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Abstract—We formulate a Model Predictive Control (MPC) for
linear time-invariant systems based on H-infinity loop-shaping.
The design results in a closed-loop system that includes a state
estimator and attains an optimized stability margin. Input and
output weights are designed in the frequency domain to satisfy
steady-state and transient performance requirements, in lieu of
standard MPC plant model augmentations. The H-infinity loop-
shaping synthesis results in an observer-based state feedback
structure. An inverse optimal control problem is solved to
construct the MPC cost function, so that the control input
computed by MPC is equal to the H-infinity control input when
the constraints are inactive. The MPC inherits the closed-loop
performance and stability margin of the loop-shaped design when
constraints are inactive. We apply the methodology to a multi-
zone heat pump, and validate the results in simulations and
laboratory experiments. The design rejects constant unmeasured
disturbances, tracks constant references with zero steady-state
error, meets transient performance requirements, provides an
excellent stability margin, and enforces input and output con-
straints.

I. INTRODUCTION

Because Heating, Ventilation and Air Conditioning (HVAC)
systems are the largest consumer of electric power in commer-
cial and residential buildings [1], [2], their energy efficient
operation is of growing importance. Of course, comfortable
and efficient operation of HVAC equipment is dependent on
proper design and implementation of the control system. Gen-
erally speaking, HVAC systems are multi-input multi-output,
are subject to actuator and process variable constraints, exhibit
nonlinearity of different types, and tend to use a minimal
number of low quality sensors, primarily for economic reasons.
Further, because of the diverse nature of building applications
and the fact that the dynamics of the equipment and the
building are coupled, plant models have significant uncertainty.

Building HVAC systems may be classified depending on
the building type, size, and location. A large commercial
building typically will have a so-called “built-up” HVAC
system, consisting of a chilled water plant (chillers, water
distribution, cooling towers), Variable Air Volume (VAV) air
handlers (heat exchangers, valves, ducts, fans), and ducting
with controlled dampers for distribution of conditioned air
among its zones. For smaller commercial buildings, the HVAC
system may be based on an integrated unitary rooftop unit
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containing an air-source vapor compression system and air
handlers which distribute conditioned air via ducts to indi-
vidual building zones. Large residential apartment buildings
are similar, while smaller, single-family residential buildings
are typically conditioned by an air-source vapor compression
system with indoor heat exchangers located in a supply air duct
or directly in one or more rooms. Small residential applications
lack active ventilation (controlled introduction of outside air)
except in extreme climate zones.

Control architectures have a similar classification. Large
commercial building HVAC control systems are organized in a
hierarchy that might include a Building Management System
(BMS) at the highest level, system-level controls at mid-
levels (such as for a chilled water plant), and product-inserted
controllers within individual pieces of equipment at the lowest
level. For these systems, control algorithms at the higher levels
are custom designed and commissioned for each individual
application, while the product-inserted controllers at the lowest
level are designed to be programmed at commissioning time,
and interface to higher levels using industry standards. At the
other end of the spectrum, a residential air conditioner might
be “controlled” by a one or more thermostats, with no external
information connection. The control functionality for these
products is embedded in the factory-built equipment, and is
turn-key, requiring little to no commissioning at installation
time.

In this paper we consider the control of a specific factory-
built HVAC product belonging to the latter class: A multi-
zone, Variable Refrigerant Flow (VRF) air-source heat pump
intended for residential or small commercial building ap-
plication. Control for this product is challenging because it
must provide some building-level function (zone temperature
control) in addition to regulating and/or enforcing constraints
on a set of internal process variables, over a broad range
of operating conditions, and for a diverse range of potential
applications, with little to no commissioning at installation
time. The control requirements include enforcement of various
process variable constraints and actuator constraints, regula-
tion of other internal process variables, and offset-free room
temperature setpoint regulation and disturbance rejection, with
specified transient response characteristics, all while maximiz-
ing energy efficiency.

The baseline production controller for this product is a
proprietary, multivariable PID, with anti-windup, selector and
override logic to enforce actuator and process variable con-
straints. This is augmented with a layer of ad hoc protection
logic that is intended to prevent the equipment from operating
in potentially damaging conditions, or to prevent it from



exhibiting undesirable behaviors. Although the architecture
is based upon well-founded theory [3], it suffers from two
drawbacks. First it is inflexible and difficult to adapt as
the product evolves. If a new constraint must be added to
the design during product development, or over the product
lifecycle, or constraint priorities change, then the entire archi-
tecture may need to be redesigned. Second, it lacks a unified
mathematical framework for analysis and design. Protection
logic and its interaction with the conventional feedback is
especially difficult to analyze beyond time-domain simulation.
What is needed is a standard and flexible design methodology
that provides rigorous constraint enforcement and realization
of the intended function of protection logic, and that can adapt
as the product evolves over its lifecycle.

Model Predictive Control (MPC) is a potential solution.
MPC for HVAC systems, ranging from the equipment level
to the building level, has received considerable attention for
more than a decade [4]-[22], with [21] and [22] providing
thorough literature reviews. Much of the research is intended
to be applied to large commercial buildings at the BMS level
of the control hierarchy, where the objective of minimizing en-
ergy consumption, energy cost, or greenhouse gas production,
etc., while enforcing constraints associated with equipment,
occupant comfort and ventilation requirements, achieved by
actuating setpoints at lower levels of the control hierarchy,
such as supply air temperatures or zone temperature setpoints,
is well-suited to the MPC paradigm [22].

However, MPC at the building level is fundamentally dif-
ferent than MPC at the equipment level. At the building level,
the cost function is generally directly meaningful, such as the
cost of energy, and its minimization is the primary objective.
Building models are custom built for each application. Time
scales span from minutes to hours. Robustness of the feedback
loop that is closed by the actions of receding horizon control is
seldom a concern. On the other hand, MPC at the equipment
level is primarily concerned with enforcing constraints, and
a cost function is formulated to meet other objectives such
as setpoint tracking and disturbance rejection. Minimizing the
cost is only a means to an end. Equipment models are central,
with timescales ranging from seconds to minutes. A single
MPC, derived from a single model, is embedded in a factory-
installed controller, and needs to operate in a broad range of
conditions and in a diverse range of applications. As such,
robustness of the feedback loop that is closed by the actions
of receding horizon control is of primary concern.

At the equipment level, MPC has seen some success in
laboratory and simulation demonstrations. An MPC was de-
signed for a multi-evaporator, water source heat pump in [6],
but the plant included refrigerant pressure sensors so that
the thermodynamic variables used by MPC were effectively
measured, and no state estimator was required. An offset-
free MPC for a heat pump was considered in [16]. The
MPC augmented the model to estimate disturbances, which
could compensate some plant-model mismatch, and the design
incorporated a Luenberger observer to estimate the state. The
authors manually tuned the gains by trial-and-error, modified
the cost to include damping, and noted oscillatory behavior
for aggressive tuning. An offset-free MPC design for a multi-

zone heat pump in cooling mode was also considered in
[19], where offset free tracking and disturbance rejection was
achieved after laborious manual tuning of the estimator gain
and weights.

Although the state-of-the-art has progressed considerably,
the control designer faces multiple challenges in the design
and implementation of an MPC for factory-produced HVAC
equipment. First of all, MPC is a state-based feedback control,
and the full state is not usually measured in this type of
equipment. In fact, for many products, only a limited number
of low precision temperature sensors is used. Refrigerant
pressure sensors or flow meters, which may be available in
the laboratory e.g. [6], are not economically viable for use in
most products. This implies that a state estimator of some type
must be used, which is typically designed using the separation
principle [22]. However, such an estimated state when used in
an MPC provides no guarantee of closed-loop stability margin,
and this fact, combined with the presence of plant model
uncertainty, can lead to our first problem: Poor closed-loop
performance, often manifested by oscillatory behavior.

In the literature, oscillatory behavior of MPC is often
attributed to model mismatch or model uncertainty e.g., [14],
[16], [22]. However, this is only half of the story: An MPC
that uses a state estimator is a feedback loop that may possess
a high sensitivity to model uncertainty. The root cause of oscil-
lations is not only model mismatch, but also high sensitivity of
this feedback loop to model uncertainty. High sensitivity can
be caused by independently designing the estimator gain and
cost function weight, i.e., applying the separation principle,
without considering the stability margin of the closed loop.

The second related problem is the practical one of tuning
a large number of parameters that are commonly associated
with MPC (i.e., the cost function weights) and the state
estimator gain. In our laboratory experience, the number of
scalar parameters that must be tuned for a moderately-sized
vapor compression system may exceed 1000. Setting most
to zero for convenience, which is common in the literature,
exasperates the first problem.

This paper addresses both problems with a design method-
ology that we call Loop-Shaped Model Predictive Control
(LSMPC), in which the MPC design is based not on the
separation principle and LQR/LQG, but rather on robust H
loop-shaping [23], [24]. This results in a control system with
an optimized stability margin, and provides a rigorous way to
design all of the plant augmentations in both the prediction
model and the state estimator that are typically used to meet
performance requirements for closed-loop bandwidth, transient
response, disturbance rejection, and reference tracking. The
methodology provides values for most of the design parame-
ters of the MPC and state estimator. It consists of the following
steps.

1) Design input and output weights for the plant to meet
closed-loop performance specifications. This step re-
places standard MPC plant augmentations.

2) Synthesize the H, loop-shaping compensator, which has
an observer-based state feedback structure like LQG, but



provides an optimized stability margin.'

3) Construct the MPC prediction model and cost function
weights by solving an inverse-optimal control problem
for the state feedback from Step 2.

4) Use the Ho state estimator to initialize the MPC pre-
diction model at each time step. An additional model
augmentation is needed to enforce output constraints if
any are present in the problem.

The closed-loop LSMPC inherits the reference tracking, dis-
turbance rejection, transient response, and stability margin of
the H ., loop-shaped controller in the region where constraints
are inactive. The state estimator gain is computed directly
by H., synthesis and therefore does not require additional
tuning. The key synthesis step is to compute solutions to
two decoupled Riccati equations, or alternatively to solve a
Linear Matrix Inequality (LMI). The latter is straightforward
with available tools such as SeDuMi [25] and YALMIP [26].
LSMPC can also enforce constraints on inputs and outputs.

This paper extends some previously published results. Rowe
and Maciejowski [27] apply Hoo loop-shaping and inverse
optimality to compute the state estimator and MPC cost.
However, the authors do not consider output constraints, and
they augment models of the reference and disturbance into the
plant model, implying that the disturbance must be measured
or estimated. In this paper, plant augmentations are the result
of H . loop-shaping, we consider input and output constraints,
and we consider unmeasured disturbances. Note that some
standard plant augmentations, such as adding a constant offset
vector to the output and estimating its value in order to achieve
offset-free tracking, make the augmented plant uncontrollable,
which violates a sufficient condition for the H ., loop-shaping
compensator. Maciejowski [28] and Di Cairano and Bemporad
[29] consider the problem of controller matching, or find-
ing a matching cost function, assuming an output feedback
controller or state feedback controller, respectively, is given
a priori. In this paper we design both the state feedback
and state estimator to meet performance requirements and
also to optimize a stability margin. This paper improves our
prior formulation of LSMPC [30] by ensuring controller anti-
windup and also including experimental validation.

LSMPC may have some minor disadvantages. We have
observed that for some plants, inverse optimality may result
in a numerically ill-conditioned cost function which can make
the real-time optimization problem ill-conditioned, although
this was not an issue for the heat pump application. It is
possible that this could be addressed by casting the key design
equations as an LMI. Also, for some problems, the prediction
model can have a larger dimension when compared to a
standard MPC design. This is because any constrained output
variables require an additional prediction model augmentation.
However, in the special cases that the MPC need not enforce
output constraints, or the problem does not require rejection
of an unmeasured disturbance, the prediction model does not
require such additional augmentation and could be of lower
dimension compared to a standard MPC design.

'In practice the resulting compensator possesses a slightly sub-optimal
stability margin.

Room 1 eeeo Room 4 Outdoor Unit

1 Lo o D_EPV M
i EEV1 | i EEV 4 | 3 Receiver o T i
i Ty | | e Thy | i S
3 Towr | Toa | OFS
| FS1 i | Fs4 Outdoor|® |Te i
| Indoor|®| Tiia1 | | Indoor|®| Tiiaa | | Coil i
1 Coil 1 ! 1 Coil 4 1 |
| . | . Compressor T ]

S !
: i i o a !
1 1 1 [ T .
1 b proP pdl CF ;

Fig. 1. Vapor compression system showing temperature sensors (red) and

control actuators (blue) [31]. Refrigerant flows clockwise in heating mode
and counterclockwise in cooling mode, changed by a valve not shown.

Throughout this paper, calligraphic font is used to represent
a linear system, e.g. P, and italics roman font is used to
represent matrices, e.g. A,. The positive feedback convention
is used since it is standard in H., loop-shaping literature.
In Section II, the multi-zone heat pump is described and
control system requirements are listed. In Section IV, the
design considerations for applying MPC to the multi-zone
heat pump are discussed, and we formally state the problem
solved in this paper. In Section V we design the H., loop-
shaping control for the heat pump, and realize it as an MPC in
Section VI. The proposition of equivalence between the MPC
and the H,, control when constraints are inactive is stated
formally in Section VI-E. Simulation and experimental results
are presented in Section VII. We suggest some extensions in
Section VIII.

II. HEAT PUMP DESCRIPTION & REQUIREMENTS

The specific air-source multi-zone vapor compression sys-
tem we consider is diagrammed in Fig. 1, consisting of one
outdoor unit and four indoor units. The outdoor unit contains
a receiver, an electronic expansion valve (EEV), denoted EEV
M, a heat exchange coil, a compressor and an outdoor fan. The
indoor units each contain a heat exchange coil, an EEV and
an indoor fan. The system can operate in either cooling mode,
where it moves heat from the indoor units to the outdoor unit,
or in heating mode, where it runs in reverse. When operating
in heating mode, it is commonly referred to as a heat pump.
We consider only heating mode in this paper.

The system moves heat from the colder outdoor air to the
warmer indoor air as follows. The compressor compresses the
refrigerant to hot, super-heated gas, which is distributed to the
indoor coils where it condenses, releasing heat. Neglecting the
small pressure drop in the distribution pipes, the condensing
pressure, and therefore the condensing temperature, is identical
in each indoor unit. Therefore, to reject asymmetric heat load
disturbances in each room, the EEVs are controlled in a way
that modulates the refrigerant mass flow rate, and therefore
modifies the amount of refrigerant subcooling (the difference
between the condensing temperature and the temperature of
the liquid exiting the heat exchanger), that occurs in each
indoor heat exchanger, with less mass flow rate resulting in
more subcooling, resulting in a lower amount of heat flux [31].



After expanding through an indoor EEV ¢, 1 < ¢ < 4, the
refrigerant returns to the outdoor unit, where it is expanded a
second time through the common EEV M. The resulting cold
refrigerant is typically two-phase on entry into the outdoor
coil, where it evaporates completely, absorbing heat from the
outdoor air and completing the cycle.

The system has seven control actuators: The compressor
frequency CF, the commanded settings for each EEV <1,
1 <7< 4 and EEV M, and the outdoor unit fan speed OFS.
The fan speed for each indoor unit, denoted IFS 7, 1 < i < 4,
is set by the occupant and is considered to be a measured
disturbance, assumed constant in this paper. Each zone is
subject to an unmeasured heat disturbance ();, generated by
the occupants, surrounding environment, etc. Note that (); < 0
in heating mode. The entire system is subject to the outdoor
air temperature disturbance 74. The 16 measurements are:
The four room temperatures 7’r;, the eight condenser mid-
point and outlet temperatures Tig; and Ty, 1 < @ < 4,
the evaporator temperature 7T, the suction temperature T,
the compressor discharge temperature Tp,and the outdoor air
temperature 74. The condensing temperature T = Tinids,
1 < ¢ < 4, is identical in each indoor unit because they are
all at the same pressure.

The requirements for the closed-loop system are as follows.

A) Exponential stability of the equilibrium for constant refer-
ences and disturbances;

B) Offset-free tracking of constant room temperature set-
points, if possible;

C) Reject constant, unmeasured heat load disturbances and
the outside air temperature, if possible;

D) Track a desired compressor discharge temperature with
zero steady-state error, if possible;

E) Track a desired evaporator temperature with zero steady-
state error, if possible;

F) Achieve a closed-loop bandwidth wy, for room temperature
setpoint tracking, if possible;

G) Enforce hard constraints on all control inputs; and

H) Enforce constraints on the following outputs:

a) A minimum subcooling temperature for 1 < ¢ < 4,

Tsci = Tmidi — Touwi > T'scmins

b) A maximum compressor discharge temperature,
Tp < Tpmaxz;
¢) A maximum condensing temperature,
Te < Tomass
d) A minimum discharge temperature super-heat,
Tpsy =Tp — Twidi > TDSHmin-

In Requirement A, exponential stability means that the closed-
loop system, when subject to constant references and distur-
bances, possesses a unique equilibrium solution that is locally
exponentially stable. In Requirements B-F, if possible means
when permitted by the system constraints. This implies that
the constraint enforcement Requirements G and H are higher

priority than the tracking and disturbance rejection require-
ments B-F. Requirement D is used to achieve energy efficient
operation, as described in Section V-A. The input constraints in
Requirement G are all hard, meaning there are actuator limits
that cannot be exceeded. This has implications on integrator
anti-windup that are discussed later. On the other hand, the
output constraints in Requirement H are soft, meaning that
they may be exceeded by small amounts in transient conditions
for short periods of time, where the quantifiers “small” and
“short” are determined by proprietary engineering judgement.
However, during normal operation, one or more of the input
or output constraints may be at or near its limit for extended
periods of time, i.e., the system must operate stably at or near
the boundary of its feasible region in the steady-state, for any
constant disturbance and reference.

III. DYNAMIC MODEL

A nonlinear dynamic model of the heat pump was con-
structed in the Modelica modeling language [32], [33]. A
complete description of the full nonlinear model is beyond our
scope, and we refer the reader to [34], [35], which also report
results of transient model validation experiments. Modelica is
a declarative, acausal, equation-based language with a differ-
ential algebraic model of computation. (In contrast, Matlab
Simulink has a causal, signal-flow model of computation.)
This allows for equations to be transcribed into the language
through declarations and mathematical statements. In addition,
Modelica is component-oriented, with object-oriented features
for organization.

As such, the dynamic model was organized by components,
with a set of declared differential and algebraic equations for
each component. The components were connected together to
equate potential, flow and stream variables at each component
boundary, resulting in a large set of nonlinear differential-
algebraic equations. The Modelica compiler (Dymola) then
manipulated these equations, sorting them for computational
efficiency, choosing state variables and assigning causality,
producing an efficient ordinary differential equation (ODE)
representation.

The variable-speed compressor was modeled with a set of
coupled, nonlinear algebraic equations that relate the com-
pressor speed, power consumption, refrigerant mass flow rate,
inlet pressure, enthalpy and density, and outlet pressure and
enthalpy to one another. This model contained a number of
coefficients that were fit to laboratory data. The electric expan-
sion valves were modeled algebraically as . = Cy+/pin Ap,
where 7 is the refrigerant mass flow rate, p;,, is the refrigerant
inlet density, Ap is the pressure drop across the valve, and
C, depends on the valve opening command and was fit to
laboratory data. The receiver was modeled as a lumped, adia-
batic control volume with a single inlet and outlet, negligible
pressure drop, and assuming an ideal phase separation and
thermodynamic equilibrium between the phases.

Three-dimensional, finite volume models of heat and fluid
flow were used for the tube-and-fin heat exchangers. Each
heat exchanger was divided into a number of segments, one
per tube, and each segment was divided into three sections:



Fig. 2. Dymola integrated development environment for Modelica, showing
an iconic view of the four-zone heat pump model with four-room building
(right) and component libraries (left).

The refrigerant stream, the finned walls, and the air stream.
The refrigerant stream was described by a one-dimensional
flow with fluid properties varying only in the direction of flow.
Under assumptions described in [34], [35], the conservation of
mass, momentum and energy for each segment was modeled

as
9(pA) , 9(pAv) _
o T or 0
d(pvA)  d(pw*A)  OP
ot + or -4 or Fy
d(puA) = O(pvhA)  OP oQ
o o e TR T g

where p is the density, A is the cross-sectional area of the
flow, v is the velocity, P is the pressure, F is the frictional
pressure drop, u is the specific internal energy, h is the specific
enthalpy, and @ is the heat flow rate into or out of the fluid.
For the air stream, the energy balance equation

. dT,

macp,aT;Ay = Qg (AO,t + nﬁnAO,ﬁn) (Tw -
was used, where 7, is the airflow, T}, is the air temperature,
T, is the wall temperature, c, , is a heat capacity. Finally, the
energy balance equation for tube and fin heat conduction was

T.)

d;ﬂ =qr + qa

qr = arA (Tr - Tw)

dT,
(Mtcp,t + Mﬁncp,ﬁn) L

Qo = Mg (Cp,q(Ta,in - a,out)) 5

where M, is the tube wall mass, Mg, is the fin mass, ¢,
is the heat flux from the refrigerant, g, is the heat flux to
the air, T, is the tube wall temperature, Ty ;, is the inlet
air temperature, and Ty, ;,, is the outlet air temperature. This
model allows for complex circuiting of the tubes and also for
split-flow heat exchangers which are common features. The
balance equations were augmented with a set of empirical
closure relations describing the single- and two-phase heat
transfer coefficients and frictional pressure drops for the fluid
on both the refrigerant and air sides. These equations were

discretized using the Reynolds transport theorem using a
staggered-grid approach along their respective flow directions,
and transcribed into Modelica. The system model was coupled
to a four-room building model constructed from the Modelica
Buildings Library [36], which captures convective, conductive
and radiative heat transfer to and from the environment. An
iconic view of the model is shown in Fig. 2.

The complete ODE model produced by Dymola consisted
of 739 differential equations and states, with a time scale
spanning from milliseconds to about one day. These were
linearized at a nominal steady-state operating condition, and
inputs and outputs scaled so that the steady-state gain from
control inputs and disturbances to measured outputs was
O(1). (Specifically, the temperature outputs were all scaled
by 1, while the disturbance inputs, compressor speed and
valve inputs were scaled so the steady-state gains to room
temperatures was 1, and the gain from the common EEV
to discharge temperature was 1.) The linearized model was
then reduced by balanced truncation and singular perturbation.
The resulting linear model was discretized, giving the 24-
dimensional, scaled, minimal, strictly proper, stable discrete-
time linear model

z(k +1) = Az(k) + Bu(k) + Bqgq(k) (1a)
y(k) = C(k) (1b)
v(k) = Fz(k) + Gu(k), (Ic)

where (k) € R™ is the state, u(k) € R™ is the scaled control
input, g(k) € R? is the scaled unmeasured heat disturbance
input, y(k) € R? is the scaled measured output, v(k) € RI+2™
is the scaled constrained output (including the /-dimensional
constrained output, and the 2m-dimensional constrained input,
accounting for upper and lower limits on all of the actuators).

The measurement y was arranged as y = [y 2|7, where
y1=1[Tr1...Tra Tp Te]" (2a)
y2 = [Tc Ts Tsci ---Tsca] ", (2b)

so that y; contained the regulated outputs (those which have
tracking requirements) and y» contained all other measure-
ments. The input vector uv was arranged as

u=[OFS CF EEV1...EEV4 EEVM]". (3)

Denote P, as the transfer function from u to y;, and P, as
the transfer function from ¢ to ;. Note that all of the elements
of v are elements of y or u, or are computed from elements of
y. In other words, the constrained output v is measured. In this
representation, u, ¢, ¥ and v are deviations from a prescribed
steady-state operating condition, and are scaled such that they
are O(1) in nominal operation.

Although the full model is nonlinear and extremely numer-
ically stiff, the reduced-order linear model (1) is remarkably
accurate [35], especially for medium frequencies around cross-
over, where higher fidelity is important for robust control
design. The low-frequency gain does vary as a function
of operating condition, as also noted in [37], especially at
low compressor frequencies, and probably necessitates gain
scheduling, but this is left for future research.



IV. MPC DESIGN CONSIDERATIONS

MPC is an attractive control methodology because of the
the totality of requirements, especially Requirement H. MPC
computes the control input by solving a constrained finite-time
optimal control (CFTOC) problem:

min a; (V) Pay(N) + Z 2T (k u (k) Ru(k)
(4)
st zp(k+1) = Apx,(k) + Bpu(k) (4b)
v(k) = Fpzp(k) + Gpu(k) (4c)
v(k) eV (4d)
2(k) = By, (k) (de)
and z,(0) = Z,(k), (4f)
where the subscript “p” denotes “prediction model,” (k) €
R™ and v(k) € Rl+2m are the predicted augmented state

and constrained output, respectively, resulting from the control
input u(k) € R™, 2(k) € R® is the performance output, with
@ >0, R>0, and E, tuned to satisfy Requirements A-F, N
is the prediction horizon, and the constraint set

V= {U € Rl+2m D Umin S U< Uma:c}

is derived from Requirements G and H. The prediction
model (4b) includes the nominal plant dynamics (1), and
also includes additional states to predict the effect of the
unmeasured disturbance ¢, as well as shaping filters and/or
reformulations such as incremental inputs, all used to shape
the closed-loop dynamics to meet Requirements A-F. Let
Up = [u*(0)...u*(N —1)] be the solution of (4) at time k.
Then MPC control input is

u(k) = u*(0).

Because the full state is not measured, the initial state z, (k)
in (4f) is computed with a state observer of the form

Te(k + 1) = AcTe(k) + Beu(k)
+ He (y(k) —y(k) +7(k)) (52)
y(k) = CeZe(k) (5b)

where Z. (k) is the augmented observer state that includes the
estimate Zp,(k) and possibly an estimate of the unmeasured
disturbance, g(k), or its affect on the output y(k) in order
to achieve offset-free tracking for constant disturbances, and
r(k) € R™ is the setpoint reference for the regulated output
y1. Although r may be included in other ways, this formulation
allows the MPC and estimator to be designed as a regulation
problem, but will still satisfy tracking requirements. This is
elaborated upon in Section VI. Some of the components of
x,(0) in (4f) correspond to the shaping filters, whose values
are known to the controller and do not require estimation. It
is known that this type of plant and observer augmentation,
and separated controller - observer design will result in closed-
loop offset-free tracking of the MPC, under some assumptions
[38], [39].

However, using an estimated state in a full-state feedback
control law such as Linear Quadratic Gaussian (LQG) provides

Step 1) Compute frequency response

Fig. 3. Design steps for Hoo loop-shaping. 1) Compute the frequency
response of P. 2) Design weights Wi and Wa to shape |Ps(jw)| =
Wa (jw)Pu(jw)Wh (jw)|. 3) Compute the robustifying compensator K.

no guarantee of any closed-loop stability margin [40]. This
result also holds for our MPC formulation, because the cost
(4a) is quadratic and (5) is a Luenberger observer designed
using the separation principle. Thus, the designer encounters
a significant problem in attempting to apply this formulation
of MPC to the multi-zone heat pump: How to compute the
matrix parameters (), R, F, and H., and also how to design
the augmentations and shaping filters in both the prediction
model and the state observer, that satisfy Requirements A-F
and also provide a meaningful closed-loop stability margin?
This is important because, for poor choices of (), R, E, and
H., even a small amount of model uncertainty can result in
poor closed-loop performance or instability. The problem also
has a practical aspect: For our multi-zone heat pump model,
with m = 7, n = 25 and p = 16, there are more than 1000
scalar parameters to be tuned. Stated formally:

Problem 1: MPC Synthesis. Compute plant model augmen-
tations, shaping filters, values for ) > 0, R > 0 and E,, in the
cost function (4a) and performance function (4d), respectively,
and a value for the observer gain H., in (5) that satisfy
Requirements A-F, and maximize a stability margin.

We solve Problem 1 by designing all MPC plant model
augmentations and shaping filters to meet Requirements A-
F using Ho, loop-shaping, and then use the H., design to
synthesize an MPC that meets requirements G and H, and
that is equivalent to the H., regulator when the constraints
are inactive along the prediction horizon. In the next section,
we present the H ., loop-shaping design procedure for the heat
pump, and in the following section, we realize it as an MPC.

V. Hoo LOOP-SHAPED CONTROL

Following [23], [43], [44], H~ loop-shaping proceeds by
computing the frequency response for the system y; = P,u—+
P,q, translating the steady-state tracking, disturbance rejection



and transient response requirements into the frequency do-
main, and designing an input weight (filter) VW; and an output
weight (filter) Ws, in order shape the frequency response of
the compensated open-loop system Py = WP, W, to have
characteristics that will ensure the nominal closed-loop system
satisfies Requirements A-F. Once a suitable Pg is designed,
the robustifying compensator /C; is computed by solving two
decoupled Riccati equations [44]. This compensator stabilizes
a family of perturbed plants, maximizing a stability margin.
The basic design steps are shown in Fig. 3.

The next subsections describe the design details for the
multi-zone heat pump, although we point out that the pro-
cedure is general in nature.

A. Compressor Discharge Temperature Schedule

The compressor discharge temperature 1p varies with op-
erating conditions, and Requirement D means it must track
a reference that is computed via a schedule. We define the
Tp schedule as the output of a first-order lag filter with
the compressor frequency CF as input [31]. This serves as
a surrogate for the heat pump load. The schedule is tuned
to optimize the system power consumption throughout the
operating envelope. The full nonlinear model is used for
this purpose. The simulation model is driven to a variety
of steady-state conditions, and the steady-state gain of the
schedule is tuned to give a small amount of superheat at the
compressor inlet, which corresponds to an energy efficient and
safe operation. In practice, the schedule is a nonlinear curve fit
through these points, and depends on some other variables, but
these details are beyond our scope. We augment the model (1)
with the Tp reference schedule, and redefine to the resulting
augmented model as P henceforth, as shown in Fig. 4.

B. Weight Design

As is typical, W; is a diagonal system of first-order fil-
ters, some of which include integral action to meet tracking,
disturbance rejection and transient response Requirements A-
F. W, is a diagonal matrix of constants. In Section VI we
will define constraints for each integral state in W to be the
corresponding actuator limits, in order to provide integrator
anti-windup. Note that if integral action were incorporated in
W, instead of Wi, then it is not obvious how to realize anti-
windup because each integrator would not correspond directly
to an actuator.

For purposes of design, it is convenient to express the
diagonal elements of W; in a continuous-time Bode form
representation so that the parameters have physical meaning
during the iterative tuning procedure, and then discretize the
result after the design is determined, although this is a slight
abuse of notation in Fig. 4 since P is defined in discrete-time.

For six of the inputs, CF, EEV ¢, 1 < ¢ <4 and EEV M,
we use Proportional Integral (PI) weights of the form

1+ s/w;
Wij(s) = kj#7
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Fig. 4. Shaped plant Ps, with scaled plant P = Py, + Pq augmented with
the T'p reference schedule to form P, input and output weights YW and Wa,
respectively, and the reference —r added to ys.
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Fig. 5. Frequency response of P, (top), and PsKs (bottom).

for 2 < j < 7. By symmetry, the gains and zeros of the EEV
1 PI weights, 1 <7 < 4, are all identical, as shown in Fig. 4.
For the OFS input, we use a Lead-Lag (LL) weight

1—}—8/&)11

o (7)

Wll(s) = ]ﬁ
with we; < wy1 so that the gain is high at low frequencies.
The integral action in the six compensators (6) ensures that
the six tracking and disturbance rejection Requirements B-E
are satisfied. Integral action on all seven inputs would result
in an ill-posed loop-shaping problem, since we have only six
regulated outputs. The LL weight (7) is used at the OFS input
because it is the lowest gain input. In total, there are only 12
parameters to tune.

Frequency responses are plotted in Fig. 5. In the plot of
|P(jw)| (top) we see that there is one singular value with
a faster bandwidth. It is aligned strongly with the CF input
and the Tp output. The weakest (lowest gain) direction is



aligned in the direction of differences in room temperatures,
which is a consequence of the heat pump architecture in which
all the condensers are at the same pressure (neglecting pipe
losses). The zero locations in (6)-(7) are tuned iteratively
using the shaped frequency response (singular values) of P,
to achieve a specified cross-over frequency wy, = 0.005rad/s
corresponding to a rise-time of an 20 — 30 minutes, a small
amount of overshoot, and a desirable cross-over phase in order
to meet Requirements A-F. Linear simulations are also done
to tune the gains to achieve an acceptable transient response.
At this point, the unconstrained design is complete and the
subsequent steps are algorithmic.

C. Robustifying Compensator and Closed-Loop Properties

Once W; and W, are designed and discretized, the robus-
tifying compensator K is computed for the shaped plant P;.
This involves solving two decoupled Riccati equations, for
which solutions exist under the mild conditions that 7P is sta-
bilizable and detectable, and that the weights and plant do not
possess any common pole-zero cancellations. The algorithm,
provided in the Appendix, computes the compensator s that
stabilizes the family of perturbed shaped plants

Py = {(Ms+20) "N+ AN) : |AN  Anrllso < €} (8)

for maximum e > 0, defining the stability margin e, where
P, = M7'N, is a normalized left coprime factorization of
the shaped plant P, [23], [43], [44]. For the multi-zone heat
pump, we have € = 0.56. This is good considering the rule-
of-thumb that any € > 0.25 is acceptable [44].

D. H., Controller Realizations

The H~ loop-shaping compensator s has an observer-
based state feedback structure [24], [44]. The controller can
be realized in different forms depending on how the reference
r enters the feedback loop. One realization is

To(k+1)= Asfs(k) + Bgus (k) (9a)
H (9s(k) — ys (k) + (k)

Ys(k) = C 5T (k) (9b)

us(k) = K25 (k), (9¢)

where the shaped plant, including disturbance, is realized as

zs(k +1) = Asxs(k) + Bsus(k) + Bysq(k)
ys(k) = Csms(k) 5

so that x, includes = from (la) and states from W, and B,
B, and C in (la)-(1b) are suitably augmented to form Bj,
Bys and Cf, respectively. Equations (9a)-(9b) are the state
estimator with H being the robust estimator gain, and (9c) is
the state feedback. This is diagrammed in Fig. 4, where the
reference 7 enters the controller at the input of the estimator
in (9a). In this realization, the compensator has the property
that for constant values of disturbance q and reference r, the
controller state T, converges to zero, when no constraints are
active. This is a consequence of the stability of the closed-loop
and observability of the controller /C,.

(10a)
(10b)

An alternative realization, which attenuates the so-called

derivative-kick, is

Ts(k+1) = AZ5(k) + Bsus(k) (11a)
+ H (Us (k) — ys(k))

ys(k) = Css(k) (11b)

us(k) = K.Z4(k) + Kor(k) (11c)

In (11c), the m X m matrix

Ko=K,I—- A, — B;K, — H,C,)"*H,W,

is defined so that r = y; for constant r in steady-state, where
y1 corresponds to the six regulated outputs, and W5 is the
steady-state gain of Ws.

VI. H. LoOP-SHAPED MPC

One important feature of #H., loop-shaping is that the
resulting s has an estimated state-feedback structure. For
the LSMPC realization, the state estimator is used as (5), and
the state feedback gain is used to compute (), R and E, via
inverse optimality. This step is computational so that many
design parameters for LSMPC are automatically determined
by the H., loop-shaping procedure. However, some MPC
design parameters such as prediction horizon length and gains
for soft constraints are not affected by the H., design and
hence still must be selected.

A. Inverse Optimality and the MPC Cost Function

Our objective is to construct an MPC that implements the
loop-shaping controller C; exactly when the constraints are
inactive. We begin with the cost function. The matrices @, R,
and associated P in (4a) are computed by solving an inverse-
optimal control problem, which can be stated as follows. Given
the shaped plant state-space model for either of the controller
realizations from Section V-D,

zs(k + 1) = Asws(k) + Bsus(k) , (12)
and the stabilizing full state feedback
us(k) = Koxs(k), (13)
find a quadratic cost function
Z g (k)Qss(k) +uy (k) Rsus(k),  (14)

where R; > 0 and Qs > 0 such that (13) minimizes (14)
subject to (12). In other words, given A, B, and K, compute
Qs > 0and R, > 0 such that P; and K satisfy the associated
Riccati equation

ATpP,A, — ATP,B,(R, + BT P,B,)'BTP,A, + Q, = P,
(15)
where

K,=—(B'P,B,+ R,)"'BI'P,A,. (16)

In this formulation, F),, = I so z = x, = z, in (4d).
Solutions to this problem are published [27], [45], with one
solution being: Set R; = I, and compute (s by solving the



same Riccati equations that are used to compute K, and H,
in /Cs. Then (15) is used to compute Ps. For some plants,
this approach may result in a numerically ill-conditioned P,
which will make the resulting MPC optimization problem
ill-conditioned, e.g. [42]. For the multi-zone heat pump, the
condition number of P, is 108, which is acceptable. An alter-
native approach is to solve an LMI for Q5 > 0, Rs; > 0 and
P > 0, subject to (15) and (16), that numerically minimizes
the condition number of P,. Also note that for the heat
pump, Qs is 32 x 32, meaning 528 scalar parameters would
need to be tuned in the cost function using an LQR/LQG
separation-principle approach. However, using loop-shaping,
Qs is synthesized using only 12 tuning parameters, all of
which have a physical interpretation.

The basic idea in LSMPC is to use the state estimator
from /C, to initialize the states of the prediction model P,
realized as (12). However, there is a complication: The Ho
estimator state Z,(k) does not converge to the plant state
xs(k) as k — oo for non-zero, constant values of g. As a
consequence, the constrained output v, computed using (12)
as a prediction model, will be biased, leading to errors in
constraint enforcement.

It is not feasible to augment the original plant state x with
g and design the H., estimator for the augmented plant in
an attempt to integrate disturbance estimation into the .
estimator, because such an augmented plant is not stabilizable
and one of the algebraic Riccati equations in the H., loop-
shaping design cannot be solved. Furthermore, it is not feasible
to add the term By, where g is an estimate of the unmeasured
q, to either (11b) or (9a) with the intention of removing the
bias from the estimate Z,, because this will result in loss of
tracking of r.

Instead, we construct an augmented prediction model that
includes the shaped plant P to predict the performance output
z, but is augmented with additional states to predict the
constrained output v without any bias caused by ¢. Toward this
end, we construct an observer for g and v, which we denote the
disturbance observer, with two alternative approaches outlined
in the next two subsections

B. Full-Order Disturbance Observer

Rewrite (1) to include ¢ as an additional state, assuming
that ¢ is constant over the prediction horizon,

Z(k+1) = A,z(k) + Byu(k) (172)
y(k) = Cyz(k) (17b)
v(k) = Fyz(k) + Gu(k) (17¢)
where
we[3%] we2]

C,=1[C 0,F,=[F 0,and z = [z ¢|T. If (4,4, Cy)
is detectable, which holds for our system, we construct a
Luenberger observer, defining the process and measurement
weights as

-y (19)

where p > 0 is a single tuning parameter (to reduce the
number of tuning parameters), and computing the observer
gain L, by solving the Algebraic Riccati Equation, resulting
in

Z(k + 1) = AgZ(k) + Byu(k) + Lq (§(k) — y(k))  (20a)
(k) = Gy (k) (20b)
o(k) = F,z(k) + Gu(k) (20c)

This observer is appropriate for the heat pump application, but
other types of observers are also possible.

C. Reduced-Order Disturbance Observer

Observer (20) uses the open-loop plant model P, and there-
fore the estimate error v — ¥ is sensitive to model uncertainty.
In particular, it can produce estimates v that have steady-state
bias for constant g. However, in many applications including
the multi-zone heat pump, v is directly measured, and a
reduced-order observer reduces this sensitivity and eliminates
the bias in the steady-state.

The construction of a reduced-order observer for v is
conventional [46]. From the observability matrix

Q=[C, CA, ... Coar 1", 1)

choose the first n 4 d linearly independent rows to form the
matrix @, defining the change of coordinates § = ®z. To

express (17) in the §-coordinates, compute A = PAPY,
B =®B, and C = C, ', which by construction have the

form
- Bl
| -5

i A Ag

A= % .
[ Ay Az

meaning the first p elements of ¢ are y, which contains v and

which does not require estimation. Choose (n+d—p) x (n+

d — p) matrix ) > 0 and p x p matrix R > 0 and solve the

Riccati equation

(22)

}, C—1I 0,

A SAY, — S — ApSATH(R + A12SAT,) P A125A45, +Q =0

for S > 0, which exists if (4,,C,) is detectable. Then the
reduced-order observer is

(k) = Luy(k) + w(k) 23a)
Z(k) =& [y(k) @(k)]" (23b)
w(k+ 1) = Fyw(k) + Guy(k) + Hyu(k) (23c¢)
o(k) = F,z(k) + Gu(k) (23d)
where
Ly = (415847, + R) ™' 41,54, (24a)
Fy = Asy — Ly Arz (24b)
H, =By — L,B; (24¢)
Gw == AQI - wazlll + FwLw~ (24d)

The reduced-order observer has the advantage of producing
an estimate v(k) at sample time kT without bias due to ¢ or
model uncertainty, although it may be more sensitive to sensor
noise than the full-order observer.
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Fig. 6. Block diagram of LSMPC for the multi-zone heat pump, using the reduced-order disturbance observer.

D. LSMPC Realization

To construct the LSMPC, we define the cost function using
the inverse-optimal ()5, Rs and P, from Subsection VI-A, and
construct the prediction model to include both the shaped plant
model (As, Bs), which predicts the performance output z(k),
and the disturbance observer (20) or (23), which predicts the
effect of the disturbance q. First, we realize the input weight
Wi in state-space as

T (k 4+ 1) = Ay (k) + Bypus(k)
u(k) = Cwy (k) + Dyus(k),

(25a)
(25b)

which includes the integral states and lead-lag states from (6)
and (7). Define the prediction model state as
wp(k) = (75 (k) (k) T (K)]T, (26)

where Z(k) is from either (20) or (23). Then the LSMPC
prediction model is

~T

As 0 0 0 Bs
0 Ay 0 0 By
zp(k+1) = 0 BC, A By xp(k) + BD., us (k)
0 0 0 I 0
(27a)
z2ky=[1 0 0 0 ]z(k) (27b)
v(k)=[0 GCw» F 0 ]ay(k)+GDyus(k)  (27c)
and the cost function is
N-1
J(us) = &3 (N)Poas(N) + > 2" (k)Qs2(k) 4 ug (k) Rous (k).
= (28)

At sample time k7', the prediction model (27) is initialized
with Z(k), which is computed by the H., estimator (9a)-
(9b) or (11a)-(11b), and with Z(k), which is computed by the
disturbance observer (20) or (23), and with z,,(k). Note that
the performance variable z depends on only the # ., estimator

state 7, due to the structure of (27b). The disturbance estimate
q affects the predicted constrained output v, but not the
predicted performance output z. Therefore the LSMPC is
identical to the H ., loop-shaped controller when constraints
are inactive. A block diagram of the controller is shown in
Fig. 6.

If the problem lacks output constraints, then the prediction
model (27) can be simplified. In this case, a disturbance
observer is not required, and (26) includes only Z(k) and
X (k). Any input constraints will be properly enforced, and
any unmeasured disturbance ¢(k) will be properly rejected,
because ¢(k) does not directly affect x,, (k).

E. LSMPC Properties

Proposition 1: For the set of perturbed plants (8) and the
model predictive control with prediction model (27), cost (28),
observer (20) or (23), and H., estimator (9a)-(9b), let X,
be the set of states where the constraints (4c) are strictly
satisfied by the MPC input sequence along the entire prediction
horizon. For every equilibrium Zj in the interior of X;, there
exists a set S C X, with &7 in the interior of S such that
S is invariant for the plant in closed-loop with MPC, and the
closed-loop is stable in S with the same stability margin e
provided by H., loop-shaped controller.

Proof: Since the MPC cost function is designed by inverse
optimality, in X;, the MPC command is equal to the command
of the H., loop-shaped controller (9). Note that X;, has a
non-empty interior since the H., loop-shaped controller is
stabilizing. Let S C X, be any invariant set of the closed-loop
between the plant (8) and the H ., loop-shaped controller (9)
with :ﬁ; in the interior of S, so that starting from within S, the
closed-loop trajectory remains in S. Since S C X;,, the MPC
is equal to the H ., loop-shaped controller in S, so that S is
invariant also for the closed-loop between the plant (8) and



the MPC. Finally, the existence of S with the above properties
follows from the closed-loop between the plant (8) and the
Hoo loop-shaped controller being exponentially stable, which
ensures the existence of a Lyapunov function, whose sublevel
sets are invariant and contain ;%f, in their interior. Hence, any
such sublevel set is entirely contained in X,.

Summarizing, MPC is equivalent to the H, loop-shaped
controller in the invariant set S which contains Zj in its
interior, and hence in such set, the closed-loop system has
the same properties as the closed-loop system obtained with

the H o, controller, including the same stability margin e. W

VII. SIMULATION & EXPERIMENTAL RESULTS

We present both simulation and experimental results. Sim-
ulations of the linear plant P with constraints show the ideal
performance of LSMPC and are also included because the
MERL laboratory operates within certain constraints, e.g. the
outdoor air temperature must be above freezing. For both, we
used the same LSMPC controller realization (9) and formed
the prediction model, cost and constraints as described in Sec-
tion VI-D using the reduced-order disturbance observer (23).
There were hard upper and lower limits on all of the actuators,
and soft constraints on the following outputs: Tsc; > 0°C,
Tp < 80°C, Tpgy > 10°C and T < 50°C. Constraint
softening on the outputs guaranteed that the optimization
problem was feasible at every sample time. The hard constraint
on the inputs u ensured that the integrators in W; did not
wind-up. The LSMPC horizon was set to N = 5, the sample
period was T = 30s, making the horizon 2.5min in length.
Longer horizons provided limited benefit. This was because
the bandwidth of the system from inputs to constrained outputs
is faster than that from inputs to the room temperatures, and
also because output constraints were softly enforced.

At each sample time, the constrained convex quadratic
program was solved using two methods: ADMM [47] and
PQP [48]. ADMM was found to be more consistent in terms of
computation time across different initial conditions. Further-
more, the ADMM algorithm in [47] allows for implementing
“exact soft constraint penalties” [49] based on the 1-norm,
which is not allowed by methods requiring strictly positive
definite Hessian in the quadratic program.

A. Simulation Results

Two simulation results are presented. Results from the first
are plotted in Fig. 7. The temperature setpoint in Room 1 was
increased by 2°C at ¢ = 10min, and then the setpoints for
the other three rooms were increased by 2°C at ¢t = 150 min,
and finally a —1kW heat load step was applied to all rooms
at ¢ = 300 min. Only the OFS constraint was active after the
disturbance transient, which did not adversely affect tracking.
Prior to this, no constraints were active along the entire
prediction horizon, so the LSMPC controller was equivalent
to the Ho, loop-shaping controller. Plots for the H, loop-
shaping controller coincide exactly with the LSMPC when
constraints are inactive. They are omitted to simplify the
figures. The room temperatures showed little coupling during
the first transient, achieved the designed rise-time of 20 min

with little overshoot and acceptable damping, and rejected the
disturbance with zero steady-state error.

The second simulation was more aggressive to show con-
straint enforcement, and also included sensor quantization at
the 0.25°C level of production sensors to show that the con-
troller, and specifically the reduced-order observer, is effective
despite the noise. Results are plotted in Fig. 8. The setpoint
in Room 1 was increased by 5°C at ¢ = 10min, and then
the setpoints for the other three rooms were increased by
10°C at ¢ = 150 min, and finally a —1kW heat load step
was applied to all rooms at ¢ = 300 min. The first setpoint
change caused the subcooling constraints to become active,
and this prevented the room temperatures from achieving their
setpoints. However, the behavior was acceptable since the
response was stable (non-oscillatory), all rooms were close
to their desired temperature, and the active constraints were
“softly” enforced. The second transient caused the discharge
and condensing temperatures, Tp and T, to hit their re-
spective upper limits, which were “softly” enforced. This
mildly slowed the room temperature response. As discussed
previously, the small amount of constraint violation in transient
is acceptable. Note that after the transient transpired, each
room achieved its setpoint, and all actuators were away from
their limits. Finally, the load step at £ = 300 min caused T¢ to
be at its limit, while both CF and the OFS were at their limits.
At this point the equipment was near its maximum capacity.
Nevertheless, the room temperatures achieved their setpoints.
For this simulation, the ADMM solver, which was compiled
from C code using the Matlab MEX interface, took between
0.5 ms and 75 ms, with a mean time of 45 ms, to compute the
control on a single core of a 2.5GHz Intel 17-4870HQ, with
the longer times associated with the transient at ¢ = 150 min
when multiple constraints were active.

B. Experimental Results

A Mitsubishi Electric four-zone heat pump with 10kW
capacity, sufficient for large residential use, was used to test
the LSMPC. The laboratory set-up is diagrammed in Fig. 9.
Each indoor unit is installed in an insulated, nearly adiabatic
test chamber, together with a hydronic fan coil and electric
heater to provide heating and cooling loads. Each fan coil
provides a constant “base” heat load, while the electric heaters
provide for transients. Two of the indoor chambers are 9m?,
two are 4.5m?, and the outdoor test chamber is 6.3 m?. The
entire system is controlled by a pair of Labview systems.
The first operates the balance of plant, including the air-
cooled chiller, water pumps, valves, and the electric heaters.
It also collects a large amount of performance data, such
as thermopile measurements across each heat exchanger. The
second Labview system implements the LSMPC controller.
See [19] for further details.

When testing in heating mode, the external air-cooled chiller
supplies cold water to the fan coils in each indoor chamber to
apply a negative heat load, and the electric heaters are used to
modulate that load in order to conduct transient experiments.
The electric heater in the outdoor test chamber is controlled to
regulate the outdoor chamber temperature to a desired value
of T4, which is constant in these experiments.
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load step of —1kW was applied to all rooms. Constraints are indicated by
dotted lines. For this simulation, only the OFS constraint was active after the
third transient.
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The controller was synthesized in Matlab, and a finite-time
optimal control solver based on ADMM was implemented
in C, compiled and run in real-time within Labview, which
interfaced to the heat pump sensors and actuators. The same
LSMPC controller was used for both the simulations and
the experiments. The startup sequence first turned on the
heat pump using its production startup logic, then started
the balance of plant, and brought the system to the desired
operating condition. The LSMPC was then turned on by first
running the two estimators for a few iterations, then turning
on the optimizer, and finally closing the loop by actuating the
controlled inputs computed by the optimizer.

We present three experimental results. In the first exper-
iment, each of the room temperature setpoints was stepped
up by 2°C in succession. Results are plotted in Fig. 10.
The room temperatures achieved their setpoints without offset,
and with rise-time of approximately 20 min. Rooms 3 and
4 were slightly faster because they are smaller in volume.
All temperature sensors were quantized to 0.25°C except Tg,
which was quantized to 0.1°C. The effect of quantization is
especially noticeable in the room temperatures. The compres-
sor discharge temperature and evaporator temperatures both
tracked their references without offset. The outdoor fan and
compressor speeds remained within limits, but the EEVs hit
upper and lower constraints during the transients, which were
enforced by the LSMPC. In these experiments, the EEV limits
were tighter than in the simulations to protect the equipment.

In the second experiment, all room temperature setpoints
were stepped up simultaneously by 3°C. Results are plotted
in Fig. 11. The rise-time was about 15min, faster than
the first experiment because this output direction (the same
temperature in all rooms) has higher plant gain than for the first
experiment (different setpoint temperatures in the rooms). All
of the regulated outputs achieved their setpoint without offset.
For this experiment, no constraints were active. We note that
the EEV M limit was 150, beyond the plot range.

The third experiment was a repeat of experiment two, but
the limit for the discharge temperature (I'p) was reduced to
62°C to show output constraint enforcement. The results are
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Fig. 10. Experiment 1 of the LSMPC for the four-zone heat pump. The room
temperature setpoints were stepped in succession 2°C . The EEVs hit upper
and lower limits during transients, but the room, compressor discharge and
evaporator temperatures all achieved their setpoints in the steady-state.

plotted in Fig. 12. The Tp constraint became active during the
transient. To enforce the constraint, the LSMPC reduced the
compressor speed (CF) and the room EEVs. As a result the
room temperature response was slightly slower in the smaller
rooms (3 and 4). After the transient, all regulated variables
tracked their references without offset, although EEVs 3 and
4 were at their limits. This occurred because those two rooms
are located the farthest from the outdoor unit, so that the EEVs
need to be opened wider to deliver the same amount of heat,
compared to Rooms 1 and 2.
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VIII. CONCLUSIONS

An MPC formulation was presented based on H., loop-
shaping. This is a design methodology that uses multivariable
frequency domain methods to design plant model augmen-
tations and to compute values for the MPC cost function
weights and state estimator gain that meet performance re-
quirements and also maximize the stability margin with respect
to normalized coprime factor uncertainty. The method can be
applied to general MPC problems, but is most appropriate for
those that require state estimation. We used the method to
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Fig. 12. Experiment 3 of the LSMPC for the four-zone heat pump. The
room temperature setpoints were stepped simultaneously by 3°C, and the
upper limit for the discharge temperature T’ was set to 62°C to show output
constraint enforcement. Compare to Fig. 11.

design an MPC for a multi-zone heat pump, and validated the
approach in simulation and in experiment. The MPC for this
problem has a good stability margin, enforces input and output
constraints, tracks constant references and rejects constant
disturbances with zero steady-state error, and provides good
transient response. The tuning procedure is straightforward
with a minimal number of parameters.

A number of extensions is possible. First, alternative ar-
chitectures of the H., feedback loop and their realizations
as an MPC should be explored. How should reference or



disturbance preview be incorporated? Can the H, estimator
be used to estimate the constrained outputs, which are subject
to unmeasured disturbance? This would eliminate the need
for the disturbance observer. Secondly, computation of the
stability margin when the constraints are active in steady state
could be investigated, since the MPC can be realized as a
piecewise affine state feedback law for each combination of
active constraints [39]. For the heat pump application, when
output constraints are active in the steady state, the closed-loop
remains stable, but this may not be true for other applications.
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APPENDIX
The design equations for the H ., loop-shaping and inverse
optimal controller [27] are included for completeness. For the
strictly proper shaped plant

zs(k+ 1) = Aszs(k) + Bsus(k)
ys(k) = Cszs(k)

compute solutions X and Z; to the pair of Riccati equations
-1
ATX.B (BSTXSBS ¥ I) BT X, A, — ATX, A, + X, = CTC,
-1
AZCY (C2.CE +1) CZ AT — AZ,AL + Z, = B.BY.

Stabilizing solutions exist if (A, By) is stabilizable and
(As, C5) is detectable. Compute Yomin = v/1 + Az (XsZs),
where A4, is the maximum eigenvalue. For ~,.; > 1 let
Y = Yrel - Ymin- Then € =1/~ and

W= -1)I—-Z.X,
—1
Ky = BT X, W (1 + 72BSBSTX5WS’1) A,
—1
H, = —A,Z,CT (I n C’SZSCST)

—1
Qs =X, Wt —4AT (1 + 72X5W5*11353§“) X WA,
R, =1.
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