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the student model can still benefit from a moderately trained teacher model. Implying that
better teacher models generally produce better student models, our results justify the design
of ISKD. In addition to pothole classification, we also demonstrate the efficacy of ISKD on
six additional datasets associated with generic classification, fine-grained classification, and
medical imaging application, which supports that ISKD can serve as a general-purpose per-
formance booster without the need of a given teacher model and extra trainable parameters.

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





ITERATIVE SELF KNOWLEDGE DISTILLATION — FROM POTHOLE CLASSIFICATION
TO FINE-GRAINED AND COVID RECOGNITION

Kuan-Chuan Peng

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
kpeng@merl.com

ABSTRACT

Pothole classification has become an important task for road
inspection vehicles to save drivers from potential car acci-
dents and repair bills. Given the limited computational
power and fixed number of training epochs, we propose iter-
ative self knowledge distillation (ISKD) to train lightweight
pothole classifiers. Designed to improve both the teacher and
student models over time in knowledge distillation, ISKD
outperforms the state-of-the-art self knowledge distillation
method on three pothole classification datasets across four
lightweight network architectures, which supports that self
knowledge distillation should be done iteratively instead of
just once. The accuracy relation between the teacher and
student models shows that the student model can still benefit
from a moderately trained teacher model. Implying that better
teacher models generally produce better student models, our
results justify the design of ISKD. In addition to pothole
classification, we also demonstrate the efficacy of ISKD on
six additional datasets associated with generic classification,
fine-grained classification, and medical imaging application,
which supports that ISKD can serve as a general-purpose
performance booster without the need of a given teacher
model and extra trainable parameters.

Index Terms— Teacher-free knowledge distillation, iter-
ative self knowledge distillation

1. INTRODUCTION

Detecting potholes is essential for the municipalities and road
authorities to repair defective roads. The vehicle repair bills
related to pothole damage have cost U.S. drivers $3 billion
annually on average [1]. Due to the cost constraint of the
edge devices which the pothole classifiers run on, the edge
devices installed on the road inspection vehicles may only
have limited computational power (e.g., no GPU). In such
scenarios, lightweight models are needed if real-time infer-
ence speed is required. Motivated by this application and
deployment time constraint of pothole classifiers, we focus
on the following problem: Given a fixed number of training
epochs and a lightweight model to be trained, what can prac-
titioners do to improve the pothole classification accuracy?

Given the problem, we explore self knowledge distillation
(KD) [2] to tackle pothole classification. By self KD, we refer
to the KD methods which need no teacher model in advance
and introduce no extra trainable parameters. Showing that
KD is actualy learned label smoothing regularization, Yuan et
al. [2] propose Tf-KDself , the teacher-free KD by using the
pre-trained student model itself as the teacher model. Inspired
by [2] and the assumption that better teacher models result in
better student models, we propose iterative self knowledge
distillation (ISKD), which iteratively performs self KD by
using the pre-trained student model as the teacher model.

Most KD methods [3, 4, 5, 6, 7] typically require that the
teacher model is available in advance, which is not always
true. Even if there are KD methods which need no teacher
model [2, 8, 9], these methods typically do not experiment on
lightweight models or perform KD multiple times. Utilizing
KD iteratively and requiring no teacher model, our proposed
ISKD shows its efficacy on lightweight models for pothole
classification, generic classification, fine-grained classifi-
cation, and medical imaging application. Although there
exist methods utilizing iterative KD [10, 11, 12], they typi-
cally require additional constraints and are validated on only
few datasets. For example, Koutini’s method [10] requires
training multiple models and selecting the best trained model
for each class to predict pseudo labels for sound event detec-
tion. In contrast, our proposed ISKD only needs to train
one model at once with no need to select models and predict
pseudo labels. In [11, 12], their teacher model is trained
until convergence for each KD iteration, and their methods
are validated on only few datasets. In addition, the accuracy
gain of [11] comes from the ensemble of all the students in
the history, which needs more deployment space at testing
time. In contrast, we show ISKD’s efficacy on a wide variety
of datasets even when the teacher model is only moderately
trained, and ISKD does not rely on the ensemble, which is
more practical for embedded devices.

To the best of our knowledge, we are the first in pothole
classification to use iterative self knowledge distillation when
training lightweight neural networks under limited training
epochs. We make the following contributions:
(1) We propose iterative self knowledge distillation (ISKD),
which outperforms the state-of-the-art self KD method Tf-



Fig. 1: Our proposed iterative self knowledge distillation.

KDself [2] on the road damage dataset [13], the Nienaber
potholes simplex [14] and complex [15] datasets, CIFAR-
10 [16], CIFAR-100 [16], Oxford 102 Flower [17], Oxford-
IIIT Pet Dataset [18], Caltech-UCSD Birds 200 [19], and
COVID-19 Radiography [20] datasets, which supports the
wide applicability of ISKD from pothole classification to
generic, fine-grained, and medical imaging classification.
(2) We provide more evidence showing that even using a
teacher model with accuracy lower than the baseline accu-
racy from a classifier trained with a larger number of epochs,
the student model can still possibly outperform the baseline.
(3) ISKD can outperform the baseline under a wide range of
weight balancing the objectives of ISKD, which supports that
ISKD is flexible with respect to parameter selection.

2. ITERATIVE SELF KNOWLEDGE DISTILLATION

Inspired by Yuan et al. [2], we propose iterative self knowl-
edge distillation (ISKD) such that both teacher and student
models can improve over time. We illustrate ISKD in Fig. 1,
where we denote the teacher/student model in the k-th KD
iteration ik as Tk/Sk. During i1, since T1 is not given in
advance, we train S1 using the softmax cross-entropy loss Lc

as the classification loss. During ik (k > 1, k ∈ N), we use
the trained student model in ik−1 (i.e., Sk−1) as Tk, and train
Sk with both Lc and the Kullback-Leibler (KL) divergence
loss. Specifically, the total loss function to train Sk during
ik can be written as LKD = (1− α)Lc + αKLD (z, zt),
where KLD is the KL divergence, zt/z is the output proba-
bility distribution of Tk/Sk, and α is the weight of KLD.

During ik, we freeze the parameters of Tk and only train
Sk. We pre-train Sk from ImageNet [21], not from Sk−1

because we hope to decrease the chance that Sk is trapped
from the possibly local optimum associated with Sk−1. ISKD
stops at ik if Sk shows no obvious accuracy gain over Sk−1.
Since Yuan et al. [2] show that to benefit the student model,
the teacher model need not outperform the student model,
we directly use the previously trained student model as the
current teacher model, waiving the typical KD requirement

that the teacher model is needed in advance. We expect that
using ISKD improves both Tk and Sk when k increases under
the assumption that using better teacher models in KD gener-
ally results in better student models.

3. EXPERIMENTAL SETUP

We experiment on road damage dataset (termed as RDD) [13],
Nienaber potholes simplex (termed as simplex) [14] and
complex (termed as complex) [15] datasets, CIFAR-10 [16],
CIFAR-100 [16], Oxford 102 Flower dataset (termed as
Oxford-102) [17], Oxford-IIIT Pet dataset (termed as Oxford-
37) [18], Caltech-UCSD Birds 200 dataset (termed as CUB-
200) [19], and COVID-19 Radiography dataset (termed as
COVID) [20]. We choose these datasets to cover a diverse
range of task domains from pothole, generic, fine-grained
to medical imaging classification. The RDD, simplex, and
complex datasets provide annotations of whether each image
contains any pothole or not. The Oxford-102, Oxford-37,
and CUB-200 datasets provide the images and labels of 102,
37, and 200 different species of flowers, cats and dogs, and
birds, respectively. The COVID dataset includes 4 different
types of chest x-rays: normal, COVID, lung opacity, and
viral pneumonia. For all the datasets except COVID, we use
the official training/testing split of each dataset. Since the
COVID dataset does not provide the official training/testing
split, we randomly generate the split using the ratio of 7:3.

We use the official PyTorch [22] implementation of
ResNet-18 [23], SqueezeNet v1.1 [24], and ShuffleNet v2
x0.5 & x1.0 [25], modify their last layers such that the number
of output nodes of the last layer equals the number of classes,
and pre-train them from the ImageNet [21]. The four network
architectures are selected based on the following criteria: (1)
For the ease of reproducibility, they are officially supported
by PyTorch [22], which provides their weights pre-trained
from the ImageNet [21]. (2) Considering typically limited
computational power on edge devices, we limit the number
of network parameters to be fewer than 12M.

We first experiment on the four network architectures
mentioned previously using the RDD [13], simplex [14],
and complex [15] datasets. For each KD iteration, we use
the same network architecture for both teacher and student
models. We compare ISKD with the following two baselines
with the same network architecture, total number of training
epochs, and learning schedule: (1) training a classifier using
Lc without KD (termed as the large-epoch baseline), and
(2) Tf-KDself [2], which only performs KD once without
multiple KD iterations. For the extended study involving the
other six datasets irrelevant to potholes, we use the ResNet-
18 [23] and ShuffleNet v2 x1.0 [25] as the network architec-
tures of ISKD. We conduct the extended study in the same
way as the pothole classification task mentioned previously
using the same two baselines.

For all the experiments, the training images are resized to



dataset experiment ID E1 E2 E3 E4 E5 E6 E7 E8 E9

model \ KD iteration i1 (no KD) i2 i3 i4 i5 i6 i1 ∼ i6 i1 (large-epoch) i1 + Tf-KDself [2]

RDD [13]

ResNet-18 [23] 91.5450 92.7150 92.9950 93.0450 93.0850 n/a 93.08250 92.24250 92.34250
SqueezeNet v1.1 [24] 89.6750 89.9150 90.2850 90.5150 90.7050 90.7050 90.70300 90.47300 90.28300

ShuffleNet v2 x0.5 [25] 90.0550 90.1450 90.9850 91.4050 91.4050 n/a 91.40250 92.66250 91.22250
ShuffleNet v2 x1.0 [25] 92.0150 92.1550 92.6650 93.2250 93.2250 n/a 93.22250 93.13250 93.13250

simplex [14]

ResNet-18 [23] 81.8550 90.4650 93.6950 96.9250 98.6250 99.0850 99.08300 83.38300 92.00300
SqueezeNet v1.1 [24] 81.8550 86.7750 87.6950 88.1550 88.1550 n/a 88.15250 84.62250 87.69250

ShuffleNet v2 x0.5 [25] 90.0050 95.6950 99.3850 100.0050 n/a n/a 100.00200 92.46200 97.54200
ShuffleNet v2 x1.0 [25] 90.3150 96.3150 98.7750 100.0050 n/a n/a 100.00200 93.38200 97.54200

complex [15]

ResNet-18 [23] 61.9250 74.1450 77.6550 79.8050 83.7750 84.9350 84.93300 62.58300 82.95300
SqueezeNet v1.1 [24] 59.2750 70.7050 76.1650 76.1650 n/a n/a 76.16200 62.25200 71.03200

ShuffleNet v2 x0.5 [25] 56.7950 78.9750 88.5850 88.9150 n/a n/a 88.91200 65.89200 79.80200
ShuffleNet v2 x1.0 [25] 60.4350 78.3150 86.5950 86.4250 n/a n/a 86.42200 71.85200 82.45200

CIFAR-10 [26] ResNet-18 [23] 90.7550 91.8150 92.0550 92.0750 n/a n/a 92.07200 91.53200 92.01200
ShuffleNet v2 x1.0 [25] 82.6350 85.1650 88.4550 90.3050 91.0350 91.5850 91.58300 90.68300 85.55300

CIFAR-100 [26] ResNet-18 [23] 80.1550 81.0550 81.6450 82.1750 82.3050 82.6750 82.67300 81.34300 81.62300
ShuffleNet v2 x1.0 [25] 58.9550 65.6050 72.1650 75.5950 77.2750 77.8550 77.85300 77.61300 65.78300

Oxford-102 [17] ResNet-18 [23] 96.5850 97.3150 97.6850 97.8050 n/a n/a 97.80200 96.94200 97.43200
ShuffleNet v2 x1.0 [25] 94.7450 97.1950 98.1750 98.4150 n/a n/a 98.41200 98.41200 97.19200

Oxford-37 [18] ResNet-18 [23] 90.5750 90.9850 91.3350 91.8050 91.5850 n/a 91.80200 91.20200 91.31200
ShuffleNet v2 x1.0 [25] 79.6950 84.3050 85.9650 86.5950 86.5950 n/a 86.59250 86.10250 84.46250

CUB-200 [19] ResNet-18 [23] 42.0750 46.4950 48.6650 49.8250 49.4950 n/a 49.82200 46.03200 47.58200
ShuffleNet v2 x1.0 [25] 41.5450 45.4050 48.5350 49.6950 50.2850 49.9550 50.28250 48.99250 46.95250

COVID [20] ResNet-18 [23] 94.1150 94.6850 94.8050 95.0150 n/a n/a 95.01200 94.79200 94.88200
ShuffleNet v2 x1.0 [25] 90.7650 92.4350 93.0750 93.8150 93.9850 n/a 93.98250 92.72250 93.10250

Table 1: Comparing the classification accuracy (%) of the iterative self knowledge distillation (KD) method versus the baselines. The numbers
are in the format of [accuracy][es], where es is the number of epochs which the student model is trained for.

224×224, and the model is pre-trained from ImageNet [21]
and fine-tuned with the training data of each dataset. We use
the momentum 0.9, weight decay 5e-4, batch size 128, and
the SGD optimizer to train the student model for 50 epochs
for each KD iteration, and the learning rate is fixed within
each KD iteration but model-specific during training. For
ResNet-18 [23] and SqueezeNet v1.1 [24], we use the initial
learning rate 0.001, but for ShuffleNet v2 x0.5 & x1.0 [25],
we use the initial learning rate 0.1. Following Tf-KDself [2],
we obtain the α values by grid search on the validation data
sampled from the training set when experimenting on the
RDD dataset [13]. Once we determine the α values from the
RDD dataset, we fix the α values and use the same set of
α values when experimenting on other datasets (i.e., the α
values are not tuned for most of the datasets except the RDD
dataset). We purposely do so to test whether the α values
searched from one dataset can be transferable and directly
applied to other datasets. For all the other parameters, we use
the default PyTorch [22] setting unless otherwise specified.

4. EXPERIMENTAL RESULT

The experimental results are summarized in Table 1, where
we refer to each column by the experiment ID E1 ∼ E9.
All the numbers are reported in the format of [accuracy][es],
where es is the number of epochs which the student model is

dataset\method ISKD prior work (backbone)

CIFAR-100 [26] 82.67 81.60 [27] (Wide-ResNet-28-10)
Oxford-102 [17] 97.80 91.10 [28] (ResNet152-SAM)

Oxford-37 [18] 91.80 91.60 [28] (ResNet50-SAM)

Table 2: The comparison of classification accuracy (%) between
ISKD (backbone: ResNet-18 [23]) and the prior works using back-
bones with more parameters.

trained for. E1 ∼ E6 list the performance of S1 ∼ S6, andE7

summarizes the last performance after i1 ∼ i6. There is no
teacher model for E1 and the large-epoch baseline (E8), but
for the baseline using Tf-KDself [2] (E9), the teacher model
is the trained S1. All the student models are pre-trained from
ImageNet [21] for ISKD (E7) and the two baselines (E8,E9).

In Table 1, the accuracy of E2 is higher than that of E1,
which shows that self KD can improve the student model’s
accuracy. The accuracy of Ep is higher than that of Eq for
most cases when 2 ≤ q < p ≤ 6, which validates the
assumption that in self KD, better teacher models result in
better student models and that self KD can be done iteratively
instead of just once. Comparing E7 with E8 and E9, we
show that given a fixed number of training epochs, ISKD
outperforms the large-epoch baseline and the state-of-the-art
self KD method Tf-KDself [2] in most cases. The fact that
E7 outperforms E9 is also an ablation study supporting that



Fig. 2: The teacher-student accuracy relation on the simplex [14]
and complex [15] datasets using ResNet-18 [23]. The gray lines are
obtained from linear regression, and the line equation and Pearson’s
correlation coefficient R are marked in the legend. Given the base-
line performance in E1 of Table 1, the shaded blue areas are the
areas where the teacher model performs worse than the baseline but
the student model outperforms the baseline.

self KD is better done iteratively than just once.
Since Table 1 covers diverse task domains, including

pothole, generic, fine-grained, and medical imaging classifi-
cation, our results support that ISKD can serve as a general-
purpose performance booster. In addition, we obtain the
results in Table 1 by directly using the α values chosen for
pothole classification without tuning the α values for each
dataset, which supports that the α values we use are transfer-
able across different datasets. We also compare the accuracy
of ISKD (backbone: ResNet-18 [23]) with the prior methods
which use the backbones with more parameters in Table 2,
where ISKD performs on par or even outperforms the listed
methods which use more parameters. This finding supports
that ISKD is more parameter efficient than the listed methods.

Furthermore, we analyze what is the worst performing
teacher model in self KD which can still make the student
model outperform the baseline with no KD (E1 in Table 1).
To gain more insight, we design the following experiment
to find the accuracy relation between the teacher and student
models. Given that E1 in Table 1 is trained for 50 epochs, we
use the 50 models saved after each epoch is completed as the
teacher models. We repeat E2 in Table 1 for 50 times (each
time with one of the 50 teacher models produced during E1),
and record the teacher-student accuracy relation. We perform
this experiment on the simplex [14] and complex [15] datasets
using ResNet-18 [23] as the network architectures.

We show the result of teacher-student accuracy relation in
Fig. 2. Most of the data points are above the red line (x = y),
which supports that performing self KD can make the student
model outperform the teacher model. Fig. 2 suggests that the
accuracy of the teacher and student models has strong positive
correlation (the slopes of the gray lines are positive and the
R2 ≥ 0.5), which again supports the assumption that using
better teacher models in KD generally results in better student
models. We find that the number of data points falling into
the shaded blue areas is not negligible, which serves as statis-
tically more significant evidence than [2] supporting that even

Fig. 3: The accuracy of the student model using ResNet-18 under
different α values when we repeat E2, E3, and E4 on the CUB-
200 dataset. The triangular red points are the accuracy we report
in Table 1 by using the α values chosen for pothole classification.
Shown as the red lines, the baseline for Ei is the accuracy of the
student model in Ei−1 reported in Table 1.

if the teacher model is worse than the baseline, it is still likely
that the student model can outperform the baseline after KD.

Another experiment which is also not presented in the
paper of Yuan et al. [2] is the impact of the α values on the
accuracy. To study this, we use the ResNet-18 [23] as the
network architecture of ISKD and the same random seed 1,
repeat E2, E3, and E4 corresponding to the CUB-200 [19]
dataset with different α values, and report the student’s accu-
racy in Fig. 3, where the red lines mark the baseline accu-
racy (i.e., the student’s accuracy in the previous KD iteration
reported in Table 1). For each sub-figure of Fig. 3, the teacher
model is fixed as the corresponding one used in Table 1. The
triangular points in Fig. 3 are the accuracy reported in Table 1
using the α values chosen for pothole classification, so their
corresponding accuracy is not necessarily the best. Fig. 3
shows that the student model outperforms the baseline in each
KD iteration of ISKD under a wide range of α values, which
supports that ISKD is flexible in terms of parameter selection.

5. CONCLUSION

We propose iterative self knowledge distillation (ISKD) in
self KD to improve pothole classification accuracy when
training lightweight models given a fixed amount of training
epochs. Experimenting on three pothole classification datasets
and six other datasets associated with generic classification,
fine-grained classification, and medical imaging applica-
tion, we show that ISKD outperforms the state-of-the-art
self KD method Tf-KDself , for most cases, given the same
number of training epochs and that ISKD has wide appli-
cability to various tasks without the need of a given teacher
model and extra trainable parameters. In addition, we show
more evidence supporting that the performance of the student
model can benefit from self KD even when the pre-trained
student model (which serves as the teacher model) is only
moderately trained. Our study on the impact of the weight
balancing the objectives of ISKD shows that even if we
choose different weights deviating from the weights we
initially use within a reasonable range, the student model
can still improve over KD iterations, which supports that
ISKD is flexible in terms of parameter selection.
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