTRODUCTION

W IRELESS sensor-actuator networks (WSANs) are
gaining rapid adoption in industrial automation for

lowering deployment and maintenance costs in harsh in-
dustrial environments. Industrial standard organizations, such
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as ISA100 [2], WirelessHART [3], and ZigBee [4], have
been actively pushing a wide range of applications of IEEE
802.15.4 [5] based wireless technologies in industrial automa-
tion, which emphasize very low-cost communication [6], [7].
However, in wireless networked control systems (WNCS),
while advances have been made in sensing and monitoring,
there are multiple challenges in closing the loop over wireless
networks for control and actuation.

First, the networks with cable, power cord, and base station,
such as Ethernet/Wi-Fi/5G, offering high data rates of over
tens of Mbps. However, in industrial settings, a wireless device
that requires a power cord is often impractical due to harsh
industrial environments, flexibility requirements, and deploy-
ment cost according to ABB and Emerson. Therefore, one of
the keys to the design of industrial field devices and wireless
standards is to guarantee they could be battery powered for 4
to 10 years [8], [9]. Low-rate wireless personal area networks
(LR-WPAN) have limited throughput (e.g., IEEE 802.15.4
physical layer supports data rates of only up to 250 kbit/s)
but very low energy consumption and cost. As a result, LR-
WPAN can be battery powered and completely wireless under
recourse constraints. The control performance of WNCS is
strongly correlated with the amount of network resource they
can obtain. Besides, in the unlicensed 2.4 GHz band, multiple
systems including Wi-Fi and WNCS are competing for the
limited spectrum resource. Therefore, it is crucial to make
use of the limited network resources while improving control
performance in a WNCS.

Second, the physical isolation of wired networks ensures
supreme link quality and resilience to external environment
changes. In contrast, link qualities of wireless networks are
prone to environmental factors such as obstacles, noise, inter-
ference, extreme weather, as well as human interference in the
form of cyber attacks. Poor link quality can cause significant
data packet loss, resulting in severe degradation of the control
performance. Finally, most wireless network designs focus
on network performance, overlooking control performance,
which directly determine the profits and the safety of a
factory. Therefore, a practical wireless network design for
industrial control must optimize control performance while
taking limited network resources and the impact of link quality
and plant states into consideration.

In this paper, we bridge the gaps between control perfor-
mance and network design by exploring the direct impact
of network link quality and network resources allocation on
physical control systems. We design an optimal dynamic
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transmission scheduling strategy to optimize the control per-
formance based on run-time predictions of link quality and
physical control performance.

Our major contributions in this paper include:
1) incorporating link quality prediction of wireless networks

and control performance prediction of physical processes
into transmission scheduling;

2) providing a computationally tractable method for optimal
network scheduling based on predictions of both link
quality and the control performance;

3) establishing stability guarantees for the closed-loop con-
trol system with optimal scheduling;

4) illustrating the efficacy of our strategy on the high-fidelity
TOSSIM simulation environment in spite of constant
and variable channel noise in the wireless networks and
disturbance to the physical plants;

5) designing and implementing the run-time network re-
configuration protocol tailored for optimal scheduling on
IEEE 802.15.4 devices; performing hybrid simulations in-
tegrating the real wireless network and simulated physical
plants; evaluating the dynamic scheduling algorithm over
a real IEEE 802.15.4 wireless network.

The rest of the paper is organized as follows. We present
related work in Section II, and provide an overview of wireless
networked control systems in Section III. Section IV presents
the optimal scheduling problem and its linear programming
relaxation, and a stability analysis is provided in Section V.
Section VI evaluates the simulation and experimental results,
and we present our conclusions in Section VII.

II. RELATED WORK

The past decade has witnessed sustained interest in explor-
ing WNCS and expanding their applications over industrial
automation [6], [7], in the views of network, control system
design, and recently, network and control co-design.

From a network design perspective, several approaches are
presented to address resources allocation. For example, Huang
et al. [10] propose an adaptive time slot allocation scheme
for IEEE 802.15.4, which considers low latency and fairness
of packet waiting time; Zhan et al. [11] allocate network
resources by adjusting the slot length adaptively in accordance
with the data size of the end device. Given link quality, end-to-
end packet delivery ratio (PDR) can be effectively improved
by retransmission [12], channel selection [13], routing [14],
and reachability-aware scheduling [15], etc. However, few are
targeting optimizing control performance.

On the control side, many control designs based on the
physical plant models as well as on network parameters
are performed to maintain the performance. To name a few,
Sinopoli et al. [16] discuss Kalman filtering with intermit-
tent measurement; Gao et al. [17] investigate robust output
tracking control subject to time delay between controllers and
actuators; Ma et al. [18] explore the design freedom of system
architectures and propose a smart actuation architecture; Wang
et al. [19], [20], [21] model packet loss as a Bernoulli or
Markov-type process and establish stochastic stability of the
resultant WNCS. However, most control designs consider

only application-level network parameters, such as latency
and PDR, instead of lower-level parameters, such as link
quality and signal-to-noise ratio (SNR). However, with only
application level information, it is hard to fully utilize and
manage network resources for control performance.

More recently, network and control co-designs aim to jointly
design the control and network to eliminate the effects of
limited throughput and poor link quality of wireless networks,
among which there are network resources allocation designs
tailored for control performance of WNCS. Saifullah et al.
determine [22], [23] sampling rates to optimize control per-
formance. Gatsis et al. [24] propose distributed control-aware
random network access policies for each sensor so that all
control loops are stabilizable. Antunes et al. [25], [26] decide
which node accesses the network and the control policy at each
network time instant so as to optimize a quadratic performance
objective. Lješnjanin et al. [27] allocate network resources by
finding optimal nodes, which minimize cost function of model
predictive control (MPC) in terms of network packet loss.
Ma et al. [28], [29] propose the concept of holistic control
that cojoins network reconfiguration and physical control over
multi-hop mesh network. However, [22], [24], [25], [26]
assume perfect link quality, and none of [23], [27], [28], [29]
models the effects of link quality on control performance.

Furthermore, network protocols play a key role in the
problem formulation and approach. Our work adopts IEEE
802.15.4 network as a protocol suitable for industrial control,
which distinguishes our work from others based on pure
mathematical modeling [25], [26], Wi-Fi [30], and cellular net-
works [31]. We further contribute to network reconfiguration
protocols. Peters et al. [32] co-design scheduler and controller
to derive optimal control and schedule actuation commands
by incorporating both contention-free and contention-based
medium access of IEEE 802.15.4 network. However, they as-
sume that PDR is constant and do not consider retransmission
in scheduling, which is a key factor of improving PDR and
control performance [12].

In this paper, we explore the direct impact of wireless
network link quality and resources allocation on the physical
control system performance, and formulate an optimal dy-
namic scheduling strategy to optimize the control performance
by dynamically allocating the number of transmissions among
multiple control loops.

It is challenging to conduct experiments on industrial
control systems, especially under cyber and physical distur-
bance. Therefore, simulation tools are of vital importance to
evaluating WNCS. Truetime [33] is a MATLAB/Simulink-
based tool including simulations of CPU scheduling and
communication in addition to control algorithms and physical
plants. NCSWT [34] integrates MATLAB/Simulink and NS-
2 for simulations of WNCS. However, the wireless models
adopted in these simulators do not accurately model the
probabilistic and irregular packet receptions of wireless sensor
networks [35], [36]. WCPS [37] integrates MATLAB/Simulink
and TOSSIM [38] specifically designed to emulate complex
temporal link dynamics of wireless networks. More recently,
real wireless sensor networks have been used in WNCS exper-
iments with lab-scale control testbeds[39], [40], [41]. To com-
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bine the versatility of simulations of physical control systems
and real wireless sensor networks, we develop a network-in-
the-loop simulator, which integrates MATLAB/Simulink and
a wireless network consisting of real IEEE 802.15.4 devices,
which allows us to empirically evaluate the transmission
scheduling mechanisms and their impacts on control systems.

III. OVERVIEW OF WNCS

We provide an overview of the WNCS architecture used in
this work (as shown in Fig. 1). The controllers are typically
located separately from the physical plants. One reason is that
plants operate in environments which may not be conductive to
hardware implementation of control algorithms. Another rea-
son is one control algorithm may be responsible for multiple
plants, and therefore, a larger centralized unit of computation
may be required to implement such an algorithm. The physical
plants and the controllers communicate with each other via
wireless networks. We consider N control loops that share
the same wireless network with limited network resources,
and we aim at optimizing the overall control performance of
all control loops under both wireless interference and physical
disturbance.

Actuators
( )u k

( )y kˆ( )y k

Plant

ˆ( )u k

Actuators

Plant

Controller Actuators

Sensors Plant

Network

Manager

Fig. 1: Architecture of WNCS (red and blue dashed arrows
indicate actuation and sensing flows, respectively).

A. Physical plant and controller

We assume that each control loop is associated with an
individual plant. For the i-th loop, i ∈ {1, 2, . . . , N}, the
corresponding plant is modeled as a nonlinear discrete-time
system of the form:

xi(k + 1) = fi(xi(k), ui(k)), (1)
where k is the sampling period index, xi(k) ∈ Rni is the
state vector, and ui(k) ∈ Rmi is the actuation vector that
renders the closed-loop system asymptotically stable when
there is no packet loss in network. For simplicity, we state
all definitions and theorems for the case when the equilibrium
point is at the origin of Rni . There is no loss of generality
because any equilibrium point can be shifted to the origin via
a transformation of variables [42].

At time index k, a sensor sends measurements yi(k) to a
controller over the wireless network. At the controller side, a
state observer [16] estimates the states of the plant. Based on
the estimated state x̂i(k), the controller generates the actuation
command ui(k) and sends it to the actuator over the wireless
network. The actuator then applies ûi(k) to the plant. If ui(k)
fails to be delivered by the deadline, the actuator reuses the
control input of last period, ûi(k − 1).

B. Wireless network

1) Wireless Sensor-Actuator Network (WSAN): We assume
a WSAN comprising a coordinator and devices each equipped
with IEEE 802.15.4 radio. The WSAN has a star topology
in which every device can directly communicate with the
coordinator. A transmission schedule is created and updated
for the sensing and actuation flows of the control loops. In
IEEE 802.15.4 MAC, a transmission schedule is defined by
a superframe comprising a collection of timeslots that are
repeated over time. In the beacon-enabled mode, a superframe
starts with beacons sent by the coordinator. As shown in Fig. 2,
the beacon frame transmission starts at the beginning of the
first slot of each superframe. The beacons are used to synchro-
nize the devices, to identify the network (including collecting
link quality), and to describe the transmission schedule of
the superframes. During the inactive period, the coordinator
and devices may enter a low-power (sleep) mode. The active
period is composed of contention-access period (CAP) and
contention-free period (CFP). During CAP, devices compete
for media access using carrier sense multiple access/ collision
avoidance (CSMA/CA). Flows with real-time performance re-
quirements are usually assigned guaranteed time slots (GTSs)
during CFP. As specified by IEEE 802.15.4 MAC protocol [5],
CFP may include up to 7 GTSs. The limitations of IEEE
802.15.4 MAC protocol was discussed and modified by [40],
[43], such that the number of slots assigned to CAP and CFP
becomes a tunable parameter. As we target control systems
with real-time performance requirements, we focus on the
scheduling of CFP, whereas CAP can be used for other flows.

B B

Contention
Access Period

Contention
Free Period

Inactive
Period

Beacons

Active Period

t

Fig. 2: Structure of the IEEE 802.15.4 superframe
2) Network reconfiguration protocol: The network manager

(NM) manages the network and its devices. The NM, the plant
controller, and the coordinator of the network are usually co-
located or connected via a reliable wired network with negli-
gible packet drop and latency [44]. We propose an NM that
dynamically updates the schedule based on the information of
predicted link quality and the knowledge of predicted control
performance from the controllers to obtain optimal scheduling.
As previous work found that control performance can be
particularly sensitive to data loss of actuation flows [45], we
focus on dynamically scheduling the actuation flows, while
sensing flows follow static schedules.

After receiving the updated schedule from the NM, and
the coordinator broadcasts the schedule in the beacon at the
beginning of the next superframe. In this way, devices that
receive the beacon update their schedules accordingly. In case
a device misses the beacon, it stays awake and keeps listening
to receive its actuation command in this superframe. This
strategy improves resilience at additional energy cost when
the beacon is lost.

Remark III.1. In a multi-loop WNCS, the NM dynamically
updates the schedule based on the predicted link quality and
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control performance of each loop. When the scheduled number
of transmissions of loop i, denoted by ηi, is zero, the actuation
event of loop i is not triggered. By determining ηi as 0
or Z+, actuation events of control loops are either skipped
or triggered by the NM. Thus, a time-triggered controller,
modulated by the proposed network resources allocation, can
be viewed as a special kind of event-triggered control. The
trigger condition depends on the combination of network and
plant control states. �

IV. OPTIMAL SCHEDULING

In this section, we propose an optimal dynamic scheduling
strategy that optimizes control performance by allocating
limited network resources based on predictions of both link
quality and control performance at run-time. Following the
architecture illustrated in Fig. 3, first, the controllers operate
the control algorithm and generate control commands (red
1©). And the controllers predict closed and open-loop plant

performance for the next period (red 2©), separately. At the
same time, the NM evaluates the current status of the network
(blue 1©) and predicts the link quality of the next period
(blue 2©). Then the NM (optimal scheduler) solves the optimal
scheduling problem given predicted plant performances and
link qualities (blue 3©). After solving the problem, the NM
informs the network of the resultant optimal scheduling in
the beacon message and sends the corresponding slots to the
controller (blue 4©). Finally, all nodes in the network adjust
their schedules (blue 5©), and the control inputs are sent in
the assigned slots in the next period (red 5©).

We will present (1) how the link quality is predicted by NM,
(2) how the plant performance is predicted by the controller,
and (3) how the optimal scheduler generates a schedule based
on predicted link quality and plant performance. We formu-
late the optimal scheduling problem as a nonlinear integer
program, which is relaxed into a linear programming (LP)
problem. Additionally, we present a heuristic to sort control
loops by the descending order of their control costs in each
superframe for shortening the latency of control loops in need
of communication. Finally, we address the trade-off between
control performance and communication cost by formulating
a new multi-objective optimization problem.

Actuators

( )u k

ˆ( )u k
Actuators

Predicted plant 
performance:

Link quality: PRRi

c
i iJ x̂( (k + 1)),

o
i iJ x kˆ( ( 1))+

Optimal 
schedule: s*

Controller
Operate control algorithm and 

generate u(k);
Predict plant performance;

ηi and
slots to access 

the network

Network Manager
(Optimal Scheduler)
Predict link quality PRRi(k+1);

Solving optimal scheduling problem 

Actuators

①

①

② Update
schedule

②

and generate s*;③

④

Ļ

Ļ𝑦"(k)

Fig. 3: Diagram of optimal dynamic scheduling events.

A. Multi-loop control system modeling

We use s to represent the network schedule of the next
superframe. The number of transmission is at the center of the
trade-offs between reliability and network resources, i.e., more
transmissions lead to a higher packet delivery ratio (PDR)

at a cost of network resources [28]. Denote ηi the number
of transmission of loop i in schedule s. Additional ηi − 1
slots assigned to loop i are re-transmitting the same control
signal in case the packet is lost in previous slots. For example,
ηi = 2 indicates that loop i is assigned 2 transmission slots.
Our scheduling problem is to determine and balance ηi among
control loops by predicting link quality and physical system
performance.

We focus on the actuation (downstream) packet scheduling
problem. This is because the state observer provides robust
and theoretically sound protection against loss of sensing
information [16], [46], [47], and the control system perfor-
mance can be more sensitive to packet loss to the actuators in
certain WNCS [45]. Interested readers are referred to [48] and
references therein for details about sensing packet scheduling.
We will establish optimal schedule for both sensing and
actuation packets in our future work.

In Sections IV-B– IV-D and V, we focus on modeling packet
loss and schedule the actuation packets for the control loops
in the ascending order of the loop number in each superframe.
Since we focus on scheduling CFP of a IEEE 802.15.4 super-
frame, which employs time division multiple access (TDMA),
transmission latency is bounded by the superframe length.
For ease of analysis, we assume strict periodicity of actuation
packets. This restriction is lifted in our simulation to allow
realistic packet timing.

Remark IV.1. For simplicity, all loops presumably have the
same sampling period, which is equal to the superframe
length. This is without loss of generality, and can be relaxed
by applying well-established lifting technique in sampled-data
control [49], i.e., representing a multi-rate system as a single-
rate system with a single period being the least common
multiple of all sampling periods. �

B. Link quality
We adopt a general metric – packet reception ratio (PRR)

– to represent the link quality since maximization of the
successfully transmitted packets is the basic objective to most
networks [50]. NM dynamically generates schedules for the
WSAN based on predicted PRRs of all links. Besides, physical
layer characteristics such as received signal strength indicator
(RSSI), SNR, and link layer characteristics such as link quality
indicator and expected transmission count also indicate the
quality of wireless link [50].

1) Link quality prediction: We predict the link quality at
the granularity of a superframe (sampling period) since in
IEEE 802.15.4 networks, scheduling is done on a superframe
basis. Because a superframe is short, typically in unit of
hundreds of millisecond, the predicted link quality is assumed
to remain constant within a same superframe. Holt’s additive
trend prediction method [51], [52] is employed to predict PRR
of next m superframes,
S(k) = αPRR(k) + (1− α)

(
S(k − 1) + T (k − 1)

)
T (k) = γ

(
S(k)− S(k − 1)

)
+ (1− γ)T (k − 1)

P̂RR(k +m|k) = S(k) +mT (k),

(2)

where PRR(k) is the current measured PRR of a specific link,
S(k) denotes an estimate of the current level of the series,
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T (k) represents an estimate of current trend (slope), m is a
positive integer representing the superframes ahead, P̂RR(k+
m|k) is the predicted PRR m superframes ahead, α and γ
(0 < α, γ < 1) are the level and slope smoothing parameter,
respectively.

2) Packet delivery modeling: Let a binary variable φi(k)
denote end-to-end packet reception

(
φi(k) = 1

)
or loss(

φi(k) = 0
)

within a superframe. PDR of actuation packets for
loop i under schedule s is denoted as µφi(s) = P

(
φi(k) = 1

)
.

Note that µφi(s) depends on PRR of the link and the number
of transmissions in schedule s. Particularly, given link failure
ratio of link i (loop i) as βi = 1− PRRi, we have PDR

µφi(s) = 1− βηii . (3)

C. Optimal scheduling formulation

At time k, controllers determine control u(k) based on states
x(k) and physical system models (1). NM should come up
with schedule s(k) that optimizes overall control performance,
based on states x(k) and actuation commands u(k) of the
physical plants, wireless link quality PRR, and physical system
models (1) at run-time. In fact, optimal scheduling solves for
s(k) based on the predicted state x(k + 1) which implicitly
depends on schedule s(k) through PDR. Specifically, state
x̂i(k + 1) for loop i can be inferred from xi(k), ui(k), for
the cases of actuation packet reception or loss (i.e., φi),

1) actuation command packet of loop i at time index k
arrives, and ûi(k) is actuated (closed loop):

ûci (k) = ui(k),

xi(k + 1) = x̂ci (k + 1) = fi
(
xi(k), ûci (k)

)
,

(4)

2) actuation command packet ui(k) is lost, and ûi(k−1) is
actuated (open loop):

ûoi (k) = ûi(k − 1)

xi(k + 1) = x̂oi (k + 1) = fi
(
xi(k), ûoi (k)

)
.

(5)

The objective for the optimal scheduling strategy is opti-
mizing control system performance. For illustration purpose,
we define a quadratic cost function of loop i as follows:

Ji
(
xi(k)

)
= xTi (k)Wixi(k), (6)

where Wi � 0 is a positive definite matrix. Define the overall
cost function as follows:

J
(
x(k)

)
=

N∑
i=1

Ji
(
xi(k)

)
= xT (k)Wx(k), (7)

where x(k) =
[
xT1 (k) xT2 (k) . . . xTN (k)

]T , and
W = blkdiag(W1,W2, ...,WN ). Here, blkdiag is the block-
diagonalize operator that constructs a block diagonal matrix
from input matrices. We will see in Sec. V that this objective
function provides some benefits in terms of the guarantee of
mean-square stability for LTI systems.

Given schedule s(k), the expectation of predicted control
cost for loop i, Ji

(
xi(k + 1)

)
is:

E
(
Ji
(
xi(k + 1)

))
=∑

φi={0,1}

Ji
(
xi(k + 1)

)
P
(
xi(k + 1)|φi(k + 1)

)
P
(
φi(k + 1)

)
= Ji

(
x̂ci (·)

)
P
(
xi(·) = x̂ci (·)|φi(·) = 1

)
P
(
φi(·) = 1

)
+Ji

(
x̂oi (·)

)
P
(
xi(·) = x̂oi (·)|φi(·) = 0

)
P
(
φi(·) = 0

)

According to (4) and (5), we have
P
(
xi(·) = x̂ci (·)|φi(·) = 1

)
= 1,

P
(
xi(·) = x̂oi (·)|φi(·) = 0

)
= 1.

(8)

Therefore,
E
(
Ji
(
xi(k + 1)

))
= Ji

(
x̂ci (k + 1)

)
µφi
(
s(k)

)
+ Ji

(
x̂oi (k + 1)

)(
1− µφi

(
s(k)

))
,

(9)

where E is the expectation operator, with respect to the
probabilities of link failure/success and the corresponding cost
functions. Substituting (3) into (9) gives

E
(
Ji
(
xi(k + 1)

))
= Ji

(
x̂ci (k + 1)

)
+
(
Ji
(
x̂oi (k + 1)

)
− Ji

(
x̂ci (k + 1)

))
βηii .

(10)

We then calculate the expectation of overall control cost for
N loops, and get (11) by simplifying derivation by ignoring
time index. See Appendix A for details.

E
(
J (x)

)
=

N∑
i=1

(
Ji(x̂ci )µφi(s) + Ji(x̂oi )

(
1− µφi(s)

))
.

(11)
Given the objective function (11), the optimal scheduling

problem is formulated as:
minimize

ηi
E
(
J
(
x(k + 1)

))
(12a)

subject to
N∑
i=1

ηi ≤ L (12b)

ηi ∈ {0, 1, . . . , L},∀i ∈ {1, 2, ..., N}, (12c)
where L is the total number of slots assigned for all actuation
flows in each superframe, which is usually customized based
on the superframe length and transmission workloads. Con-
straint (12b) indicates the requirement of schedulability, i.e.,
the total number of transmissions of all actuation flows should
be less than L. Constraint (12c) means that the transmission
number should be a non-negative integer. Problem (12) is
an integer programming problem. Furthermore, the objective
function is nonlinear in ηi as can be seen from (10). Problem
(12) is NP-hard [53].

D. Run-time optimal scheduling

Since the optimal scheduling problem must be solved for
every superframe, its tractability is of vital importance.

1) Binary linear programming: We propose a transforma-
tion of variables to recast Problem (12) into a binary linear
programming (BLP) problem. The resultant BLP problem is
equivalent to Problem (12) by introducing the binary vari-
able T̃ij ∈ {0, 1} that flags the magnitude of ηi, which
implies the change of decision space from {0, 1, . . . , L}N to
{0, 1}N(L+1):

T̃ij =

{
1, ηi = j, j ∈ {0, 1, . . . , L}
0, otherwise.

(13)

We define
qij = Ji

(
x̂ci (k + 1)

)
+
(
Ji
(
x̂oi (k + 1)

)
−Ji

(
x̂ci (k + 1)

))
βji .

Then we can represent E
(
Ji
(
xi(k + 1)

))
in (10) as

E
(
Ji
(
xi(k + 1)

))
=

L∑
j=0

qij T̃ij . (14)
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By defining
T̃ =

[
T̃10 T̃11 ... T̃1L T̃20 T̃21 ... T̃2L ... T̃NL

]T
,

we can see that the objective function (11) is linear in T̃ ,
E
(
J
(
x(k + 1)

))
= QT̃ , (15)

where Q =
[[
q10 q11 ... q1L

]
, ...,

[
qN0 ... qNL

]]
. Problem

(12) is reduced to a BLP problem as follows
minimize

T̃ij

QT̃ (16a)

subject to
N∑
i=1

L∑
j=0

jT̃ij ≤ L (16b)

L∑
j=0

T̃ij = 1 (16c)

T̃ij ∈ {0, 1},∀i ∈ {1, 2, ..., N},∀j ∈ {0, 1, 2, ..., L}
(16d)

Note that we rewrite the constraint (12b) as (16b). In order
to ensure each loop i has unique ηi, we impose constraints
(16c)-(16d). The transmission numbers can be recovered from
T̃ using

ηi =
[
0 1 2 ... L

] [
T̃i0 T̃i1 T̃i2 ... T̃iL

]T
. (17)

Commercially available integer programming solvers such
as Gurobi®, CPLEX®, and intlinprog in MATLAB®, can be
readily used to solve (16).

2) Linear programming relaxation: By relaxing binary
constraint (16d) to T̃ij ∈ [0, 1], we have a typical LP
problem, which can be solved efficiently using linprog in
MATLAB® or other LP solvers. We then convert the resultant
relaxed solution to integral form by rounding ηi of (17).
The complexity of LP is O( m3

ln(m)D) [54], where m is the
dimension of decision space, i.e. N(L+ 1), D denotes the bit
length of the input data. When we set N = 4 and W = I4,
among 57,600 results, 99.98% of cases yield the optimal
solutions (found by brute-force search in the feasible set). We
illuminate the complexity of optimal scheduling problem when
the number of control loops goes up to 200 (N = 200) in
Fig. 4. LP relaxation shows its overwhelming advantage in
reducing complexity over brute force search.

50 100 150 200
N (N=L)

100

1050

10100

C
om

pl
ex

ity

Brute force
LP relaxation

Fig. 4: Complexity of optimal scheduling problem

Remark IV.2. The resultant ηi might be infeasible
(
∑N
i=1 ηi > L) due to relaxation and rounding. Since there is

a diminishing return in PDR improvement as ηi increases [28],
we propose a heuristic method to achieve a feasible solution
by iteratively reducing the largest element max

1≤i≤N
ηi by one,

until
∑N
i=1 ηi ≤ L. �

Algorithm 1: Algorithm of sorting loops in each super-
frame

input : Transmission numbers returned by optimal
scheduling: ηi, predicted costs: Costi = wixi(k),
wi, i ∈ {1, 2, . . . , N} are customized weight of
each loop, number of slots for actuation packets: L.

output: The schedule of actuation packets in next
superframe: Schedule

Schedule ← zeros(L); Slot ← 1;
for all i do

ηi left ← ηi;
//ηi left represents unscheduled
transmissions;

Cost matrix ←
[

1 2 3 . . . N
Cost1 Cost2 . . . CostN

]
;

Sorted loop number ← sort loops (first row of Cost matrix)
in descending order of Costi (second row of Cost matrix);

while slot≤ L and
∑N

i=1 ηi > 0 do
for i in Sorted loop number do

if ηi left > 0 then
Schedule(Slot) ← i; Slot← Slot + 1;
ηi left← ηi left− 1;

return Schedule;

E. Heuristics of sorting loops in superframes

In previous sections, we unnecessarily assume that the
actuation packet of each loop is scheduled in the ascending
order of the loop number. In this section, we lift that restriction
and provide an algorithm to leverage the order of loops in
each superframe given the solution ηi of optimal scheduling
problem (16). As shown in Alg. 1, we propose to sort the
actuation packet of each loop in the descending order of their
costs (Costi), i.e., the loops with larger costs will be scheduled
earlier so that the actuation packets of those loops will obtain
shorter latency. In addition, we spread the retransmissions of
same loop to shorten the latency of other loops.

F. Trade-offs between control performance and communica-
tion cost

The aforementioned optimal scheduling algorithm assigns
all L slots to actuation flows. It does not consider trade-
offs between control system performance and communication
cost, which is defined by the total number of slots assigned
to actuation commands. In practice, a smaller communication
cost means lower bandwidth usage by actuation flows, which
allows the network to accommodate more applications under
its bandwidth constraint. Henceforth, we formulate a new
optimal dynamic scheduling problem, aiming to minimize a
cost function that incorporates both control performance and
communication cost.

By adding a weighted term of communication cost to the
cost function of (12), we have a new cost function to balance
control performance and communication cost:

E
(
J
(
x(k + 1)

))
+ ε

N∑
i=1

ηi, (18)

where E
(
J
(
x(k + 1)

))
is the control performance cost as

described in (7), and
∑N
i=1 ηi, the number of transmissions

assigned for all actuation flows, is communication cost. Con-
stant ε is used to control the weight of communication cost



SUBMISSION TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

relative to control performance. When ε approaches 0, which
indicates that the communication cost in the objective function
is ignored, the optimization problem is the same as the original
optimization problem (12).

V. STABILITY ANALYSIS

The aforementioned optimal scheduling strategy (12) can
improve the control performance of the multi-loop WNCS
without loss of stability. In this section, we establish a
sufficient condition of stability in the mean-square sense.
According to [55], a discrete-time stochastic system is mean-
square stable (MSS) if for any initial state x(0),

lim sup
k→∞

E
(
‖x(k)xT (k)‖

)
= 0.

A closed-loop system is MSS if there exists a stochastic
Lyapunov function V (x), such that

1) V (0) = 0 and V (x) > 0,∀x 6= 0;
2) ‖x‖ → ∞⇒ V (x)→∞;
3) E

(
V (x)

)
decreases along system trajectories. That is,

E
(
V
(
x(k + 1)

))
− E

(
V
(
x(k)

))
≤ 0. (19)

Next we show that our optimal dynamic scheduling strategy
can ensure mean-square stability of the closed-loop system
under mild assumption: the existence of any fixed schedule
such that the resultant system is MSS. A fixed schedule can
be a typical periodic schedule or any static schedule that are
calculated offline. We first need to determine whether there is a
fixed schedule that makes the closed-loop system MSS. Here,
we provide a condition to check whether systems resulted
from a fixed schedule are MSS for discrete-time LTI (DT-LTI)
systems as an example.

A. MSS analysis of LTI systems with fixed schedule

Consider a multi-loop DT-LTI system, with system dynam-
ics of the loop i being given by
xi(k + 1) = Aixi(k) +Biui(k), ui(k) = Kixi(k), (20)

where xi(k) ∈ Rni is the state vector, and ui(k) ∈ Rmi is the
control input. Assume that the state feedback gain Ki renders
the closed-loop subsystem (loop i) asymptotically stable in
ideal network (network without packet loss).

To apply the stability analysis in [56], we model the closed-
loop system dynamics over actuation networks with schedule
s as a discrete-time stochastic system. According to [56], the
closed-loop system dynamics of loop i are equivalent to the
following augmented system

zi(k + 1) = Ãsi(s, k)zi(k), (21)
where zi(k) =

[
xTi (k) ûTi (k) uTi (k)

]T
, and

Ãsi(s, k) =

 Ai Bi 0
0 1− φi(s) φi(s)

KiAi 0 KiBi

 .
Similar to (4) and (5), zi(k + 1) can be determined from

zi(k), ui(k), ui(k − 1), and φi(k), specifically,
1) with φi(k) = 1,

ûi(k) = ui(k), zi(k + 1) = ẑci (k + 1) = Ãcsizi(k),
2) with φi(k) = 0, ûi(k − 1) is adopted and

ûi(k) = ûi(k − 1), zi(k + 1) = ẑoi (k + 1) = Ãosizi(k),

where

Ãcsi =

 Ai Bi 0
0 0 1

KiAi 0 KiBi

 , Ãosi =

 Ai Bi 0
0 1 0

KiAi 0 KiBi

 .
Hence, the overall multi-loop control system can be rewrit-

ten as
z(k + 1) = Ã(s, k)z(k) (22)

where Ã(s, k) = blkdiag
(
Ãs1(s, k), Ãs2(s, k), . . . , ÃsN (s, k)

)
,

z(k) =
[
z1(k) z2(k) . . . zN (k)

]T
. In order to prove

stability properties of the closed-loop system, besides
assumptions in Sec. IV-A, we make the following assumption.

Assumption V.1. For the fixed network schedule case, se-
quences {φi(k), k ∈ N},∀i ∈ {1, 2, ..., N}, are i.i.d with the
average of µφi .

Assumption V.1 is used to establish the stability for closed-
loop system with a fixed schedule case. Distribution of φi(k)
depends on the distribution of i.i.d transmission receptions
and pre-defined fixed schedule sf based on product distribu-
tion [57]. This assumption is lifted in evaluation section to
allow more realistic radio propagation and noise models in
TOSSIM [58].

Under Assumption V.1, we can rewrite Ã(s, k) in (22) as

Ã(s, k) = Ã0 +

N∑
i=1

Ãipi(k), (23)

where pi(k) are i.i.d. random variables with E
(
pi(k)

)
= 0,

variance Var
(
pi(k)

)
= σ2

pi , and E
(
pi(k)pj(k)

)
= 0,∀i, j ∈

{1, 2, . . . , N},
Ã0 = blkdiag(Ã01, Ã02, . . . , Ã0N ),

Ã1 = blkdiag(Aφ1 ,0, . . . ,0),

Ã2 = blkdiag(0, Aφ2
,0, . . . ,0),

...

ÃN = blkdiag(0,0, . . . , AφN ),

Ã0i =

 Ai Bi 0
0

(
1− µφi(s)

)
I µφi(s)I

KiAi 0 KiBi

 ,
Aφi =

 0 0 0
0 µφi(s)I −µφi(s)I
0 0 0

 , σ2
pi(s) =

1

µφi(s)
− 1.

Here, we let pi(k) = 1 − φi(k)
µφi

be binary random variable
that takes 1 or 1 − 1

µφi
with P

(
pi(k) = 1

)
= 1 − µφi and

P
(
pi(k) = 1 − 1

µφi

)
= µφi . From Assumption V.1, we have

that pi(k) is i.i.d with E
(
pi(k)

)
= 0 and Var

(
pi(k)

)
= σ2

pi .
For the discrete-time stochastic system (23), Lemma V.1

gives a condition to check whether the system is MSS. MSS
can be verified directly by solving the Lyapunov equation in
P , ÃT0 PÃ0 − P +

∑N
i=1 σ

2
piÃ

T
i PÃi + I = 0, and checking

whether P > 0.

Lemma V.1. [55, pp. 131] System (21) is MSS if and only if
there exists a positive definite matrix P satisfying

ÃT0 PÃ0 − P +

N∑
i=1

σ2
piÃ

T
i PÃi < 0. (24)
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Remark V.2. For fixed pre-defined schedule sf , if control
loops are independent, where the states of one loop do
not interact with those of other loops, each loop i can
derive its own positive definite matrix (denoted as Pi) sep-
arately as single control loop in Lemma V.1. We have P =
blkdiag(P1, P2, ..., PN ). �

B. Stability condition of optimal scheduling

Given the existence of a fixed schedule which renders the
closed-loop system MSS, we can establish that the closed-loop
system resulted from the optimal schedule is also MSS.

Proposition V.3. If there exists a fixed schedule sf such
that the resultant closed-loop system is MSS, and J (x) is
a stochastic Lyapunov function with sf , then the closed-loop
system with the optimal schedule s∗ derived by solving (12)
is also MSS.

x∗(k)

x′(k + 1)

x∗(k + 1)

sf

s∗

Fig. 5: Diagram of stability proof (apply the fixed schedule sf
and the optimal schedule s∗(k) to x∗(k), and then get x′(k+1)
and x∗(k + 1), respectively)

Proof. As shown in Fig. 5, we apply both the stabilizing fixed
schedule sf and the optimal schedule s∗(k) to any state x∗(k),
and then get x′(k + 1) and x∗(k + 1), respectively.

Since J (x) is a stochastic Lyapunov function of the closed-
loop system resulted from a fixed schedule sf , J (x) satisfies
J (x) > 0,∀x 6= 0, J (x) → ∞ as ‖x‖ → ∞, and E

(
J (x)

)
decreases along trajectories of the system, according to (19).
Therefore,

E
(
J
(
x′(k + 1)

))
≤ E

(
J
(
x∗(k)

))
. (25)

Because the schedule s∗ minimizes the objective function
E
(
J
(
x(k + 1)

))
in the optimization problem (12), we have

E
(
J
(
x∗(k + 1)

))
≤ E

(
J
(
x′(k + 1)

))
. (26)

Combining (25) and (26), we derive
E
(
J
(
x∗(k + 1)

))
≤ E

(
J
(
x∗(k)

))
. (27)

For the optimally scheduled system (i.e. s = s∗), E
(
J (x)

)
de-

creases along trajectories of the system, and satisfies J (x) >
0,∀x 6= 0, and J (x)→∞ as ‖x‖ → ∞. Therefore, J (x) is
also a stochastic Lyapunov function of the optimally scheduled
system.

Remark V.4. The stability condition in this section is only
valid for the optimal solution in Sec. IV-D1, and is not valid
for the near-optimal solution in Sec. IV-D2. Actually, as long
as the linear programming relaxation gives E

(
J ∗
(
x(k+1)

))
satisfying the inequality (26), stability holds; otherwise, we
can use the fixed schedule to guarantee stability. �

Remark V.5. For DT-LTI system (22), and P � 0 satisfying
Lemma V.1 with sf , we can interpret the function J (x) =
xTPx as a stochastic Lyapunov function with sf , see, for
example [55, pp. 132], and thus J (x) is also a Lyapunov

function of the optimally scheduled system. This justifies the
adoption of a quadratic objective function in (7). �

Remark V.6. Although we set J (x) as a quadratic function
to analyze MSS for DT-LTI systems, Proposition V.3 holds
for other forms of J (x). That is, if there is a stochastic
Lyapunov function V (x) for nonlinear systems with a fixed
schedule [59], then V (x) is also a stochastic Lyapunov
function for the closed-loop system rendered by the optimal
schedule that minimizes E

(
V (x)

)
in (12). �

VI. EVALUATION

This section presents a systematic case study of the pro-
posed scheduling strategy. On the physical plant side, we
use four 3-state double water-tank systems that share the
same wireless network. On the network side, we first apply
simulations to evaluate the proposed optimal dynamic schedul-
ing strategy and the efficacy of the network reconfiguration
protocol. We simulate stochastic packet loss patterns using
the TOSSIM simulator for IEEE 802.15.4 networks, and
evaluate our strategy under 1) constant and variable network
background noise levels and 2) pulse physical disturbance
to the control plant. Furthermore, we implement the dy-
namic scheduling algorithm and mechanisms in a real IEEE
802.15.4 wireless network. We then build a network-in-the-
loop simulator that integrates a real wireless network and
simulated physical plants, in order to empirically evaluate the
the proposed optimal dynamic scheduling strategy.

A. Simulation settings

Tank 1

Tank 2

Basin

Pump

L1

L2

LR

u

Fig. 6: Diagram of double water-tank systems
1) Physical control system: Consider four independent 3-

state double water-tank systems, as shown in Fig. 6, each of
which is modeled as follows [37], [40]:

L̇1 =
1

ρA1
(αu−

√
ρg

ρR1

√
L1)

L̇2 =
1

ρA2
(

√
ρg

ρR1

√
L1 −

√
ρg

ρR2

√
L2)

L̇R =
1

ρAR
(

√
ρg

ρR2

√
L2 − αu)

(28)

TABLE I: System parameters
PLANT1 PLANT2

par value par value par value par value
A1 0.01 R1 0.0006 A1 0.12 R1 0.0006
A2 0.006 R2 0.0008 A2 0.007 R2 0.0008
AR 1 α 10 AR 1 α 10
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Fig. 7: Optimal scheduling under constant noise −76 dBm

where L1, L2, LR are the liquid levels of the upper tank, lower
tank and the basin, respectively; A1, A2, AR are the cross-
sectional areas of the tanks; and R1, R2 are the resistance
parameters of pipes of upper and lower tanks. We discretize
the continuous-time model (28) using the Euler method with
sampling period of ∆t, and have the discrete-time model

L1(k + 1)

L2(k + 1)

LR(k + 1)

 =


1− ∆t

√
ρg

ρ2R1A1

√
L1

0 0
∆t
√
ρg

ρ2R1A2

√
L1

1− ∆t
√
ρg

ρ2R2A2

√
L2

0

0
∆t
√
ρg

ρ2R2AR
√
L2

1



L1(k)

L2(k)

LR(k)


+

 α∆t
ρA1

0
−α∆t
ρA2

u(k).

There are two types of plants, denoted by PLANT1 and
PLANT2, that have different system parameters, shown in
Table. I. Systems 1 and 3 are of type PLANT1, and systems
2 and 4 are of type PLANT2. We have included multi-rate
functionality in MATLAB/Simulink simulations of physical
plants and the controllers. That is, plant models run at a high
frequency of 960 Hz, whereas controllers and state observers
execute at a relatively low frequency of 24 Hz.

For four loops, we design state feedback controllers for
reference tracking. To evaluate the tracking performance, we
choose the mean absolute error (MAE) metric to compare the
performance among each control loop in order to illustrate the
intuition and advantages of the scheduling strategy:

MAE =
1

n+ 1

n∑
k=0

|x(k)− xref (k)|, (29)

where n is the number of samples, and xref is the reference
state.

2) Wireless network: We simulate the IEEE 802.15.4
beacon-enabled wireless network. We have developed the
functionalities of NM and media access in the simulator.
NM predicts the link quality of the next period and solves
the optimal scheduling problem, then transmits the updated
schedule within the beacon message. We utilize multi-rate
functionality in MATLAB/Simulink to support the timing of
accessing the media by wireless nodes of different control

loops. The resultant media access schedule and transmission
outcomes can be derived from the simulator (as shown in
Figs. 7, 12, and 21). Since we propose to use fixed scheduling
for sensing flows in Sec. IV-A, in our simulation, we focus on
scheduling actuation flows by assuming sensors having wired
connection to controllers. Each superframe has five slots and
the slot duration is 8.3 ms, and the superframe is updated at 24
Hz. The first slot is assigned for a beacon frame. The following
four CFP slots are assigned for actuation flows of four control
loops. Given W as the identity matrix in the objective function
J (x) in (7), we solve the relaxed linear optimization problem
described in Sec. IV-D2 using MATLAB/linprog solver. In
simulation, we collect wireless traces from 4 links (8 nodes)
of the WSAN testbed at Washington University. As described
in Sec. VI-B1, we get packet loss traces using RSSI and set
controlled noise strength as inputs of the TOSSIM simulator.
For simplicity, we use single channel in evaluation. Note that
the supported number of control loops can be scaled up by
simultaneously accessing up to 16 channels of IEEE 802.15.4
PHY. [60]

B. Simulation results

We first evaluate PRR prediction described in Sec. IV-B.
We then run the WNCS simulations under different levels
of constant network background noise. We then evaluate the
performance of our optimal scheduling strategy under variable
background noise to show its adaptability and optimality, com-
paring with the periodic scheduling mechanism. In addition,
we evaluate how the optimal scheduling strategy performs
under pulse physical disturbance.

1) Results of link quality prediction: In our study, wireless
traces from 4 links of the WSAN testbed at Washington
University [14] have been collected, which contain the con-
nectivity and RSSI data [37]. In addition, we use controlled
background noise strength to simulate various network con-
ditions. Both the RSSI and controlled noise strength are fed
into a high-fidelity wireless simulator – TOSSIM [45], [58].
Fig. 8 shows PRRs (91,000 packets for each data point) of
four links under controlled noise levels. The PRRs vary among
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links under the same noise levels since the RSSIs are different.
The PRR under the lowest noise level (−84 dBm) is the
highest. Under the same noise levels, links with higher RSSIs
(link1 > link2 = link4 > link3) yield higher PRRs.

-84 -82 -80 -78 -77 -76 -75

Noise (dBm)
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R

link1 (RSSI:-64 dBm)

link2 (RSSI:-66 dBm)

link3 (RSSI:-67 dBm)

link4 (RSSI:-66 dBm)

Fig. 8: PRRs under various noise levels
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Fig. 9: Sliding-window PRRs of link 3
Fig. 9 shows the sliding-window PRRs of link 3 under noise

levels of −84 dBm and −75 dBm, respectively. The horizontal
axis is the number of packets transmitted via link 3. The
window size is 15 in this case study. 1-step PRR prediction
results are shown in Fig. 10. We use link 3 under noise level
of −75 dBm as an example, and we choose α = 0.9, γ = 0.1
in (2). We can see that PRR prediction (red dashed line)
matches well with measured PRR (blue solid line). The mean
absolute error (MAE) of the PRR predictions is shown in
Fig. 11. The prediction error increases as the prediction step
size increases. 1-step prediction error is less than 4%, and 5-
step prediction error is less than 10%. Note that as the noise
level increases from −84 dBm to −75 dBm, the prediction
error increases. This indicates that the noise level affects the
prediction accuracy. However, we achieve more than 90% of
prediction accuracy for all simulated scenarios.

2) Performance under constant background noise: We run
the WNCS simulations of optimal (OPT) scheduling under
several background noise levels. Our baseline is the WNCS
that adopts a static periodic schedule as shown in Fig. 12, in
which GTS slots are uniformly scheduled to the four control
loops. Under noise level of −76 dBm, the optimal schedule
is shown in Fig. 7, and the ratios of slot allocation for each
control loop in different time intervals are shown in Fig. 13.
Since the sizes of tanks of PLANT1 are smaller than those of
PLANT2 as shown in Table.I, PLANT1 (loops 1 and 3) is more
sensitive to packet loss and performs worse than PLANT2
(loops 2 and 4) during transient responses (first 4 s). During the
first 4 s, the NM scheduled most of slots to loop 1 (24.2%) and
loop 3 (39.6%) and much less slots to loop 2 (17.2%) and loop
4 (19.0%). More slots are scheduled to loop 3 than loop 1 since
loop 3 has worse link quality as shown in Fig. 8. Fig. 14 shows
the responses of the upper tanks of the four loops. The OPT
scheduling significantly improves the control performance of
loops 1 and 3 and maintains similar performance of loops 2
and 4, compared with the periodic scheduling.
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Fig. 10: 1-step PRR prediction under noise −75dBm (link 3)
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Fig. 11: PRR prediction errors of link 3 under various noise

In addition, to show the adaptability of our OPT scheduling
with respect to physical disturbance, we add pulse physical
disturbance to loops 1 and 3 at t = 4 s, and to loops 2 and 4 at
t = 9 s. As shown in Figs. 7 and 13, during t = 4 to 6 s, most
of the slots are assigned to loop 1 (32.8%) and loop 3 (58.4%),
and only a few slots are assigned to loop 2 (5.2%) and loop
4 (3.6%) since they are in steady states. During t = 9 to 11
s, most of the slots in OPT schedule are scheduled to loop
2 (43.2%) and loop 4 (38.1%). These results show that our
OPT scheduling can adjust to physical disturbance. For a more
extensive performance evaluation illustrating the advantage of
OPT scheduling over periodic scheduling, we show aggregated
response curves of periodic scheduling and OPT scheduling
for 50 rounds of simulation, respectively in Figs. 15 and 16.
We can see the obvious advantage of OPT scheduling over
periodic scheduling, especially for loop 3.

We run simulations of three scheduling strategies: (1) com-
bining OPT scheduling and sorting with identical weights
(OPT scheduling + Sorting), (2) OPT scheduling, and (3)
periodic scheduling, for 50 times. Fig. 17 shows the boxplots
of MAEs of each scheduling strategy under different noise
levels. The control performance degrades as the background
noise increases. The OPT scheduling outperforms the periodic
scheduling for all background noise levels. The advantage
of the OPT scheduling becomes more apparent as the link

Fig. 12: Periodic scheduling under noise −76 dBm
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Fig. 13: Slot allocation in various time intervals
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Fig. 15: Aggregated response curves of periodic scheduling
under noise level of −76 dBm (50 rounds)

quality degrades. This is because the OPT schedule adjusts
transmissions based on link quality and control performance
and thus is more robust to noise. The sorting algorithm further
improves the control performance by considering latency. We
also compare the sum of the quadratic cost function over the
simulation interval. As shown in Fig. 18, the cost function
results are consistent with the MAE results.

3) Performance under variable background noise: In this
section, we evaluate our OPT scheduling under variable back-
ground noise to show its adaptability and optimality when net-
work conditions change. Variable background noise patterns
are shown in Fig. 19. In the first 5 s, the noise levels of links
1 and 2 are −78 dBm, and those of links 3 and 4 are −75
dBm. Therefore the PRRs of links 3 and 4 are lower than links
1 and 2. The PRR of link 3 is the worst as shown in Fig. 8.
The background noise changes at t = 5 s. The noise strength
of links 1 and 2 increases to −75 dBm, and that of links 3
and 4 decrease to −84 dBm. The PRR of link 2 becomes the

Fig. 16: Aggregated response curves of OPT scheduling under
noise level of −76 dBm (50 rounds)
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Fig. 20: Slot allocation under variable noise levels

worst in this case.

Under the noise levels shown in Fig. 19, the OPT schedule
is shown in Fig. 21, and the ratios of slot allocation are shown
in Fig. 20. The NM schedules more slots to loop 3 (52.3%)
than other loops during the first 5 s because loop 3 has the
worst network condition. The NM in the variable noise levels
schedules more slots to loop 4 than in the constant noise case
during the first 5 s since link 4 has the worse network condition
than links 1 and 2. More slots are scheduled to loop 2 (36.1%)
during the last 7 s (5 s to 12 s) since link 2 has the worst
network condition. Due to physical disturbance at 4 s to loops
1 and 3, and at 9 s to loops 2 and 4, many slots from 4 s to
6 s are assigned to loops 1 (22.4%) and 3 (54.2%), and many
slots from 9 s to 11 s are assigned to loops 2 (54.7%) and 4
(30.2%). The response curves of OPT and periodic scheduling
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Fig. 21: Optimal scheduling under variable noise levels
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Fig. 22: Response curves under variable noise levels
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are shown in Fig. 22. The control performance using the OPT
scheduling is improved for loops 1 and 3 compared with the
periodic scheduling, and remains similar for loops 2 and 4.
Therefore, we can conclude that our OPT scheduling can adapt
to both physical disturbance and varying network condition at
the same time.

Statistical results of control performance under variable
noise levels are shown in Fig. 23. In terms of the total
MAEs of four control loops (first group of the boxplots),
the OPT scheduling outperforms the periodic scheduling, the
OPT scheduling combined with sorting is better than only
the OPT scheduling. The OPT scheduling optimizes the total
cost function of all control loops by allocating more network
resources to needy loops and links at run-time. When we look
into the performance of individual control loop, compared with
the periodic scheduling, the control performance of loop 3 is
significantly improved by the OPT scheduling since loop 3
is allocated more network resources by the OPT scheduling.
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Fig. 24: Trade-offs between control performance and commu-
nication cost (with variable ε)

The performance of loops 2 and 4 downgrades a little since
they have relatively low MAEs and therefore less allocated
network resources. Note that the extent of improvement in
loop 3 is much larger than the downgrade in loops 2 and 4.
The results show that the OPT scheduling can balance the
network resources allocation according to link quality and
control performance among multiple loops.

C. Trade-off between control performance and communication
cost

We now evaluate the extended scheduling algorithm incor-
porating both control performance and communication cost
proposed in Sec. IV-F. The new optimization problem is solved
by brute-force search in the feasible set. We evaluate the
computation latency of the brute-force search in this problem
setting in MATLAB/Simulink on a 2.6 GHz Intel Core i7
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Fig. 25: Architecture for network-in-the-loop simulation

processor. The worst-case latency is 1 ms over 9000 runs,
which indicates the tractability of (18) in this case study.
Fig. 24 shows the overall control performance and communica-
tion cost of four control loops under physical disturbance and
variable wireless noise. Each data point of Fig. 24(a) shows the
average MAE of 50 rounds of simulations. Each data point of
Fig. 24(b) shows the average total number of transmissions of
four control loops per periods over 50 rounds of simulations.
The numerical values of OPT ε in legends are variable ε. We
can see that as the weight of communication cost ε increases,
the optimal scheduler is more likely to avoid transmitting an
actuation command when control performance is relatively
good. As a result, communication cost is saved at the cost of a
moderate deterioration of control performance, compared with
the original OPT scheduling (OPT 0) and periodic scheduling.
By fine-tuning ε, we can achieve comparable control perfor-
mance with original OPT scheduling at a significantly lower
communication cost (e.g. when ε = 0.001).

D. Network-in-the-loop Simulation
1) System design and implementation: The architecture of

the network-in-the-loop simulator is illustrated in Fig. 25. The
system comprises three computers and a WSAN. The physical
plants, controllers, sensors, actuators, and NM are simulated in
MATLAB/Simulink Desktop Real-time (SLDRT) running on a
computer called the Simulink Server. SDLRT provides a real-
time kernel for executing Simulink models, including library
blocks that connect to I/O devices [61]. The two additional
computers, Interfaces A and B provide interfaces to coordinate
the Simulink simulations and wireless communication. The
three computers are connected through Ethernet.

The WSAN is a star network with five TelosB nodes, each
equipped with TI CC2420 (2.4 GHz) radio compliant with the
IEEE 802.15.4 standard and a TI MSP430 microcontroller.
One of the TelosB node serves as the Coordinator and the
other TelosB nodes as the wireless interfaces of the actuators.
The TelosB nodes communicate with each other over the
wireless network based on the IEEE 802.15.4 MAC and the
transmission schedule.

Interface A communicates with the coordinator through
USB. Interface A emulates the network gateway by relaying
1) the actuation commands u from the controllers and 2)
the transmission schedule s∗ generated by the NM to the
coordinator, which then forwards them to the devices over
the WSAN.

Interface A and Interface B are also responsible for for-
warding the actuation commands from the TelosB nodes to
the actuators simulated in Simulink. When a TelosB node
receives actuation command û, it sends it to Interface A
over USB. Interface A then forwards it to Interface B, which
in turn feeds it to the actuators simulated in SLDRT on
the Simulink Server. This process emulates an actuator that
receives actuation commands from an WSAN over its wireless
interface.

We implement our dynamic scheduling mechanism over
the Time Slotted Channel Hopping (TSCH) MAC layer of
the IEEE 802.15.4-2015 [62], [63] in Contiki OS. Channel
hopping is disabled to be consistent with IEEE 802.15.4
MAC. The coordinator packages and broadcasts beacon frames
containing updated schedules s∗. All nodes update their sched-
ules based on the beacon frame received during run-time.
The actuation commands u are transmitted to corresponding
receiver nodes in to the scheduled time slots.

For the rest of the experiments, four double-water-tank
systems are simulated in SLDRT, the parameters of which
are listed in Table II. The sampling period of each control
loop is 1.5 s. The duration of each round of network-in-the-
loop simulation is 150 s. In order to emulate packet losses
in a controlled fashion, we intentionally drop packets on
the receiver side based on TOSSIM traces following similar
approaches employed in previous wireless control experiments
[56], [64] .

TABLE II: Parameters of network-in-the-loop simulations
PLANT1 PLANT2

par value par value par value par value
A1 0.1 R1 0.0006 A1 0.1 R1 0.0006
A2 0.13 R2 0.0008 A2 0.13 R2 0.0008
AR 1 α 10 AR 1 α 10
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Fig. 26: Network-in-the-loop simulation (OPT)
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Fig. 27: Network-in-the-loop simulation (periodic scheduling)
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Fig. 28: Response curves of network-in-the-loop simulations

2) Experimental results: First, we run experiments under
physical disturbance. We inject pulse physical disturbance into
loops 1 and 3 at t = 50 s, and into loops 2 and 4 at t = 90 s.
The background noise level is −75 dBm (PRRs of links 1 to 4
are 78%, 63%, 50%, and 63%, respectively). Figs. 26 and 27
show how actuation command packets of each control loop are
transmitted with OPT and periodic scheduling, respectively.
The first sub-figure of Fig. 26 shows the slot allocation in the
optimal schedule. The rest of the sub-figures show u, û, and
flag of packet reception rec of each control loop. When u
varies significantly and hence it is critical to updating u, OPT
allocates more transmission slots to that loop. Consequently, û
tracks u better when compared with fixed periodic scheduling
in Fig. 27. As shown in Fig. 29a, during t = 50 to 70 s,
most of the slots are assigned to loop 1 (41.0%) and loop 3
(59.0%), while none of the slots are assigned to loop 2 and
loop 4 since they are in steady states. In addition, more slots
are allocated to loop 3 than loop 1 since loop 3 suffers from
worse link quality. During t = 90 to 120 s, most of the slots
in the OPT schedule are scheduled to loop 2 (48.3%) and loop
4 (49.2%). These results show that OPT can effectively adapt
to physical disturbance.
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Fig. 29: Slot allocation of optimal schedule

Next we evaluate OPT under variable background noise. In
the first 60 s, the noise levels of links 1 and 2 are −84 dBm
(the PRRs of links 1 and 2 are 89% and 88%, respectively),
and those of links 3 and 4 are −75 dBm (50% and 63%,
respectively). The background noise changes at t = 60 s. The
noise strength of links 1 and 2 increases to −75 dBm (78% and
63%, respectively), and that of links 3 and 4 decreases to −84
dBm (88% and 88%, respectively). The physical disturbance
remains the same as previous settings. The ratios of slot
allocation are shown in Fig. 29b. Loop 3 is scheduled more
slots (54.7%) than other loops during the first 30 s because
loop 3 has the worst network condition. In order to adjust to
varying noise level, more slots from 60 s to 70 s are assigned
to loop 1 (51.2%) than loop 3 (34.0%), and more slots from
90 s to 120 s are assigned to loops 2 (59.5%) than 4 (35.4%),
compared with Fig. 29a.

Experimental results under both physical disturbance and
wireless interference are consistent with the simulation results
in Sec. VI-B, which shows the feasibility and efficacy of OPT
in real IEEE 802.15.4 networks.

VII. CONCLUSIONS

This paper proposes an optimal dynamic scheduling ap-
proach that optimizes control performance of multi-loop sys-
tems by allocating limited network resources based on both
plant and network states at run-time. We formulate the opti-
mal scheduling problem as a nonlinear integer programming
problem, and then relax it to a linear programming prob-
lem for computational efficiency. In addition, we provide a
stability condition for the wireless networked control system
that adopts the optimal scheduling. A systematic evaluation
is performed based on four double water-tank systems and
simulations of a realistic IEEE 802.15.4 wireless network.
Furthermore, we design and implement the optimal scheduling
approach on IEEE 802.15.4 devices, and network-in-the-loop
simulation integrating real wireless networks and simulated
physical plants. Simulation and experimental results show that
dynamic optimal scheduling enables the system to adapt to
wireless interference and physical disturbances. This work
therefore demonstrates the advantages of a cyber-physical
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approach to transmission scheduling based on both wireless
and physical states in wireless control systems.
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APPENDIX A
CALCULATING EXPECTATION OF OVERALL CONTROL COST

Simplify derivation by ignoring time index,

E
(
J (x)

)
=

∑
xi={x̂ci ,x̂

o
i },

for i={1,...,N}

N∑
i=1

Ji(xi)P(x1, ..., xN ), (30)

where
P(x1, ..., xN )

=
∑

φi={0,1},
for i={1,...,N}

P(x1, ..., xN |φ1, ..., φN )P(φ1, ..., φN ).

For given schedule s(k), we assume packet deliveries among
different data links are independent. Thus we have

E
(
J (x)

)
=

∑
xi={x̂ci ,x̂

o
i },

for i={1,...,N}

[( N∑
i=1

Ji(xi)
)
·

( ∑
φi={0,1},

for i={1,...,N}

P(x1|φ1) · ... · P(xN |φN ) · P(φ1) · ... · P(φN )
)]
.

(31)
Define ∆i, ∆i = 1 if xi = x̂ci , and ∆i = 0 if xi = x̂oi .
According to (8), we consider loop m,

E
(
J (x)

)
=

∑
xi={x̂ci ,x̂

o
i },

for i={1,...,N}

( N∑
i=1

Ji(xi)
) N∏
i=1

P(φi = ∆i)

=
∑

xi={x̂ci ,x̂
o
i },

for i={1,...,N},
i 6=m

[(
Ji
(
x̂cm
)

+

N∑
i=1,
i6=m

Ji(xi)
)
· P(φm = 1)·

N∏
i=1,
i6=m

P(φi = ∆i) +
(
Ji
(
x̂om
)

+

N∑
i=1,
i 6=m

Ji(xi)
)
· P(φm = 0)·

N∏
i=1,
i6=m

P(φi = ∆i)
]

=
(
Ji
(
x̂cm
)
P(φm = 1) + Ji

(
x̂om
)
P(φm = 0)

)
·∑

xi={x̂ci ,x̂
o
i },

for i={1,...,N},
i 6=m

N∏
i=1,
i 6=m

P(φi = ∆i)

︸ ︷︷ ︸
All cases=1

+
∑

xi={x̂ci ,x̂
o
i },

for i={1,...,N},
i 6=m

( N∑
i=1,
i6=m

J (xi)
) N∏
i=1,
i 6=m

P(φi = ∆i)

︸ ︷︷ ︸
Expectation of overall control cost for N−1 loops

.

After calculating the rest of N − 1 loops, we can get the
expectation of overall control cost,

E
(
J (x)

)
=

N∑
i=1

(
Ji(x̂ci )µφi(s) + Ji(x̂oi )

(
1− µφi(s)

))
.
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