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Abstract

We participated in the third challenge for the Audio-Visual
Scene-Aware Dialog (AVSD) task in DSTC10. The target of
the task was updated by two modifications: 1) the human-
created description is unavailable at inference time, and
2) systems must demonstrate temporal reasoning by find-
ing evidence from the video to support each answer. The
baseline system built using an AV-transformer was released
along with the new dataset including temporal reasoning for
DSTC10-AVSD. This paper introduces a new system that
extends the baseline system with attentional multimodal fu-
sion, joint student-teacher learning (JSTL), and model com-
bination techniques, achieving state-of-the-art performances
on the AVSD datasets for DSTC7, DSTC8, and DSTC10.
We also propose two temporal reasoning methods for AVSD:
one attention-based, and one based on a time-domain re-
gion proposal network (RPN). We confirmed our system
outperformed the baseline system and the previous state of
the art for the AVSD test sets for DSTC7, DSTC8, and
DSTC10. Furthermore, the temporal reasoning using RPN
outperformed the attention method of the baseline system.

Introduction
To encourage development of dialog system technologies
that enable an agent to discuss audio-visual scenes with
humans, two challenges on audio-visual Scene-Aware Di-
alog (AVSD) at DSTC7 and DSTC8 (D’Haro et al. 2020;
Kim et al. 2021) were held using the Question Answering
(QA) dialog about videos in the Charades dataset (Sigurds-
son et al. 2016). The AVSD task defined and the dataset pre-
pared in DSTC were the first attempt to promote the combi-
nation of audio-visual question-answering systems and con-
versation systems into a single framework (Hori et al. 2019a;
Alamri et al. 2019). The AVSD task proposed in DSTC is to
generate a system response to a query, where the query is
part of a multi-turn dialog about a video. Challenge partici-
pants used the video, its associated audio, and the dialog text
to train end-to-end deep learning models to produce the an-
swers. In addition, the systems had access to human-created
video captions. The AVSD task can be seen as an extension
to video data of both the visual question answering (VQA)
task (Antol et al. 2015; Zhang et al. 2016; Goyal et al. 2017;
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Tapaswi et al. 2016), in which the goal is to generate an-
swers to questions about a scene in a static image, and the
visual dialog task (Das et al. 2016), in which an AI agent
holds a meaningful dialog with humans about a static im-
age using natural, conversational language (Das et al. 2017).
Another progenitor to AVSD is the task of video description
(text summarization of videos), which (Hori et al. 2017) ad-
dressed utilizing multimodal attention mechanisms that se-
lectively attend to different input modalities (feature types)
such as spatio-temporal motion features and audio features,
in addition to temporal attention. Combining video descrip-
tion technologies like these with end-to-end dialog systems
enables scene-aware dialog systems that make use of mul-
timodal information, such as audio and visual features. In
a more recent work, spatio-temporal reasoning has been
shown to improve performance on AVSD tasks (Geng et al.
2021). Recently, Transformer-based AVSD systems outper-
form LSTM-based ones (Le et al. 2019; Li et al. 2021).

The task setup for AVSD in DSTC7–8 allowed partici-
pants to use human-created video captions to help gener-
ate answers for the dialog questions, and systems that used
these human-generated captions significantly outperformed
systems that did not. However, since such human-created de-
scriptions are not available in real-world applications of an
AVSD system, in practice a system needs to learn to produce
the answers without the captions. There are two other de-
sign difficulties that such text-based descriptions introduce
that may skew the evaluation: (i) some descriptions already
include parts of the answers that are used in the evaluations,
making audio-visual inference redundant, and (ii) language
models trained using a simple (and limited) QA dataset may
generate answers using frequently-occurring text patterns in
the training data, without needing to use audio-visual cues
(e.g., Q: How many people are in the scene? A: Two people).
The results from AVSD in DSTC7–8 suggest there is still an
opportunity to design better audio-visual reasoning methods
to approach the performance achieved when using manual
video descriptions, but without using these descriptions at
test time. Furthermore, real systems should ideally be able
to show the evidence supporting their generated answers, by
pointing to the relevant segments of the video. To encour-
age progress towards this end, a third AVSD challenge was
proposed in DSTC10.

In this paper, we introduce the DSTC10-AVSD challenge



Table 1: Audio-Visual Scene-aware Dialog data set for
DSTC10.

training validation test

#dialogs 7,659 1,787 1,804
#turns 153,180 35,740 28,406
#words 1,450,754 339,006 272,606

task, the goals of which are: 1) answer generation without
human-created captions at inference time, and 2) temporal
reasoning (providing evidence) for the generated answers.
Furthermore, we develop an AVSD baseline system using
an AV-transformer (Iashin and Rahtu 2020). In addition, we
propose a novel system that extends this AV-transformer us-
ing attentional multimodal fusion (Hori et al. 2017), joint
student-teacher learning (JSTL) (Hori et al. 2019b), and
model combination techniques. We also propose two tem-
poral reasoning methods for AVSD: one attention-based,
and one based on a region proposal network (RPN). Re-
sults show that our extended AV-transformer achieves state-
of-the-art on DSTC 7, 8, and 10 when combined with our
LSTM-based AVSD system (Hori et al. 2019b).

Audio-Visual Scene-Aware Dialog data set
We base the new Audio-Visual Scene-Aware Dialog (AVSD)
task for DSTC10 on the AVSD dataset from DSTC7–
8 (D’Haro et al. 2020; Kim et al. 2021). For the AVSD
data, we collected text-based dialogs on short videos from
the popular Charades dataset (Sigurdsson et al. 2016), which
consists of untrimmed and multi-action videos (each video
also has an audio track) and comes with human-generated
descriptions of the scene. In the AVSD dialog case, two par-
ties, dubbed questioner and answerer, have a dialog about
events in the provided video. The job of the answerer, who
has already watched the video, is to answer questions asked
by the questioner (Alamri et al. 2019). Table 1 shows the
size of the data used for DSTC10. For this year’s challenge
(DSTC10), we collected additional data for temporal rea-
soning, in which humans watched the videos and read the
dialogues, then identified segments of the video containing
evidence to support a given answer. Humans identifying the
reasoning for the identified segments had to identify the seg-
ments based on visual evidence and/or audio evidence with
appropriate fields to provide reasoning.

Baseline Model
Our DSTC10-AVSD baseline model is an AV-transformer
architecture (Iashin and Rahtu 2020), shown in Fig. 1. The
system employs a transformer-based encoder-decoder, in-
cluding a bimodal attention mechanism (Bahdanau, Cho,
and Bengio 2014; Chorowski et al. 2015) that lets it learn
interdependencies between audio and visual features.

Given a video stream, the audio-visual encoder extracts
VGGish (Hershey et al. 2017) and I3D (Carreira and Zisser-
man 2017) features from the audio and video tracks, respec-
tively, and encodes these using self-attention, bimodal atten-
tion, and feed-forward layers. Typically, this encoder block
is repeated N times, e.g., N ≥ 6. More formally, let XA
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Figure 1: Baseline and extended AV-transformer. Our ex-
tended system adds the JSTL modules (blue and orange
boxes) to the baseline.

and XV denote audio and visual signals. First, the feature
extraction module extracts VGGish and I3D feature vector
sequences from the input signals:

A0 = VGGish(XA), V 0 = I3D(XV ). (1)

The nth encoder block computes hidden vector sequences
as:

Ān = An−1 +MHA(An−1, An−1, An−1), (2)

V̄ n = V n−1 +MHA(V n−1, V n−1, V n−1), (3)

Ãn = Ān +MHA(Ān, V̄ n, V̄ n), (4)

Ṽ n = V̄ n +MHA(V̄ n, Ān, Ān), (5)

An = Ãn + FFN(Ãn), (6)

V n = Ṽ n + FFN(Ṽ n), (7)

where MHA and FFN denote multi-head attention and feed-
forward network, respectively. Layer normalization (Ba,
Kiros, and Hinton 2016) is applied before every MHA and
FFN layer, but it is omitted from the equations for sim-
plicity. MHA takes three arguments: query, key, and value
vector sequences (Vaswani et al. 2017). The self-attention
layer extracts temporal dependency within each modality,
where the arguments for MHA are all the same, i.e., An−1 or
V n−1, as in (2) and (3). The bimodal attention layers further
extract cross-modal dependency between audio and visual
features, taking the keys and values from the other modality
as in (4) and (5). After that, the feed-forward layers are ap-
plied in a point-wise manner. The encoded representations
for audio and visual features are obtained as AN and V N .

The decoder receives the encoder outputs and the dialog
history until the current question, and starts generating the
answer sentence from the beginning token (<sos>) placed
at the end of the last question. At each iteration step, it re-
ceives the preceding word sequence and predicts the next
word by applying M decoder blocks and a prediction net-
work. In each decoder block, the encoded audio-visual fea-
tures are combined with each word using the bimodal at-
tention layers. Let Yi be a dialog history plus preceding



word sequence h1, . . . , hL,<sos>, y1, . . . , yi after i itera-
tions and Y 0

i be a word embedding vector sequence given
by Y 0

i = Embed(Yi).
Each decoder block has self-attention, bimodal source at-

tention, and feed-forward layers. Computations within the
m-th block are as follows:

Ȳ m
i = Y m−1

i +MHA(Y m−1
i , Y m−1

i , Y m−1
i ), (8)

Ȳ Am
i = Ȳ m

i +MHA(Ȳ m
i , AN , AN ), (9)

Ȳ Vm
i = Ȳ m

i +MHA(Ȳ m
i , V N , V N ), (10)

Ỹ m
i = Concat(Ȳ Am

i , Ȳ Vm
i ), (11)

Y m
i = Ỹ m

i + FFN(Ỹ m
i ). (12)

The self-attention layer converts the word vectors to high-
level representations considering their temporal dependency
in (8). The bimodal source attention layers update the word
representations based on the relevance to the encoded multi-
modal representations in (9) and (10). A feed-forward layer
is then applied to the outputs of the bimodal attention layers
in (11) and (12). Finally, a linear transform and softmax op-
eration are applied to the output of the M -th decoder block
to obtain the probability distribution of the next word as

P (yi+1|Yi, X
A, XV ) = Softmax(Linear(Y M

i )). (13)
At inference time, we can pick the one-best word ŷi+1 for
yi+1 as

ŷi+1 = argmax
y∈V

P (yi+1 = y|Yi, X
A, XV ), (14)

where V denotes the vocabulary, and the answer sentence is
extended by adding the selected word to the already gener-
ated word sequence as Yi+1 = Yi, ŷi+1. This is a greedy
search process that ends if ŷi+1 = <eos>, which repre-
sents an end token. It is also possible to pick multiple words
with highest probabilities and consider multiple candidates
for the answer sentence using a beam search.

Extended AV-transformer
We extend the baseline AV-transformer by applying atten-
tional multimodal fusion (Hori et al. 2017) and joint student-
teacher learning (JSTL) (Hori et al. 2019b), which have suc-
cessfully been applied to an LSTM-based AVSD system
(Hori et al. 2019a) but have not previously been applied to
transformer-based systems. In this paper, we propose to ex-
tend the AV-transformer with these techniques and test their
effectiveness.

Fig. 1 shows the teacher model of the extended AV-
transformer, which has a caption/summary encoder in the
encoder and an attentional fusion layer in the decoder. In
student-teacher learning, a student model without the cap-
tion/summary encoder and its attention module in the de-
coder is trained using the teacher model output as the target
distribution.

To further improve the performance, we combine the ex-
tended AV-transformer with the LSTM-based model trained
with student-teacher learning as well, where the two decoder
outputs are linearly combined in the log domain during the
beam search. This system combination method aims to ex-
ploit the complementary information between the two mod-
els to improve the performance.

Attentional Multimodal Fusion
The baseline AV-transformer in Fig. 1 concatenates multi-
modal encoder outputs in each decoder block, assuming that
the audio and visual features have equal contribution to the
next word prediction regardless of the given question and
the generated answer. However, prior work has shown that
attentional multimodal fusion is effective for LSTM-based
systems. In this work, we apply the attentional fusion tech-
nique to the AV-transformer. In the case of Transformer, we
can use single-head attention (SHA) in each decoder block
as

˜̃Y m
i = SHA(Ȳ m

i , Ỹ m
i , Ỹ m

i ), (15)

where Ỹ m
i is here a concatenation of Ȳ Am

i and Ȳ Vm
i . If

the model has a caption/summary encoder, its output Ȳ Cm
i

is also concatenated. In this case, Ỹ m
i is a 3 ×D tensor in-

cluding three modalities, each of which has a D-dimensional
vector. Then, the fused vector ˜̃Y m

i is fed to the feed-forward
layer.

Student-Teacher Learning
The goal of student-teacher learning is to obtain a student
model that does not make use of the video caption or sum-
mary, which is trained to mimic a teacher model that has
already been trained using the caption/summary text. Ac-
cordingly, the student model can be used to generate system
responses without relying on the caption text, while hope-
fully achieving similar performance to the teacher model.

The student-teacher loss is a cross entropy loss with soft
targets:

LST = −
|Y |∑
i=1

∑
y∈V

P̂ (y|Yi−1, X
A, XV, XC) logP (y|Yi−1, X

A, XV ),

(16)
where P̂ (y|Yi−1, X

A, XV , XC) denotes the probability dis-
tribution for the ith word obtained by the teacher network.
Here, P (y|Yi−1, X

A, XV ) is the posterior distribution from
the current student network (which is being trained), which
is predicted without the caption text XC .

Following our prior work, we also incorporate a decoder
state similarity loss and a cross-entropy loss on the teacher
for joint student-teacher learning as

LJST = LST + λcLMSE + L(T )
CE , (17)

where LMSE =
∑|Y |

i=1 MSE(Y m
i , Ŷ m

i ). Here, MSE(·, ·) de-
notes the mean square error between two vectors, λc denotes
a scaling factor, and the MSE loss is computed for the m-
th block of the decoder to make the teacher’s and student’s
hidden vectors closer. In this work, we set m = M/2, which
indicates the block in the middle of the M decoder blocks.
We aim here to compensate for missing input features at the
decoder state level, so that the student model can hopefully
exploit other modalities more actively. Furthermore, joint
student-teacher learning updates not only the student net-
work but also the teacher network. We use the standard cross
entropy L(T )

CE for a hard target, only for the teacher network.
Likewise, LST is used only for the student network, while
LMSE is used for both networks.



Temporal Reasoning
Temporal reasoning is the task of finding evidence support-
ing the generated answers, where the evidence corresponds
to human-annotated time regions of the video that have been
identified as supporting each ground-truth answer. Human
annotators were allowed to choose multiple time regions for
each question-answer pair, but most of the reasons consist of
a single region.

Attention-based method
We built a baseline method for temporal reasoning based on
attention weights obtained during decoding. The attention
weights are computed to predict each word, where each at-
tention weight corresponds to a certain time frame of input
audio/visual features. Thus, a high weight means that the
corresponding time frame is strongly correlated to a word in
the generated answer. Given an attention weight distribution,
we can compute mean µ and standard deviation σ of the dis-
tribution, and roughly estimate the time region as µ ± νσ,
where ν is a hyperparameter. Since we have multiple atten-
tion distributions over the word sequence, attention heads,
and layers, we use their averaged distribution. This method
finds only one time region for each answer, and it requires
no special training to select time regions.

RPN-based time region detection
We also built a CNN-based temporal reasoning model,
which accepts encoder outputs of the AV-transformer and
an embedded QA pair to predict temporal regions that sup-
port the answer. The model employs a time-domain region
proposal network (RPN) (Ren et al. 2015; Iashin and Rahtu
2020), where Conv1D modules with different kernel sizes
accept frame-level outputs of the multimodal encoders, each
of which is concatenated with the QA pair embedded by the
decoder followed by mean pooling. It predicts the center po-
sition, the region length, and the confidence score of each
region candidate. We pick high-confidence regions from the
candidates using a predetermined threshold.

Experiments
We evaluate our AV-transformer using the AVSD datasets
from DSTC7, DSTC8, and DSTC10. Training and valida-
tion sets are common across the three challenges, but the
test sets are different.

Conditions
We extracted VGGish audio features (Hershey et al. 2017)
and I3D video features (Carreira and Zisserman 2017) from
each video clip, where I3D features consisted of sequences
of 2040-dimensional RGB and flow vectors, and VGGish
features were sequences of 128-dimensional vectors. The
RGB and flow features were concatenated before feeding
them to the encoder.

The baseline AV-Transformer has projection layers be-
fore the first audio-visual encoder block, where the audio
and visual features are projected to 64 and 128 dimensional
vectors, respectively. The encoder has 2 encoder blocks, in
which the audio and visual attention layers have 64 and

Table 2: Evaluation results on DSTC7-AVSD test set.
DSTC7’s best system (Sanabria, Palaskar, and Metze 2019)
does not report results without captions, so we report their
results with captions.
Model BLEU4 METEOR ROUGE L CIDEr

Baseline AV-transformer 0.296 0.214 0.485 0.771
+ Hyperparameter tuning 0.362 0.237 0.522 0.974
+ Beam search 0.380 0.239 0.530 0.998
+ Attentional MM fusion 0.391 0.248 0.536 1.013
+ JST learning 0.401 0.256 0.549 1.051
+ Comb. with LSTM 0.406 0.262 0.554 1.079

LSTM + JST learning (Hori et al. 2019b) 0.382 0.254 0.537 1.005
DSTC7 best w/ cap. (Sanabria et al. 2019) 0.394 0.267 0.563 1.094

Table 3: Evaluation results on DSTC8-AVSD test set.
Model BLEU4 METEOR ROUGE L CIDEr

Baseline AV-transformer 0.281 0.203 0.468 0.701
Extended AV-transformer 0.380 0.242 0.535 0.957

+ Comb. with LSTM 0.394 0.250 0.545 0.997

DSTC8 best (Li et al. 2021) w/o cap. 0.387 0.249 0.544 1.022

128 dimensions, and their feed-forward layers have 256 and
512 dimensions, respectively. The decoder has 2 decoder
blocks, in which 300-dimensional GloVe word vectors (Pen-
nington, Socher, and Manning 2014) are projected to 256-
dimensional embedding vectors and fed to 256-dimensional
attention layers followed by 1024-dimensional feed-forward
layers. The baseline system employs greedy search to gen-
erate the answers.

The quality of the automatically generated sentences was
evaluated with objective measures to compare the similar-
ity between the generated sentences and the ground truth
sentences. We used the evaluation code for MS COCO
caption generation1 for objective evaluation of system out-
puts, which supports automated metrics such as BLEU, ME-
TEOR, ROUGE L, and CIDEr.

Results and Discussion
Table 2 shows the evaluation results on the DSTC7 test
set. To improve the performance from the baseline, we first
tuned the hyperparameters using the validation set, where
we made the decoder network deeper to 6 blocks and re-
duced the dimension of the attention layers to 200. We
shrank the dialog history given to the decoder into just the
previous question. In addition, we applied a learning rate
control that halves the learning rate of Adam optimizer if
the validation loss did not decrease after each training epoch.
With this tuning, we obtained substantial improvement, e.g.,
0.296 → 0.332 in BLEU4. Then, we applied the beam
search technique with beam size 5, which further improved
the performance.

We extend the AV-transformer by adding attentional mul-
timodal (MM) fusion and joint student-teacher (JST) learn-
ing, achieving further performance improvement. Finally,
we combine our AV-transformer with our LSTM-based
model from (Hori et al. 2019b), which also employed atten-
tional MM fusion and JST learning. The LSTM-based model

1https://github.com/tylin/coco-caption



Table 4: Evaluation results on DSTC10-AVSD test set.
Model BLEU4 METEOR ROUGE L CIDEr

Baseline AV-transformer 0.247 0.191 0.437 0.566
Extended AV-transformer 0.371 0.245 0.535 0.869
+ Comb. with LSTM 0.385 0.247 0.539 0.888

Table 5: Evaluation results on temporal reasoning for
DSTC10-AVSD test set (Unofficial for challenge).

Model IoU-1 IoU-2

Attention method 0.361 0.380
Region Proposal Net (RPN) 0.521 0.550

had a two-layer bidirectional LSTM encoder for question
encoding, a single projection layer for each audio or visual
feature, and a two-layer unidirectional LSTM decoder in-
cluding attentional MM fusion. The number of LSTM cells
was 256 for each layer of the encoder and the decoder. When
we combine the word posterior probabilities of the Trans-
former and LSTM decoders in the log domain, we obtain
the best results, which outperform the prior method (Hori
et al. 2019b) and even achieve competitive performance to
the best DSTC7 system that used the caption/summary in-
formation.

Table 3 shows the evaluation results on the DSTC8 test
set. As in the DSTC7 results, the AV-transformer includ-
ing all the extensions shows substantial improvements on all
the performance metrics. Furthermore, the table shows that
combination of the AV-transformer and the LSTM model
achieves the state-of-the-art performance in BLEU4, ME-
TEOR, and ROUGE L in comparison with the DSTC8 best
system (Li et al. 2021) based on a large-scale Transformer
initialized with GPT-2 (Radford et al. 2019), for the condi-
tion in which caption/summary information were not avail-
able.

Finally, we evaluated our model with the DSTC10-AVSD
test set. The sentence generation performance is shown in
Table 5, and we see improvements similar to the ones in the
DSTC7 and DSTC8 results. We also evaluated the reasoning
performance of the attention-based and RPN-based meth-
ods introduced in the section for Temporal Reasoning. The
RPN had 3-layer Conv1D modules with 10 different kernel
sizes for each modality and 256 dimensions in each internal
layer. Table 5 shows the reasoning performance measured
by Intersection over Union (IoU), which indicates the ratio
of overlap between the predicted and ground-truth time re-
gions (higher is better). Since there may be multiple valid
reasons for each answer, we designed two IoU measures,
where IoU-1 is obtained as an average IoU computed be-
tween each ground truth and the predicted region that gives
the highest IoU to the ground truth. IoU-2 is computed by
frame-level matching among all predicted and ground-truth
regions for each answer, i.e., frames included in both pre-
dicted and ground-truth regions are counted as intersections
while those included in both or either of them are counted
as union. Table 5 shows that the RPN outperforms the naive
attention-based approach, which suggests that model train-

ing with ground-truth annotations for temporal reasoning is
important for temporal reasoning in the AVSD task. We did
not get the above reasoning results in the official challenge
timeline, and thus the result was not officially approved by
the organizers.

Figures 2 and 3 show examples of temporal reasoning ob-
tained by the baseline and proposed systems in comparison
with the ground truth. We selected samples as shown below:
(1) Reasoning for how the video ends, (2) Reasoning for ac-
tions, and (3) Reasoning for ”where” question, (4) Reason-
ing for the entire video: Answers need to be generated based
on the information in all frames. These examples clearly
show that the RPN method in the proposed system provides
much better reasoning than the attention method of the base-
line system.

Conclusions
In this paper, we introduced the DSTC10-AVSD task and
dataset, which promote further advancements into real-
world applications of AVSD, in which human-created de-
scriptions are not available at inference time and where tem-
poral reasoning is required to provide evidence support-
ing the answers. We proposed extending the baseline sys-
tem for DSTC10-AVSD with attentional multimodal fusion,
joint student-teacher learning, and model combination tech-
niques, achieving state-of-the-art performance resulting in
an improvement across all evaluation metrics. Our experi-
ments compared the performance of the baseline system and
our extended system with the previous state of the art, testing
on the AVSD test sets for DSTC7, DSTC8, and DSTC10.
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(1) Reasoning for how the video ends

Q1: how many people are in the video ? 
A1: there appears to be just one there . 
Q2: where does the video begin ? 
A2: it begins in the room . maybe living 
Q3: what does the man first do ? 
A3: he picks up a box of food . 
Q4: what happens next ? 
A4: he laughs and runs out of hte room 
Q5: so you can hear sound ? 
A5: i cannot hear any sound 
Q6: does he runs out very fast ? 
A6: he does , but not too fast 
Q7: does he look happy the entire time ? 
A7: yea , he pretty much deos 
Q8: does it end with him running out ? 
--------------- 
(1) Groundtruth - A8: yes , that is exactly what it does 
(2) Baseline    - A8: yes , he is in the same room 
(3) Proposed    - A8: yes , the video ends with him walking out of the room . 

(2) Reasoning for actions

Q1: who is in the clip ? 
A1: there is just one boy in the clip . 
Q2: how old would you say that he is ? 
A2: i think he might be around 17 years old . 
Q3: what type of room is he in ? 
A3: he looks to be in a weight room of some sort . 
Q4: what is in his hand ? 
A4: he is holding a towel in his hands . 
Q5: what does he do first ? 
A5: he wipes his hands then picks up a bag and phone . 
Q6: does he say anything ? 
A6: no he doesn 't say anything in the video . 
Q7: what does he do with the bag and the phone ? 
--------------- 
(1) Groundtruth - A7: he picks it up and walks out the door . 
(2) Baseline    - A7: he just holds it and looks at it . 
(3) Proposed    - A7: he picks it up and looks at it . 
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Figure 2: Example of reasoning results (1/2)



(3) Reasoning for "where" question

Q1: how does the video start ? 
A1: the video starts by the man dusting with a rug . 
Q2: what is he dusting ? 
A2: the sofa . then he grabs a box and puts items inside and places the box in the corner of the wall . 
Q3: then ?
A3: then he takes the vacuum and starts vacuuming the floor and the video ends 
Q4: anything else ? 
A4: no that 's it the video ends there 
Q5: so a man is dusting a sofa . he grabs a box , puts items inside and places it in a corner . then he starts to vaccum ? 
A5: yes that 's it in the video 
Q6: does he look happy ? 
A6: not really . he has a neutral expression 
Q7: what room is it ? 
--------------- 
(1) Groundtruth - A7: looks like the living room 
(2) Baseline    - A7: it looks like a living room 
(3) Proposed    - A7: it looks like a living room . 

(4) Reasoning for the entire video: Answers need to be generated based on the information in all frames.

Q1: is the girl in the frame when the video begins ? 
A1: yes she is in the scene the entire time 
Q2: does she pick up the towel ? 
A2: she has it in her hands to begin with and then wraps it around her neck , it stays around her neck the entire time 
Q3: what does she do after she puts the towel on ? 
A3: she walks across the room and stands on a chair facing a wall 
Q4: does she pick up anything in the room ? 
A4: no she picks up nothing else , she does adjust the chair before she stands on it and does fidget with something on the wall she is facing 
Q5: does she move the chair to the wall ? 
A5: yes just a little bit , it was already facing the wall before she got to it 
Q6: does she fidget with the something on the wall for long ? 
A6: i would say about 10 seconds , it is above her head , it looks like she is adjusting perhaps 
Q7: does she say anything during the video ? 
--------------- 
(1) Groundtruth - A7: there is no dialogue of any kind throughout 
(2) Baseline    - A7: no she does not say anything 
(3) Proposed    - A7: no , she does not say anything . 
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Figure 3: Example of reasoning results (2/2)
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