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Abstract
Standard contrastive learning approaches usually require a large number of negatives for ef-
fective unsupervised learning and often have slow convergence. We suspect this is due to the
sub-optimal selection of negatives that offer the most contrastiveness to the positives. To this
end, we present max-margin contrastive learning (MMCL), inspired by support vector ma-
chines (SVM). We select useful negatives as the sparse support vectors via solving a quadratic
optimization problem, and contrastiveness is enforced by maximizing the decision margin. As
SVM optimization can be computationally demanding, especially in an end-to-end learning
setting, we present simplifications to the problem formulation. We provide experiments using
our approach on standard vision benchmark datasets, demonstrating better performances in
unsupervised representation learning over state of the art, while having better convergence
properties.
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Abstract

Standard contrastive learning approaches usually require a
large number of negatives for effective unsupervised learning
and often have slow convergence. We suspect this behavior
is due to the suboptimal selection of negatives used for of-
fering contrast to the positives. We counter this difficulty by
taking inspiration from support vector machines (SVMs) to
present max-margin contrastive learning (MMCL). Our ap-
proach selects negatives as the sparse support vectors obtained
via a quadratic optimization problem, and contrastiveness is
enforced by maximizing the decision margin. As SVM opti-
mization can be computationally demanding, especially in an
end-to-end setting, we present simplifications that alleviate the
computational burden. We validate our approach on standard
vision benchmark datasets, demonstrating better performance
in unsupervised representation learning over the state-of-the-
art, while having better empirical convergence properties.

Introduction
Learning effective data representations is crucial to the suc-
cess of any machine learning model. Recent years have seen a
surge in algorithms for unsupervised representation learning
that leverages the vast amounts of unlabeled data (Chen et al.
2020a; Gidaris, Singh, and Komodakis 2018; Lee et al. 2017;
Zhang et al. 2019; Zhan et al. 2020). In such algorithms, an
auxiliary learning objective is typically designed to produce
generalizable representations that capture some higher-order
property of the data. The assumption is that such properties
could potentially be useful in (supervised) downstream tasks,
which may have fewer annotated training samples. For exam-
ple, in (Noroozi and Favaro 2016; Santa Cruz et al. 2018),
the pre-text task is to solve patch jigsaw puzzles, so that the
representations learned could potentially capture the natural
semantic structure of images. Other popular auxiliary objec-
tives include video frame prediction (Oord, Li, and Vinyals
2018), image coloring (Zhang, Isola, and Efros 2016), and
deep clustering (Caron et al. 2018), to name a few.

Among the auxiliary objectives typically used for repre-
sentation learning, one that has gained significant momentum
recently is that of contrastive learning, which is a variant of
the standard noise-constrastive estimation (NCE) (Gutmann
and Hyvärinen 2010) procedure. In NCE, the goal is to learn
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Figure 1: An illustration of our Max-Margin Contrastive
Learning framework. For every positive example, we com-
pute a weighted subset of (hard) negatives via computing a
discriminative hyperplane by solving an SVM objective. This
hyperplane is then used in learning to maximize the similarity
between the representations of the positives and minimize
the similarity between the representations of the positives
against the negatives. The negatives in the figure are actual
ones selected by our scheme for the respective positive.

data distributions by classifying the unlabeled data against
random noise. However, recently developed contrastive learn-
ing methods learn representations by designing objectives
that capture data invariances. Specifically, instead of using
random noise as in NCE, these methods transform data sam-
ples to sets of samples, each set consisting of transformed
variants of a sample, and the auxiliary task is to classify one
set (positives) against the rest (negatives). Surprisingly, even
by using simple data transformations, such as color jittering,
image cropping, or rotations, these methods are able to to
learn superior and generalizable representations, sometimes
even outperforming supervised learning algorithms in down-
stream tasks (e.g., CMC (Tian, Krishnan, and Isola 2020),
MoCo (Chen et al. 2020c; He et al. 2020), SimCLR (Chen
et al. 2020a), and BYOL (Grill et al. 2020)).

Typically, contrastive learning methods use the NCE-loss
for the learning objective, which is usually a logistic classifier
separating the positives from the negatives. However, as is
often found in NCE algorithms, the negatives should be close
in distribution to the positives for the learned representations



to be useful – a criteria that often demands a large number
of negatives in practice (e.g., 16K in SimCLR (Chen et al.
2020a)). Further, standard contrastive learning approaches
make the implicit assumption that the positives and negatives
belong to distinct classes in the downstream task (Arora et al.
2019). This requirement is hard to enforce in an unsupervised
training regime and defying this assumption may hurt the
downstream performance due to beneficial discriminative
cues being ignored.

In this paper, we explore alternative formulations for con-
trastive learning beyond the standard logistic classifier. Rather
than contrasting the positive samples against all the negatives
in a batch, our key insight is to design an objective that:
(i) selects a suitable subset of negatives to be contrasted
against, and (ii) provides a means to relax the effect of false
negatives on the learned representations. Fig. 1 presents an
overview of the idea. A natural objective in this regard is
the classical support vector machine (SVM), that produces a
discriminative hyperplane with the maximum margin separat-
ing the positives from the negatives. Inspired by SVMs, we
propose a novel objective, max-margin contrastive learning
(MMCL), to learn data representations that maximizes the
SVM decision margin. MMCL brings in several benefits to
representation learning. For example, the kernel trick allows
for the use of rich non-linear embeddings that could capture
desirable data similarities. Further, the decision margin is
directly related to the support vectors, which form a weighted
data subset. The ability to use slack variables within the SVM
formulation allows for a natural control of the influence of
false negatives on the representation learning setup.

A straightforward use of the MMCL objective could be
practically challenging. This is because, SVMs involve solv-
ing a constrained quadratic optimization problem, solving
which exactly could dramatically increase the training time
when used within standard deep learning models. To this
end, inspired by coordinate descent algorithms, we propose a
novel reformulation of the SVM objective using the assump-
tions typically used in contrastive learning setups. Specifi-
cally, we propose to use a single positive data sample to train
the SVM against the negatives – a situation for which efficient
approximate solutions can be obtained for the discriminative
hyperplane. Once the hyperplane is obtained, we propose to
use it for representation learning. To this end, we formulate
an objective that uses this learned hyperplane to maximize
the classification margin between the remaining positives and
the negatives. To demonstrate the empirical benefits of our
approach to unsupervised learning, we replace the logistic
classifier from prior contrastive learning algorithms with the
proposed MMCL objectives. We present experiments on stan-
dard benchmark datasets; our results reveal that, using our
max-margin objective leads to faster convergence and needs
far fewer negatives than prior approaches and produces repre-
sentations that are better generalizable to several downstream
tasks, including transfer learning for many-shot recognition,
few-shot recognition, and surface normal estimation.

Below, we summarize the key contributions of this work:

• We propose a novel contrastive learning formulation using
SVMs, dubbed max-margin contrastive learning.

• We present a novel simplification of the SVM objective
using the problem setup commonly used in contrastive
learning – this simplification allows deriving efficient
approximations for the decision hyperplane.

• We explore two approximate solvers for the SVM hyper-
plane: (i) using projected gradient descent and (ii) closed-
form using truncated least squares.

• We present experiments on standard computer vision
datasets such as ImageNet-1k, ImageNet-100, STL-10,
CIFAR-100, and UCF101, demonstrating superior perfor-
mances against the state of the art, while requiring only
smaller negative batches. Further, on a wide variety of
transfer learning tasks, our pre-trained model shows better
generalizability than competing approaches.

Related Works
While the key ideas in contrastive learning are classical
(Becker and Hinton 1992; Gutmann and Hyvärinen 2010;
Hadsell, Chopra, and LeCun 2006), it has recently become
very popular due to its applications in self-supervised learn-
ing. Arguably, objectives based on contrastive learning have
outperformed several hand-designed pre-text tasks (Doer-
sch, Gupta, and Efros 2015; Gidaris, Singh, and Komodakis
2018; Larsson, Maire, and Shakhnarovich 2016; Noroozi
and Favaro 2016; Zhang, Isola, and Efros 2016). Apart from
visual representation learning, the idea of contrastive learn-
ing is quickly proliferating into several other subdomains in
machine learning, including video understanding (Han, Xie,
and Zisserman 2020), graph representation learning (You
et al. 2020; Sun et al. 2020), natural language processing (Lo-
geswaran and Lee 2018), and learning audio representations
(Saeed, Grangier, and Zeghidour 2021).

In contrastive predictive coding (Oord, Li, and Vinyals
2018), which is one of the first works to apply contrastive
learning for self-supervised learning, the noise-contrastive
loss was re-targeted for representation learning via the pre-
text task of future prediction in sequences. It is often empiri-
cally seen that the quality of the negatives to be contrasted
against has a strong influence on the effectiveness of the
representation learned. To this end, for visual representation
learning tasks, SimCLR (Chen et al. 2020a,b) proposed a
framework that uses a bank of augmentations to generate
positives and negatives. As the number of negatives play a
crucial role in NCE, many approaches also make use of a
memory bank (Chen et al. 2020c; He et al. 2020; Misra and
Maaten 2020; Zhuang, Zhai, and Yamins 2019) to enable
efficient bookkeeping of the large batches of negatives. Other
contrastive learning objectives include: clustering (Caron
et al. 2018, 2020; Li et al. 2020a), predicting the represen-
tations of augmented views (Grill et al. 2020), and learning
invariances (Tian, Krishnan, and Isola 2020; Xiao et al. 2020).
The lack of access to class labels in contrastive learning can
lead to incorrect learning; e.g., due to false negatives. Recent
works have attempted to tackle this issue via avoiding sam-
pling bias (Chuang et al. 2020) and adjusting the contrastive
loss for the impact of false negatives (Robinson et al. 2021;
Huynh et al. 2022; Kalantidis et al. 2020; Iscen et al. 2018).
In comparison to these methods that make adjustments to the



NCE loss, we propose an alternative way to view contrastive
learning through the lens of max-margin methods using sup-
port vector machines; allowing for an amalgamation of the
rich literature of SVMs with modern deep unsupervised rep-
resentation learning approaches.

A key idea in our setup is to view the support vectors as
hard negatives for contrastive learning via maximizing the de-
cision margin. Conceptually, this idea is reminiscent of hard-
negative mining used in classical supervised learning setups,
such as deformable parts models (Felzenszwalb et al. 2009),
triplet-based losses (Schroff, Kalenichenko, and Philbin
2015), and stochastic negative mining approaches (Reddi et al.
2019). However, different to these methods, we explore self-
supervised losses in this paper, which require novel reformu-
lations of max-margin objectives for making the setup compu-
tationally tractable. Our proposed approximations to MMCL
result in a one-point-against-all SVM classifier, which is
similar to exemplar-SVMs (Malisiewicz, Gupta, and Efros
2011); however rather than learning a bank of classifiers for
specific tasks, our objective is to learn embeddings that are
generalizable and useful for other tasks.

Preliminaries
In this section, we review our notation, and visit the principles
of contrastive learning, support vector machines, and their
potential connections, that will set the stage for presenting
our approach. We use lower-case for single entities (such as
x), and upper-case (e.g., X) for matrices (synonymous with
a collection of entities). We use lower-case bold-font (e.g.,
z) for vectors. For a function, say f , defined on vectors, we
sometimes overload it as f(X), by which we mean applying
f to each entity in X .

Contrastive Learning

Suppose D = {xi}Ni=1 is a given unlabeled dataset, where
each xi ∈ Rd. Let T : Rd → Rd denote a random cas-
cade of data transformation maps (e.g., random image crops
and rotations). Standard contrastive learning methods use
T to augment D, thereby producing sets of data points
D′ = {X1, X2, · · · , XN}, where each X is a (potentially
infinite) set of transformed data samples obtained via ran-
domly applying T on each x, i.e., X = {T (x)}. The task
of representation learning then amounts to minimizing an
objective that maximizes the similarity between points from
within a set against data points from other sets – essentially
learning the data manifold in some representation space, with
the hope that such representations are useful in subsequent
tasks.

Suppose fθ : Rd → Rd′ denote a function mapping a
data point x to its representation, i.e., fθ(x). Then, inspired
by noise-contrastive estimation (Gutmann and Hyvärinen
2010), contrastive learning methods learn the function fθ via
minimizing the empirical logistic loss (with respect to θ):

−
∑
X∈B

log
g(fθ(x),fθ(x

+))

g(fθ(x),fθ(x+)) +
∑
x−∈B\X g(fθ(x),fθ(x−))

,

(1)

+ MMCL objective

SVM with 
Kernel

Figure 2: An illustration of our MMCL approach. Given a
positive point (+) and a set of negatives Y −, MMCL learns
the parameters θ of a backbone network fθ via extracting
features z+ and Z− using a view x+ of the positive + and
the negatives Y −, respectively. These features are used in an
SVM with an RKHS kernel K to find a decision hyperplane
parameterized by αx and αY . Next, MMCL uses the remain-
ing positive views z maximizing the similarity between z
and z+, while minimizing the similarity between z and Z−,
thereby achieving contrastiveness. This ensuing MMCL loss
is then backpropagated through the pipeline, thereby learning
θ, which is the goal.

over batches B ⊂ D′ with positives {x, x+} ⊂ X ∈ B, neg-
atives x− ∈ X ′, where X ′ ∈ B\X , and using a suitable sim-
ilarity function g (e.g., a learnable projection-head followed
by an exponentiated-cosine distance as in SimCLR (Chen
et al. 2020a)). As alluded to earlier, the contrastive learning
loss in (1) poses several challenges from a representation
learning perspective. For example, in the absence of any
form of supervision, this learning objective needs to derive
the training signals from the (thus far learned) representations
of the negative pairs, which could be very noisy; thereby re-
quiring very large negative batches. However, having such
large batches increases the chances of class collisions, i.e.,
positives and negatives belonging to the same class in a sub-
sequent downstream task; such collisions have been shown
to be detrimental (Arora et al. 2019). As alluded to earlier,
unlike approaches that attempt to circumvent this issue, such
as (Huynh et al. 2022; Robinson et al. 2021; Chuang et al.
2020), we seek to explore alternative contrastive learning
objectives that are less sensitive to issues discussed above
using formulations that maximize the discriminative margin
between the positives and the negatives.

Note that instead of the InfoNCE loss, as in (1), for con-
trasting the positives from the negatives, an alternative is
perhaps the hinge loss (Arora et al. 2019; Chen et al. 2020a),
that minimizes (with respect to θ):

∑
x,x+,x−

[
t− sim(fθ(x),fθ(x

+)) + sim(fθ(x),fθ(x
−))
]
+
,

where [ . ]+ = max(0, .) denotes the hinge loss and t is a
margin hyperparameter that must be tuned manually. Our
proposed scheme avoids the need for this hyperparameter as
the margin is an objective of the optimization.



Support Vector Machines
Given two sets X+ and X− with labels yx = 1, if x ∈ X+

and −1 otherwise, the soft-margin SVM solves the objective:

min
w,b,ξ≥0

1

2
‖w‖2 + C

∑
x

ξx

s. t. yx(w>x+ b) ≥ 1− ξx,∀x ∈ X+ ∪X−, (2)

wherew denotes the discriminative hyperplane separating the
two classes, b is a bias, and ξx is a per-data-point non-negative
slack with a penalty C that balances between misclassifica-
tion of hard points and maximizing the decision margin. It
is well-known that 1/ ‖w‖ captures the margin between the
positives and the negatives, and thus the objective in (2) at-
tempts to find the hyperplane w that maximizes this margin.
The Lagrangian dual of (2) is given by:

min
0≤α≤C,α>y=0

1
2α
>K(X+, X−)α−α>1, (3)

where K ∈ S
|X+∪X−|
++ denotes a symmetric positive defi-

nite kernel matrix, the ij-th element of which is given by:
Kij = yxiyxjK(xi, xj) for some suitable RKHS kernel K
and xi, xj ∈ X+ ∪X−. As the formulations in (2) and (3)
are convex, a solution α to (3) provides the exact decision
hyperplane for (2) and is given by:

w(.) =
∑

x∈X+∪X−
αxyxK(x, .). (4)

As the bias term b in (2) is not essential for the details to
follow, we will not need the exact form of this term and will
use w(.) to refer to the decision hyperplane.

Proposed Method
In this section, we connect the approaches described above
deriving our MMCL formulation. An overview of our ap-
proach is illustrated in Figure 2.

Contrastive Learning Meets SVMs
The advantages of SVM listed in the last section may seem
worthwhile from a contrastive representation learning per-
spective, and suggest directly using SVM replacing the logis-
tic classifier in (1). Formally, using a soft-constraint variant
of (2) with a margin t, the optimization problem in (1) can
be re-written as:

min
θ

∑
B⊂D′

∑
X∈B

min
wX

(
1
2 ‖wX‖

2
+ [t− 〈wX ,fθ(X)〉]+ +

∑
X−∈B\X

[
t+ 〈wX ,fθ(X−)〉

]
+

)
, (5)

where X,X− denote the sets of positives and negatives re-
spectively, and wX captures a max-margin hyperplane sepa-
rating them.1 The inner optimization over each wX is what
translates into training an SVM. We augment this inner op-
timization problem in two ways: (i) by including slack vari-
ables to model a soft-margin (as in (2)), which results in a

1Note that fθ(Λ) we mean applying fθ to each item in set Λ.

hyperparameter C; and (ii) by permitting an additional non-
linear feature map φ so that we may use φ(fθ) (as in (3))
in (5). Using these changes, a contrastive learning formula-
tion via maximizing the SVM classification margin may be
derived (via rewriting (5)) as:

min
θ
L(θ) :=

∑
B⊂D′

∑
X∈B

αX
∗>K (fθ(X),fθ(B\X))α∗X ,

(6)

s.t. α∗X = arg min
0≤α≤C,
α>y=0

1
2α
>K(fθ(X),fθ(B\X))α−α>1,

(7)

where K(Z+, Z−) =

[
K(Z+, Z+),−K(Z+, Z−)
−K(Z−, Z+),K(Z−, Z−)

]
is

a kernel matrix induced by the RKHS kernel K(z, z′) =
〈φ(z), φ(z′)〉. While SVMs have been widely studied in
the machine learning literature (Smola and Schölkopf 1998;
Cortes and Vapnik 1995), our idea of linking the fields of
SVMs and Contrastive Learning has not been explored be-
fore.

In (7), we use the so-far trained fθ to produceα∗X defining
the decision margin, which is then used in (6) to update θ
while striving to maximize the margin; doing so, pushes the
support vectors from the positive and negative classes away
from each other. Unfortunately, despite its intuitive simplicity,
the formulation (6)-(7) is impractical to use directly. Indeed,
it is a challenging bilevel optimization problem (Gould et al.
2016; Amos and Kolter 2017; Wang et al. 2018), and if we
use an iterative SVM solver for the lower problem (7) within
a deep learning framework, it can incur significant slowdown.

Remarks. There are several interesting aspects of the
SVM solution that are perhaps beneficial from a contrastive
learning perspective: (i) the dual solutionα is usually sparse2

and its active dimensions can be used to identify data points
that are the support vectors defining the decision margin, (ii)
the slack regularization controls the misclassification rate,
and allows tuning the performance against the class colli-
sions, similar to (Chuang et al. 2020), (iii) the dimensions of
αX are equal toC for misclassified points, which are perhaps
hard or false negatives, and thus our formulation allows for
identifying these points and mitigate their effects, and (iv) the
use of the kernel function provides rich RKHS similarities at
our disposal allowing to use, for example, novel structures
within the learned representations (e.g., trees, graphs, etc.).

Max-Margin Contrastive Learning
The primary method for solving (6) is SGD, which computes
stochastic gradients over the batches B ⊂ D′ via backpropa-
gation while iteratively updating θ. However, as has been pre-
viously observed for bilevel optimization (Amos and Kolter
2017; Gould et al. 2016), even obtaining a single stochas-
tic gradient requires solving the lower problem (7) exactly,
which is impractical. Our key idea to overcome this chal-
lenge is to introduce a “sample splitting” trick inspired by

2When the K is chosen appropriately.



coordinate descent, which helps to reduce the computational
burden. Subsequently, we make additional approximations
that lead to our final training procedure.

Without loss of generality, assume that X consists of the
pair (x, x+); the same idea applies if we permit multiple
such positive pairs in X . Instead of solving (7) using all the
“coordinates”, we split the pair (x, x+) into two parts: (i) x+,
which is used to perform coordinate descent on (7); and (ii) x,
which is used to perform the SGD step for (6). This splitting
aligns well with contrastive learning, where often one uses
only a pair of positives that must be contrasted against the
negatives.

The following proposition states how we perform part (i)
of our split to estimate α∗X , which we will henceforth denote
as αx to indicate its dependence on the split sample.
Proposition 1. Let (x+, Y −) be a tuple consisting of a pos-
itive point x+ ∈ Rd and a set of n negative points Y − ∈
Rd×n. Further, let z+ = fθ(x

+) and Z− = fθ(Y
−). Sup-

pose kxx,kxY , and KY Y denote K(z+, z+), K(z+,Z−),
and K(Z−,Z−), respectively. Consider the SVM decision
function for a new point z given by

w(z) = α>x
(
K(z+, z)1−K(Z−, z)

)
. (8)

Let ∆ = 11>+KY Y −kxY 1>−1k>xY , and let P[0,C] denote
projection onto the interval [0, C]. By suitably selecting αx
in (8) we then obtain the following approximate max-margin
solutions:

(i) (block) coordinate minimization αcm
x =

arg min0≤α≤C g(α) := 1
2α
>∆α− 2α>1,

(ii) m-step projected gradient (MMCLPGD): αpg
x :=

αm = P[0,C](αm−1 − η(∆αm−1 − 21)), for some
initial guess α0 ∈ [0, C]n, η > 0 a step-size, and

(iii) greedy truncated least-squares (MMCLINV): αls
x =

P[0,C](2∆−11).

The various solutions satisfy g(∆−11) ≤ g(αcm
x ) ≤

min{g(αpg
x , g(αls

x)}. Moreover, g(αpg
x ) − g(αcm

x ) =

O
(

exp
(
−m λmin(∆)

λmax(∆)

)
(g(α0)− g(αcm

x ))
)

.

Proof. Choice (i) is obvious. To obtain (ii) and (iii), consider
the following dual SVM formulation:

min
0≤αY ≤C

1

2

[
αx
αY

]> [
kxx −k>xY
−kxY KY Y

] [
αx
αY

]
−
[
αx +α>Y 1

]
,

where αx = α>Y 1. Substituting for αx, we obtain3:

min
0≤αY ≤C

g(αY ) = 1
2α
>
Y ∆αY − 2α>Y 1.

Setting ∇g(αY ) = 0, we obtain the unconstrained least-
squares solution 2∆−11, which we can greedily truncate to
lie in the interval [0, C] to obtain (iii). Solution (ii) runs m
iterations of projected gradient descent, and hence it also sat-
isfies a linear convergence rate, which rapidly brings it within
the optimal solution αcm

x at the well-known rate depending
on the condition number λmax(∆)/λmin(∆).

3Note that αx is the scalar Lagrangian dual associated with the
data point z while αx is the vector of all dual variables associated
with the batch B when considering x as the positive.

Algorithm 1: Pseudocode for MMCL

Input: Dataset D, batch size N , encoder fθ, slack-
penalty C, kernel K, augmentation map T
for minibatch B = {xk}Nk=1 ∼ D do
loss := 0
for k = 1, . . . , N do

draw t1∼T , t2∼T
# get embeddings for positives and negatives
z+ = fθ(t1(xk)), z = fθ(t2(xk))
Z− = fθ(t1(B \ xk) ∪ t2(B \ xk))
# calculate kernel similarities
kxY = K(z+,Z−),KY Y = K(Z−,Z−)
# Solve SVM
∆ = 11> +KY Y − kxY 1> − 1k>xY
αx = svm solver(∆, C) {using PGD or INV}
# calculate the loss
loss += α>x (K(Z−, z)−K(z+, z)1)

end for
update the model to minimize the loss

end for

Using Prop. 1, we can reformulate the contrastive learning
objective in (6) as maximizing the margin in classifying the
other part of the split, namely the positive point x, correctly
against the negatives. Here, we introduce an additional sim-
plification by rewriting the margin in terms of the separation
between x and Y −, using the decision hyperplane (8). Let
αx denote the solution obtained from Proposition 1 using
the positive point x. Then, we rewrite (6) into our proposed
max-margin contrastive learning objective as:

min
θ

∑
(x,x+)∼B∈D′

Y −=B\(x,x+)

αTx
[
K
(
fθ(Y

−),fθ(x)
)
−1K

(
fθ(x

+),fθ(x)
) ]
.

(9)
When optimizing for θ, (9) seeks a representation map fθ that
improves the similarity between the positives (x, x+) and the
dissimilarity between x and all the points in Y −, achieving
a similar effect as in standard contrastive learning objective
in (1), but with the advantage of choosing kernels, selecting
the support vectors that matter to the decision margin, as well
as finding points that are perhaps hard negatives (those at the
upper-bound of the box-constraints), all in one formulation.
Note that, using the exact solver (i) in Prop. 1 turned out to
be prohibitively expensive in standard contrastive learning
pipelines and thus we do not use that variant in our experi-
ments. In Algorithm 1, we provide a pseudocode highlighting
the key steps in our approach.

Experiments and Results
In this section, we systematically study the various compo-
nents in MMCL, as well as compare performances of MMCL-
learned representations for their quality via linear evaluation,
and their generalizability on transfer learning tasks.
Visual Representation Learning Experiments. We base
our experimental setup on the popular SimCLR (Chen et al.
2020a) baseline, which is widely used, especially to evaluate



Many-Shot classification Few-Shot classification Surface Normal Estimation
Method Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food CropDiseases EuroSat NYUv2 (Angular error)

Supervised 83.5 91.01 82.61 96.39 82.91 73.30 95.50 84.60 93.09 ± 0.43 88.36 ± 0.44 27.91

InsDis (Wu et al. 2018) 73.38 72.04 61.56 93.32 68.26 63.99 89.51 76.78 91.95 ± 0.44 86.52 ± 0.51 27.35
MoCo (He et al. 2020) 75.61 74.95 65.02 93.89 71.52 65.37 89.45 77.28 92.04 ± 0.43 86.55 ± 0.51 28.63
PCL-v1 (Li et al. 2020a) 74.97 87.62 73.24 96.35 79.62 70 90.83 78.3 80.74 ± 0.57 75.19 ± 0.67 33.58
PCL-v2 (Li et al. 2020a) 79.37 88.04 71.68 96.5 80.26 71.76 92.95 80.34 92.58 ± 0.44 87.94 ± 0.4 28.67
MoCo-v2 (Chen et al. 2020c)† 82.46 82.31 85.1 96.06 72.99 69.41 95.62 77.19 90.01 ± 0.48 88.06 ± 0.4 24.49
MoCHI (Kalantidis et al. 2020)† 83.03 84.45 85.49 95.68 77.07 70.85 94.8 78.9 91.93 ± 0.46 88.26 ± 0.4 31.75

Ours 85.38 87.82 89.23 96.24 82.09 73.51 95.24 82.39 93.1 ± 0.45 88.75 ± 0.4 24.69

Table 1: Transfer learning results. We transfer an ImageNet-pre-trained model (using MMCL) on a range of downstream tasks
and datasets. We compare with models pre-trained using a similar batch size and epochs. Results on competing approaches are
taken from (Ericsson, Gouk, and Hospedales 2021). †Models evaluated using publicly available checkpoints.

the effectiveness of the “learning loss” against other factors
in a self-supervised algorithm (e.g., data augmentations, use
of queues, multiple crops). We use a ResNet50 backbone, fol-
lowed by a two-layer MLP as the projection-head, followed
by unit normalization. We pretrain our models on ImageNet-
1K (Deng et al. 2009) using the LARS optimizer (You, Git-
man, and Ginsburg 2018) with an initial learning rate of
1.2 for 100 epochs. We also present results on ImageNet-
100 (Tian, Krishnan, and Isola 2020) (a subset of ImageNet-
1K) and on smaller datasets such as STL-10 (Coates, Ng, and
Lee 2011) and CIFAR-100 (Krizhevsky, Hinton et al. 2009),
especially for our ablation studies. We pre-train on ImageNet-
100 for 200 epochs in our studies, while pre-training for 400
epochs on the smaller datasets. We use the Adam optimizer
with a learning rate of 1e-3 as in (Chuang et al. 2020; Robin-
son et al. 2021). Unless otherwise stated, we use a batch-size
of 256 for all ImageNet-1K, CIFAR-100, and STL-10 experi-
ments and 128 for ImageNet-100 experiments. In addition,
we also present results on video representation learning using
an S3D backbone (Xie et al. 2018) on the UCF-101 (Soomro,
Zamir, and Shah 2012) dataset, pre-trained using MMCL for
300 epochs.
Hyperparameters: We mainly use the RBF kernel for the
SVM. For all CIFAR-100 and STL-10 experiments, we start
with a kernel bandwidth σ2 = 0.02 and increase it by a factor
of 10 at 75 and 125 epochs. We used σ2 = 5 for ImageNet
experiments. We set the SVM slack regularization C to 100.
For the projected gradient descent optimizer for MMCL, we
use a maximum of 1000 steps. Additional details are provided
in the Appendix.

Practical Considerations: Here, we note a few important
but subtle technicalities that need to be addressed when imple-
menting MMCL. Specifically, we found that backpropagating
the gradients through αY is prohibitively expensive when
using PGD iterations. On the other hand, for the least-squares
variant, gradients through αY was found to be detrimental.
This is perhaps unsurprising, because note that, αY term
includes the term ∆−1. To improve the decision margin, one
needs to make ∆ an identity matrix, so that the off-diagonal
elements go to zero during optimization, which suggests that
the training gradients should reduce the magnitude of these
terms. However, on the other hand, asαY uses ∆−1 one could
also maximize the margin by making ∆ ill-conditioned, via
making the off-diagonal elements going to one. Such a tug-
of-war between the gradients can essentially destabilize the

training. Thus, we found that avoiding any backpropagation
through α is essential for MMCL to learn to produce repre-
sentations. We also found that using a small regularization
∆ + βI (β = 0.1) is necessary for the learning to begin. This
is because, initially the representations can be nearly zero,
and thus the kernel may be poorly conditioned.

Experiments on Transfer Learning
Recently, models pretrained using various self-supervised
learning approaches have shown impressive performance
when transferred to various downstream tasks. In this sec-
tion, we evaluate MMCL-ImageNet pretrained models on
such downstream tasks. For these experiments, we follow
the experimental protocol provided in (Ericsson, Gouk, and
Hospedales 2021). We evaluate the models in the fine-tuning
setting and use the benchmarking scripts provided in (Erics-
son, Gouk, and Hospedales 2021) without any modifications.

First, we transfer the MMCL-pretrained backbone model
to a collection of many-shot classification datasets used in (Er-
icsson, Gouk, and Hospedales 2021), namely FGVC Aircraft,
Caltech-101, Stanford Cars, CIFAR-10, CIFAR-100, DTD,
Oxford Flowers, and Food-101. The setup involves using the
pretrained model as the initial checkpoint and attaching a task
specific head to the backbone model. The entire network is
then finetuned for the downstream task. These datasets vary
widely in content and texture compared to ImageNet images.
Further, the benchmark datasets include a significant diversity
in the number of training images (2K–50K) and the number
of classes (10–196). For a fair comparison, we only include
results for models which are trained for a comparable number
of epochs and batch sizes. For few-shot experiments, we fol-
low the setup described in (Ericsson, Gouk, and Hospedales
2021) for few-shot learning on the Cross-Domain Few-Shot
Learning (CD-FSL) benchmark (Guo et al. 2020). We evalu-
ate on Crop-Diseases (Mohanty, Hughes, and Salathé 2016),
EuroSAT (Helber et al. 2019) datasets for 5-way 20-shot
transfer. Finally, we evaluate performance of our model for
the dense prediction task of surface normal estimation on
NYUv2 (Silberman et al. 2012) and report the median angu-
lar error.

In Table 1, we provide results on the transfer learning ex-
periments. We see that MMCL consistently outperforms the
competing self-supervised learning approaches on a wide
variety of transfer tasks and across all datasets. Further,
MMCL also outperforms the supervised counterpart on sev-



eral datasets. These results show that MMCL learns high-
quality generalizable features.

Experiments on Linear Evaluation
For these experiments, we freeze the weights of the back-
bone (ResNet-50), and attach a linear layer as in (Chen et al.
2020a), which is trained using the class labels available with
the dataset. We train this linear layer for 100 epochs. Tables 2
and 3 show our results. We see that MMCL-pretrained model
outperforms SimCLR by 6.3% on ImageNet-1K using the
same number of negatives. We also compare with the recent
memory queue-based methods such as MoCo-v2 (Chen et al.
2020c) and MoCHI (Kalantidis et al. 2020), demonstrating
competitive performances while using far fewer negatives
(510 vs 65536). We also establish a new state of the art on
ImageNet-100 outperforming MoCHI by 1.7% using only
510 negatives (0.008x) and without a memory bank.

Variant Negative Source Negatives top-1
MoCo Memory Queue 16000 75.9
CMC Memory Queue 16000 75.7
MoCo-v2 Memory Queue 16000 78.0
MoCHI Memory Queue 16000 79.0

Ours Batch 254 80.7

Table 2: ImageNet-100 linear evaluation.

Variant Negative Source Negatives top-1
SimCLR Batch 254 57.5
SimCLR Batch 510 60.62

MoCo-v2 Memory Queue 65536 63.6
MoCHI Memory Queue 65536 63.9
Ours Batch 510 63.8

Table 3: ImageNet-1K linear evaluation.

Experiments on Graph Representation Learning
Recall that our MMCL formulation works by modifying the
contrastive learning loss function; and as a result, our ap-
proach is generically applicable to a variety of tasks. In this
section, we evaluate our approach on learning graph repre-
sentations using contrastive learning. We experiment with
five common graph benchmark datasets MUTAG (Kriege
and Mutzel 2012) – a dataset containing mutagenic com-
pounds, DD(Yanardag and Vishwanathan 2015)– a dataset of
biochemical molecules, REDDIT-BINARY, REDDIT-M5K,
and IMDB-BINARY (Yanardag and Vishwanathan 2015)
which are social network datasets. Our experiments use
GraphCL (You et al. 2020) – a projection head based the
contrastive learning framework derived from SimCLR while
incorporating graph augmentations.

For these experiments, we follow the training and evalu-
ation protocols described in (You et al. 2020). Specifically,

we use the standard ten-fold cross validation using an SVM
and report the average performances and their standard devi-
ations. We use the Adam optimizer for training these models.
Table 4 shows the results of using MMCL instead of the NCE
loss. We see that adding MMCL is comparable or better than
GraphCL for these datasets. On MUTAG, we obtain an ab-
solute improvement of 1.62% over GraphCL. These results
demonstrate the effectiveness of our approach in learning bet-
ter representations. Given that the only change from GraphCL
is the underlying objective, the results also show that our ap-
proach is general and can easily replace NCE based losses.

Experiments on Video Action Recognition
For this experiment, we use the S3D backbone model (Xie
et al. 2018) pre-trained using MMCL on RGB and optical
flow images from the UCF-101 dataset. We pre-train the
network for 300 epochs, followed by 100 epochs for lin-
ear evaluation on the task of action recognition. We report
the standard 10-crop test accuracy on split-1, as well as on
nearest neighbor retrieval. As seen in Table 5, MMCL out-
performs the baseline by 5.65% on RGB and 1.21% on flow
in linear evaluation and 12.5% and 5.74% on Retrieval@1,
demonstrating the generalizability of our approach to the
video domain.

Ablation studies and Analyses
For some of the ablation experiments, we use the smaller
datasets: STL-10 and CIFAR-100, and report the readout
accuracy calculated using k-NN with k=200, besides
standard evaluations.
Choice of Kernels: Unlike the traditional NCE objective,
our approach naturally allows for the use of kernels to better
capture the similarity between the data points. In Table 6,
we compare the readout accuracy on CIFAR100 and STL10
for various choices of popular kernels. As is clear from the
table, the RBF kernel performs better on both datasets. The
best kernel hyperparameters σ, γ were found empirically. We
choose the RBF kernel in our subsequent experiments.
Effect of slack: A key benefit of our MMCL formulation is

the possibility to use a slack that could potentially control the
impact of false or hard negatives. To evaluate this effect, we
changed the slack penalty C from 0.01 (i.e., low penalty for
misclassification) to C =∞. The results on readout accuracy
in Figure 3 shows that C plays a key role in achieving good
performance. For example, with C = 0.01, it appears that
the performance is consistently low for both the datasets,
perhaps because the hard negatives are under-weighted. We
also find that using a large C may not be beneficial always.
Effect of batch size: We use STL-10 dataset for this
experiment and train all models for 400 epochs. From
Table 7, we see that our model consistently outperforms the
SimCLR baseline, while performing much better than other
approaches. Indeed, we find that MMCL is about 1-3% better
than HCL, which reweights the hard negatives. We also find
that MMCL using a batch size of only 128 reaches close to
the performance of HCL (Robinson et al. 2021) trained using
a batch size of 256, suggesting that the proposed selection of
hard negatives via support vectors is beneficial.
Computational time against batch size: In Figure 4, we



Method DD MUTAG REDDIT-BIN REDDIT-M5K IMDB-BIN

GraphCL 78.62± 0.40 86.80± 1.34 89.53± 0.84 55.99± 0.28 71.14± 0.44

Ours 78.74± 0.30 88.42± 1.33 90.41± 0.60 56.18± 0.29 71.62± 0.28

Table 4: Comparison with GraphCL. We compare graph representation learning on five graph benchmark datasets. The compared
numbers are obtained from the original paper (You et al. 2020).

Figure 3: Effect of slack penalty C. Figure 4: Computations (ImageNet). Figure 5: Convergence (STL-10).

Loss Variant Modality Negatives top-1 R@1
MoCo-v2 RGB 2048 46.8 33.1
Ours RGB 254 52.45 45.6
MoCo-v2 Flow 2048 66.8 45.2
Ours Flow 254 68.01 50.94

Table 5: Video self-supervised learning on UCF-101 dataset.

Kernel (K(x, y)) CIFAR100 STL10

Linear: xT y 41.43% 74.82%
Tanh: tanh(−γxT y + η) 54.53% 80.5%
RBF: exp(−‖x−y‖

2

2σ2 ) 55.35 % 81.33%

Table 6: Effect of kernel choice.

show the time taken per iteration of MMCL variants against
those of prior methods, such as SimCLR, for an increasing
batch size. The computational cost of our inner optimization
for finding the support vectors is directly related to the batch
size. These experiments are done on ImageNet-1K with each
RTX3090 GPU holding 64 images. We see that the time
taken by MMCL is comparable to SimCLR.

Performances between MMCL Variants: In Table 8, we
compare performances between MMCL variants: PGD and
INV. We see that both variants outperform the SimCLR,
while the two MMCL variants show similar performance.
In Figure 5, we plot the convergence curves (readout accu-
racy) against training epochs. The plots clearly show that our

STL-10 64 128 256

SimCLR (Chen et al. 2020a) 74.21 77.18 80.15
DCL (Chuang et al. 2020) 76.72 81.09 84.26
HCL (Robinson et al. 2021) 80.39 83.98 87.44

Ours 80.11 86.8 88.3

Table 7: Accuracy (in %) against the batch size on STL-10.

variants converge to superior performances rapidly than the
baseline.
Visualization of Support Vectors: Next, we qualitatively

analyze if the support vectors found by MMCL are seman-
tically meaningful. To this end, we use an MMCL model
pre-trained on STL-10 dataset. We use a batch of examples
as input to the model, and choose one of the examples from
the batch as a positive and the remaining as negative. We
then solve the MMCL objective to find α, where α = 0 cor-
responds to non-support vectors, α = C are the misclassified
points, and α ∈ [0, C) are the support vectors. In Figure 6,
we show the positive point, and a set of samples from the
batch and the respective α values. The figure clearly shows
that object instances from a similar class gets a high α, sug-
gesting that they lie on or inside the margin and contribute
to the loss while batch samples that are irrelevant or easy
negatives are not support vectors and do not contribute to
the loss. For example, in Figure 6, the yellow bird is an easy
negative for a white truck query image and our approach does
not include that bird in the support set.

Longer Training: Our focus in the above experiments has
been in improving convergence and negative utilization with



Figure 6: Visualizing Support Vectors : We visualize a query image (green box), corresponding support vectors (blue boxes) and
non-support vectors (red boxes). We see that the support vectors are plausible hard negatives while in most cases the non-support
vectors are easy negatives. The α corresponding to the various negatives is shown at the bottom left of each image.

Variant CIFAR-100 STL-10

SimCLR 66 80.15

MMCLPGD 68.8 88.03
MMCLINV 68.81 88.3

Table 8: Performances on MMCL variants.

limited training. However, we see competitive performances
on longer training as well. Using a batch size of 256 (510
negatives), our model reaches 66.5% in 200 and 69.9% in
400 epochs, compared to 62% and 64.5% respectively with
same number of negatives in SimCLR(Chen et al. 2020a).
Remarkably, our 100 epochs pre-trained models transfer
better than PCL-v2’s (Li et al. 2020b) 200 epoch models on
most transfer learning tasks (see Table 1).

Conclusions
In this paper, we proposed a new contrastive learning
framework, dubbed Max-Margin Contrastive Learning, us-
ing which we learn powerful deep representations for self-
supervised learning by maximizing the decision margin sepa-
rating data pseudo-labelled as positives and negatives. Our
approach draws motivations from the classical support vec-
tor machines via modeling the selection of useful negatives
through support vectors. We obtain consistent improvements
over the baselines on a variety of downstream tasks.
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