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Abstract

Recent advances in generative adversarial networks (GANs)
have led to remarkable achievements in face image synthesis.
While methods that use style-based GANs can generate strik-
ingly photorealistic face images, it is often difficult to control
the characteristics of the generated faces in a meaningful and
disentangled way. Prior approaches aim to achieve such seman-
tic control and disentanglement within the latent space of a
previously trained GAN. In contrast, we propose a framework
that a priori models physical attributes of the face such as 3D
shape, albedo, pose, and lighting explicitly, thus providing dis-
entanglement by design. Our method, MOST-GAN, integrates
the expressive power and photorealism of style-based GANs
with the physical disentanglement and flexibility of nonlinear
3D morphable models, which we couple with a state-of-the-art
2D hair manipulation network. MOST-GAN achieves photore-
alistic manipulation of portrait images with fully disentangled
3D control over their physical attributes, enabling extreme ma-
nipulation of lighting, facial expression, and pose variations
up to full profile view.

Introduction
Changing certain attributes of a given portrait image, also
referred to as face image manipulation, is a popular research
topic that demonstrates the synergy between computer vision
and computer graphics. Face image manipulation has a wide
range of applications such as varying the illumination con-
ditions to make a portrait image more appealing (Sun et al.
2019), changing the identity of a person to anonymize an
image (Gafni, Wolf, and Taigman 2019), and exchanging the
hairstyle in a virtual try-out setting (Tan et al. 2020). Two key
factors make face image manipulation particularly challeng-
ing. First, the human visual system is sensitive to the smallest
artifacts in synthesized face images, and careful handling of
detail is therefore crucial to achieve photorealism. Second,
faces are 3D objects with rich variations in shape, expression,
and appearance, and inferring such 3D variations from 2D
images is inherently an ill-posed problem.

StyleGAN2 (Karras et al. 2020) is currently one of the
most advanced models for 2D image generation, reaching
unprecedented quality and photorealism in synthesizing face
images. At the same time, 3D face models, such as those
based on 3D Morphable Models (3DMMs) (Blanz and Vetter
1999; Egger et al. 2020), are commonly used in recovering 3D

faces from 2D images; however, these reconstruction meth-
ods often lack photorealism (Tewari et al. 2017; Deng et al.
2019b). There are a few recent approaches that aim to com-
bine the physically grounded modeling of 3DMMs with the
synthesizing capabilities of style-based GANs (Tewari et al.
2020a,b). However, these approaches build on a fixed gen-
erative model, StyleGAN, and apply the explicit 3D model
as a guiding tool to disentangle the learned StyleGAN latent
space. As a result, these models cannot escape the data mani-
fold characterized by a trained StyleGAN. Thus, while they
provide some amount of control, they lack the generaliza-
tion capabilities or physical disentanglement of 3D models,
which limits their ability to synthesize large variations in the
physical attributes of a face image.

In this work, we propose a nonlinear 3D face model that
explicitly separates shape, albedo, lighting, and pose, which
we refer to as physical attributes. Since we represent each
of these attributes explicitly, we are able to control each of
them independently, either within their learned latent spaces
or by direct manipulation of their 3D physical realization. By
processing each physical attribute separately, our novel real-
image manipulation method achieves full disentanglement of
these attributes. This is in sharp contrast to state-of-the-art
methods such as Deng et al. (2020); Tewari et al. (2020a);
Groueix et al. (2018), in which entanglement among differ-
ent attributes is inevitable as they are all represented in one
common latent space. Our model combines the photoreal-
ism of style-based GAN architectures with the generalization
capabilities of 3DMMs, which allows for extrapolating be-
yond the variations present in the datasets. As a result, our
method is able to manipulate faces to new poses, expressions,
and illumination conditions that are not well represented in
the training set. We also couple our 3D face model with a
state-of-the-art 2D hair model (Tan et al. 2020) to achieve a
complete portrait image manipulation pipeline, allowing for
joint face and hair processing. The contributions of this work
include:
• We present a novel face image manipulation method, 3D

MOrphable STyleGAN (MOST-GAN), which by design
achieves full disentanglement of shape, albedo, lighting,
pose, and hair.

• We successfully combine the generalization capabilities
of 3DMMs with the photorealism of style-based GANs,
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Figure 1: Fully disentangled, 3D controllable portrait image manipulation with MOST-GAN.

which enables us to synthesize novel 3D-grounded portrait
images with extreme variations that are rare or nonexistent
in the training data.

• We develop a 3D-guided 2D hair manipulation algorithm,
allowing for photorealistic and consistent hair styles and
appearances over pose variations up to full profile views.

Related Work
Generative adversarial networks. Generative adversarial
networks (GANs) (Goodfellow et al. 2014) have set new
standards in photorealistic image generation, with recent
style-based methods StyleGAN (Karras, Laine, and Aila
2019) and StyleGAN2 (Karras et al. 2020) generating faces
that are barely distinguishable from real photos. As conven-
tional GANs learn only 2D representations, several works
propose 3D GANs to achieve better understanding of the 3D
world, via voxel-based (Choy et al. 2016; Wu et al. 2016,
2017; Zhu et al. 2018; Nguyen-Phuoc et al. 2019; Xie et al.
2019; Nguyen-Phuoc et al. 2020; Lunz et al. 2020) or mesh-
based representations (Wang et al. 2018; Groueix et al. 2018;
Pan et al. 2019). Recently, neural implicit representations
have facilitated continuous 3D scene synthesis, including 3D
faces (Schwarz et al. 2020; Chan et al. 2020). These methods,
however, allow only limited control of facial pose. In another
line of work, the 3D scene information is extracted from
2D GANs such as StyleGAN2 to manipulate 2D images in
3D (Shen and Zhou 2020; Härkönen et al. 2020) and recover
explicit 3D shapes from images (Pan et al. 2020; Zhang et al.
2020). However, these methods do not employ strong shape
priors such as 3DMMs, limiting their 3D manipulation ca-
pabilities. In contrast, we start from a 3D architecture while
incorporating StyleGAN2 inside our network, which we train
without using real 3D data.

3D Morphable Models. There is a classic line of research
based on 3D Morphable Models (3DMMs) (Blanz and Vetter

1999; Egger et al. 2020) that aims for an object-specific 3D
model for faces based on high-quality 3D scans. Conven-
tional linear 3DMMs such as the Basel Face Model (Paysan
et al. 2009; Gerig et al. 2018) and FLAME (Li et al. 2017)
typically suffer from a lack of expressiveness, due to their
simplistic PCA-based texture and shape models and lim-
ited training data. To improve the representational power
of 3DMMs, Tran and Liu (2018, 2019); Tran, Liu, and Liu
(2019) proposed a nonlinear 3DMM that achieves better re-
construction quality than linear 3DMMs. Nonlinear models
based on deep neural networks have also been used for re-
alistic texture synthesis for various tasks (Saito et al. 2017;
Slossberg, Shamai, and Kimmel 2018; Nagano et al. 2018).
In this work, we build our face model as a nonlinear 3DMM
based on the FLAME topology. Although the linear bases
of FLAME do not yield photorealistic images, we use them
to generate synthetic images for pretraining and to regular-
ize our albedo reconstructions. We emphasize that although
our model builds on the FLAME template, it does not suffer
from FLAME’s limitations, because we learn an entirely new
nonlinear 3D face model with significantly more expressive
shape and albedo representations than FLAME. Furthermore,
in contrast to Tran and Liu (2018), we use separate encoders
for different face attributes to foster further disentanglement
among them, and employ StyleGAN2 for albedo synthesis,
which generates images with better photorealism.

3D Face Reconstruction. A key application of 3DMMs
is to reconstruct 3D faces from 2D images, with the objec-
tive to recover either face shape (Sanyal et al. 2019; Feng
et al. 2021) or both shape and albedo (Kim et al. 2018; Deng
et al. 2019b). Methods that recover both shape and albedo
have benefited from advancements in GANs, which enable
higher quality and more realistic texture synthesis (Sloss-
berg, Shamai, and Kimmel 2018; Gecer et al. 2019; Lattas
et al. 2020). Among these approaches, GANFIT (Gecer et al.
2019) and AvatarMe (Lattas et al. 2020) obtain face recon-
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Figure 2: Overview of our architecture. Our model starts with a set of encoders for shape, albedo, lighting, pose, and hairstyle given an input
image. To reconstruct the shape and albedo in their physical spaces, we use a convolutional generator for shape and a StyleGAN2 architecture
for albedo. The reconstructed face image is produced using a differentiable renderer. In addition to our face model, which is demarcated by
black connecting arrows, a hair generator reconstructs the hair in 2D. Reconstructed face and hair are finally fused and improved using a refiner
network. All components are trained end-to-end, except for hair where we deploy a pretrained MichiGAN model (Tan et al. 2020).

structions with high-frequency details, but they require large
3D datasets for training. Unlike those methods, ours does not
rely on high-quality 3D data for photorealism—instead, we
learn to generate detailed 3D face representations from 2D
face images. Several other methods also recover 3D faces
from only 2D images (Tewari et al. 2017; Deng et al. 2019b),
although their reconstructions cannot be used for manipulat-
ing faces due to the lack of photorealism and missing details
such as hair or teeth.

Face image manipulation. Recent research has aimed to
combine 3DMMs with state-of-the-art GANs to edit portrait
images in a disentangled manner (Usman et al. 2019; Kowal-
ski et al. 2020; Deng et al. 2020; Tewari et al. 2020a,b; Ghosh
et al. 2020; Bühler et al. 2021; Piao et al. 2021; Zhou et al.
2019; Hou et al. 2021). Among them, DiscoFaceGAN (Deng
et al. 2020) promotes disentanglement between face attributes
via contrastive learning, while StyleRig (Tewari et al. 2020a)
couples a 3DMM with a pretrained 2D StyleGAN and manip-
ulates images in the latent space of the StyleGAN. Since both
methods rely on 2D generative networks, they are not able
to handle extreme variations in 3D such as extreme lighting,
facial expression, or pose. Furthermore, to manipulate real
images, they must be embedded into the learned latent spaces
via Image2StyleGAN (Abdal, Qin, and Wonka 2019), which
hinders the quality of results. To circumvent such issues, Por-
trait Image Embedding (PIE) (Tewari et al. 2020b) introduces
a novel optimization algorithm to embed real images into the
latent space while preserving their photorealism. However,
since both StyleRig and PIE are built on a pretrained 2D
StyleGAN, the learned latent space limits them to variations

that are well represented in the FFHQ dataset (Karras, Laine,
and Aila 2019). Further, since these methods aim to disentan-
gle their latent spaces post hoc, full disentanglement between
physical attributes cannot be attained. In work concurrent to
our research, GAR (Piao et al. 2021) proposes a realistic face
reconstruction method that is used to manipulate portrait im-
ages, and VariTex (Bühler et al. 2021) introduces a variational
texture generator to synthesize realistic face images while
achieving control over them. Both of these methods, however,
provide only head pose and expression manipulation results,
and similar to the other methods presented in this paragraph,
they do not show results with large pose variations (larger
than 45◦).

Societal impacts. We envision that our method could be
used in numerous applications including creative uses in the
entertainment sector, generation of realistic training data, or
anonymization of public images. We have seen previous re-
lated methods misused to produce malicious content, such
as fake news, and our method could enable face editing with
larger variations. However, the research community is si-
multaneously creating methods to detect and mitigate such
applications (Ciftci, Demir, and Yin 2020), and legal regula-
tions to prohibit such misuse are under consideration.

Methods
Our approach combines a statistical model of 3D faces with a
style-based GAN, achieving a realistic and fully disentangled
3D model of faces. We achieve such disentanglement by
individually processing each of the face’s physical attributes
and hair in the architecture, through separate encoders and



decoders, as shown in Fig. 2. Such explicit control enables
us to extrapolate beyond what is well represented in the
training set, allowing for face synthesis in extreme poses,
facial expressions, and lighting conditions.

Problem Formulation
Our face image manipulation method relies on reconstruct-
ing accurate and photorealistic 3D faces from 2D images
using the architecture shown in Fig. 2. Here, we assume
that a portrait image can be decomposed into five different
attributes: four physical attributes (3D shape, albedo, light-
ing, and pose), and hair. Our face model employs a set of
encoders {Eα,Eβ,Eγ ,Eθ}. Given a masked face image
x′ := x�Mf , where x denotes the input image and Mf de-
notes its estimated face mask (Chen et al. 2017), the encoders
Eα and Eβ extract a latent shape code α and albedo code β,
while Eγ and Eθ directly estimate the lighting parameters
γ̂ and pose parameters θ̂. To generate a face image, the
shape and albedo codes are fed to a shape generator Gα and
albedo generator Gβ, respectively, to produce a 3D shape Ŝ
and albedo map Â. Next, a differentiable renderer Φ ren-
ders the generated 3D model {Ŝ, Â} using the lighting and
pose parameters {γ̂, θ̂} to produce the reconstructed face x̂f :
x̂f = Φ(Ŝ, Â, γ̂, θ̂). A discriminator D, not shown in Fig. 2,
is employed to enhance photorealism.

Our hair model consists of an encoder Eh and a generator
Gh to produce a portrait image with reconstructed hair x̂h.
Finally, the outputs of the face model and the hair model are
combined using a face mask Mf and a hair mask Mh, then
passed through a refiner network R that produces the final
image x̂. Formally, given a set of N portrait images along
with their face masks and hair masks {(xi,Mi

f ,M
i
h)}Ni=1,

our objective is to solve the following optimization problem:

argmin
{Eα,Eβ,Eγ ,Eθ,Gα,Gβ,R}

N∑
i=1

∥∥xi � (Mi
f + Mi

h)− x̂i
∥∥
1

(1)
where each final image x̂ = R(x̂f �Mf + x̂h �Mh), with
x̂f = Φ(Gα(Eα(x

′)),Gβ(Eβ(x
′)),Eγ(x

′),Eθ(x
′)) and

x̂h = Gh(Eh(x)). In later sections, we will show that adopt-
ing this objective enables us to edit portrait images in a fully
disentangled manner while preserving their photorealism.

Face Model
Our face model, demarcated in Fig. 2 by black connecting
arrows, consists of four physical attribute encoders, two gen-
erators, and a differentiable renderer (Ravi et al. 2020). In the
shape pipeline, the shape code α is input to a convolutional
generator, Gα. The generated 3D shape, Ŝ, is composed of
3 channels in the UV-space that represent the 3D coordi-
nates of vertices (Tran and Liu 2018) by their displacement
from the FLAME mean head model. In parallel, the albedo
code β goes through a StyleGAN2 (Karras et al. 2020) gener-
ator Gβ that outputs an RGB albedo map Â in the UV-space.
Since most of the variations in face images are due to the
variations in the albedo, generating albedo with a style-based
architecture is a crucial step to achieve realism in the final out-
put. Furthermore, in order to allow for more expressive latent

spaces of shape and albedo, we let our model learn them with-
out being constrained to the subspace defined by the original
3DMM. Finally, we represent the estimated lighting γ̂ using
a spherical harmonics parameterization with 3 bands (Ra-
mamoorthi and Hanrahan 2001; Zhang and Samaras 2006),
and our 6-DOF pose vector θ̂ includes 3 parameters for 3D
rotation using the axis-angle representation and 3 parameters
for 3D translation.

We divide our training process into two stages: 1) we
pretrain our face model on synthetically generated faces; then
2) we generalize our model to real faces by training on real
2D images. The loss functions for each stage are introduced
in the equations below and the subsequent explanations:

Synthetic data Pretraining

Lsyn
image = ‖x− x̂f‖22 (2)

Lsyn
albedo = ‖A− Â‖22 (3)

Lsyn
shape = ‖ws

T (S− Ŝ) ‖22 (4)

Lsyn
pose = ‖θ − θ̂‖22 (5)

Lsyn
lighting = ‖γ − γ̂‖22 (6)

Lsyn
reg = λα‖α‖22 + λβ‖β‖22 (7)

Lsyn
gan = − logD(x̂f ) (8)

Real data Training

Lreal
image = ‖x�Mf − x̂f �Mf‖22 (9)

Lreal
identity = 1− cos(fid(x), fid(x̂

′)) (10)

Lreal
landmark = ‖wl

T [f
(1)
lmk(x)− f

(2)
lmk(Ŝ)] ‖

2
2 (11)

Lreal
albedo = ‖(BTB)−1BT(Â− Ā)‖22 (12)

Lreal
lighting = (γ̂ − γ̄)TΣ−1(γ̂ − γ̄) (13)

Lreal
reg = λα‖α‖22 + λβ‖β‖22 (14)

Lreal
gan = − logD(x̂f �Mf ) (15)

Pretraining on Synthetic Data. The first stage is a pre-
training step to allow our network to capture important char-
acteristics of faces using strong supervision coming from a
linear 3DMM. In this stage, we use the FLAME model to sam-
ple 80, 000 faces under an illumination and pose prior (Deng
et al. 2020). We translate each face in 3D so that the rendered
faces have the same 2D alignment as the FFHQ faces. Al-
though these synthetic faces lack realism, they have ground
truth values for the disentangled physical attributes albedo A,
shape S, pose θ, and lighting γ, which we use to guide pre-
training. Our loss function for pretraining consists of three
parts: reconstruction losses for the reconstructed face im-
age (2) and for the four physical attributes (3)–(6); regular-
ization for shape and albedo codes (7); and a non-saturating
logistic GAN loss (Goodfellow 2016) to improve photoreal-
ism (8). In the shape reconstruction loss (4), we introduce a
weighting term ws to upweight vertices in regions surround-
ing salient facial features (e.g., eyes, eyebrows, mouth).

Training on Real Data. After pretraining, we train our



model using the FFHQ face dataset (Karras, Laine, and Aila
2019), where for simplicity we eliminate the images with
glasses. We obtain the face mask Mf for each image auto-
matically using a semantic segmentation network (Or-El et al.
2020; Chen et al. 2017), then feed the masked 2D face images
to the network. We train our face model in an end-to-end fash-
ion, where we combine the loss functions in (9)–(14) with a
non-saturating logistic GAN loss (15). Since we do not know
the ground truth physical attributes for the real face images,
we cannot apply any of the physical attribute reconstruction
losses (3)–(6). The only reconstruction loss we apply is a pix-
elwise reconstruction loss for the masked faces (9). Defining
the full reconstructed image as x̂′ := x�(1−Mf )+x̂�Mf ,
we impose an identity loss (10), where fid(·) denotes the
feature vector extracted by the Arcface face recognition net-
work (Deng et al. 2019a), and cos(·, ·) denotes cosine similar-
ity. Our landmark loss (11) measures the distance between the
image-plane projections of the 3D facial landmark locations
in the input image (estimated using (Bulat and Tzimiropoulos
2017)) and the corresponding locations in the reconstructed
3D shape model. The shape model vertices corresponding to
specific facial landmarks are defined by the FLAME topology,
and the weighting term wl places more weight on important
landmarks such as the lip outlines to keep our learned model
faithful to the FLAME topology.

Since the decomposition of an input image into physical
face properties is an ill-posed problem, there are ambiguities
such as the relative contributions of color lighting intensi-
ties and surface albedo to the RGB appearance of a skin
pixel. To help resolve this ambiguity, we introduce an albedo
regularization loss (12) to minimize the projection of our
reconstructed albedo into the FLAME model’s albedo PCA
space. Here, Ā and B respectively represent the mean and
basis vectors of the FLAME albedo model. To address the
same ambiguity, we also include a lighting regularization
loss (13), which maximizes the log-likelihood of the recon-
structed lighting parameters γ̂ under a multivariate Gaussian
distribution over lighting conditions. To obtain that distri-
bution, we sampled 50,000 lighting vectors using the prior
provided by Deng et al. (2020) and calculate their sample
mean γ̄ and sample covariance Σ. As in pretraining, (14)
regularizes the shape and albedo codes.

Hair Model
Since hair has a more complex structure than faces, repre-
senting and manipulating hair in 3D is a very challenging
problem. This motivates us to manipulate hair in 2D, but to
couple the hair generation process with our 3D face model.
We build our hair model upon a state-of-the-art 2D model,
MichiGAN (Tan et al. 2020), which disentangles hair shape,
structure, and appearance by processing them separately and
combines them with a backbone network. Here, shape refers
to a 2D binary mask of the hair region, structure is represented
as a 2D hair strand orientation map, and appearance refers
to the global color and style of the hair which is encoded
in a latent space. We incorporate a pretrained MichiGAN
in our training pipeline, which we briefly represent as an
encoder-decoder style model in Fig. 2. When we repose faces
at inference time, we couple MichiGAN with our 3D face
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Figure 3: One iteration of our hair manipulation algorithm.
Given a reference pose from the previous iteration and a target pose,
we calculate a 2D warp field based on how 3D vertices move within
the image plane. Given a reference image from the previous iteration
It−1 along with its reference mask and orientation, we use this warp
field to warp the mask and the orientation, which we regularize to
obtain the target mask and orientation. Next, we combine these with
the hair appearance code obtained from the original input image
and the reconstructed face reposed to the target pose, to obtain a
novel portrait image It. At the end, we feed this image through the
refiner to obtain a photorealistic output. This algorithm is invoked
sequentially starting from the original pose. The elements shown on
gray backgrounds are updated in each iteration.

model to change the shape and structure of the hair without
changing its appearance code.

Coupling with Face Model. Our 3D-guided hair manipu-
lation algorithm is illustrated in Fig. 3. Since our face model
reconstructs explicit 3D face shapes, we use these to reason
about how the hair will move in 2D by calculating a 2D warp
field (Li, Huang, and Loy 2019). We derive the 2D warp field
based on the pose-induced movement of the 3D face vertices,
then extrapolate the face’s warp field to the rest of the image.

We use the warp field to warp the hair mask and the hair
orientation map in 2D. Since this process can introduce warp
artifacts, however, we regularize the warped masks by pro-
jecting them onto a PCA basis calculated from a dataset of
binary hair masks of portrait images. In addition to obtain-
ing hair masks from the FFHQ dataset (Karras, Laine, and
Aila 2019), we extract hair masks from the USC HairSalon
database (Hu et al. 2015) by rendering that dataset’s 3D hair
models with faces in extreme poses to allow for accurate
and consistent hair masks under large pose variations. The
orientation map, on the other hand, is regularized as part of
the MichiGAN framework, which outputs a map that is con-
sistent with the warped map and aligned with the regularized
hair mask. Finally, the reconstructed face in the target pose,
hair appearance code, hair mask, and hair orientation map
are combined by the MichiGAN pipeline to produce the re-
posed portrait image, which is then processed with the refiner
(described below). For large pose variations, we invoke this
algorithm sequentially by going from reference pose to target
pose in multiple steps, and we regularize the warped masks
and orientation maps at each step. For more details, please
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Figure 4: Expression and lighting manipulation results. Expression
manipulation (left). We illustrate both moderate (top) and extreme
(bottom) expression variations. The two numbers above each col-
umn indicate which FLAME expression eigenvector is used and by
how many standard deviations it is scaled. Lighting manipulation
(right). Top: For moderate variation, we rotate the reconstructed
lighting around the camera axis by the angle above each column.
Bottom: For extreme lighting variation, we render the reconstructed
3D model using a point light source and Phong shading model.

see the supplementary material.

Refinement
Although our combined model’s rendered 3D face recon-
structions and 2D hair reconstructions closely resemble the
original images, there is still a small realism gap that needs to
be filled. In particular, since we regularize the reconstructed
albedos using the FLAME albedo space, the reconstructions
do not exhibit sufficient variation in the eye regions, and they
lack certain details such as eyelashes, facial hair, teeth, and
accessories, which are not modeled by the FLAME mesh
template. Furthermore, since face and hair are processed sep-
arately, some reconstructions have blending issues between
the face and the hair. To address these issues, we utilize a
refiner network, which closes the realism gap between the
reconstructions and the original images while making only
a minimal change to the reconstructions. We employ a U-
Net (Ronneberger, Fischer, and Brox 2015) that takes in an
image combining the reconstructed face and hair and outputs
a more realistic portrait image, as shown in Fig. 2.

After freezing the weights of the rest of the model, we train
the refiner with pairs of original images from the dataset and
reconstructed images. For the refiner, we combine the same
adversarial loss and identity loss (10) described above with
a reconstruction loss based on the VGG-16 perceptual loss
(Simonyan and Zisserman 2014; Johnson, Alahi, and Fei-Fei
2016), promoting better reconstruction quality for hair. For
more details, please see the supplementary material.

Experiments and Results
In our experiments, we manipulate portrait images with re-
spect to several physical attributes and compare them with the
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Figure 5: Shape transfer comparison. We transfer the 3D shape of
each source image to each target image while keeping everything
else unchanged. Our results (left) demonstrate more accurate shape
transfer and much better disentanglement between shape and other
attributes (e.g., albedo, pose, and hair) than the combination of
StyleRig (Tewari et al. 2020a) and PIE (Tewari et al. 2020b) (right).

results of a state-of-the-art real-image manipulation method
PIE (Tewari et al. 2020b) and a state-of-the-art relighting
method (Hou et al. 2021). Besides providing qualitative com-
parisons with these two methods, we also quantitatively com-
pare the performance of our pose editing algorithm by em-
ploying a head pose estimator (Ruiz, Chong, and Rehg 2018)
to measure the error between the desired and estimated head
poses.

Because MOST-GAN generates a full 3D model, we can
manipulate physical attributes beyond the distribution of the
training set. We can also modify the face in ways not an-
ticipated during training, such as relighting faces using a
different lighting and shading model.

Expression and lighting manipulation. We illustrate our
facial expression and lighting manipulation results in Fig. 4.
To edit facial expression (left), we choose an eigenvector
from the FLAME expression basis and multiply it by a con-
stant factor to obtain an offset, which we add to the vertex
locations in our model’s reconstructed 3D shape. In the mod-
erate examples (top left), we use the first eigenvector to add
smile/frown variations up to ±2 standard deviations. In the
extreme examples (bottom left), we scale 4 different expres-
sion eigenvectors by up to 10 standard deviations. For lighting
manipulation (right), the moderate edits (top right) rotate the
reconstructed lighting around the camera axis (axis perpen-
dicular to the image plane). For extreme lighting variations
(bottom right), we employ a point light source and Phong
shading model, where we rotate the light source horizontally
around the vertical axis and can introduce any desired amount
of specularity to the face albedo. The results demonstrate that
our method easily handles extreme expressions and lighting
conditions that are not well-represented in the training set
and can use lighting and shading models not used in training.
We show additional examples in the supplementary material.

Although our method facilitates face image manipulation
in several physical attributes simultaneously or in isolation,
it is also able to outperform methods that are focused on
and optimized for more limited tasks such as manipulating a
single attribute. To illustrate this, we compare our extreme
lighting manipulation results with those of a state-of-the-art



Input OursHou et al. (2021)

Figure 6: Relighting comparison with Hou et al. (2021). Our
method achieves more photorealistic relighting, with fewer artifacts.

relighting method (Hou et al. 2021) in Figure 6.
Shape transfer. Our model achieves superior disentan-

glement of physical attributes such as shape and albedo by
design, by modeling them separately and explicitly. This dis-
entanglement is illustrated by the shape transfer results in
Fig. 5, where we transfer the 3D face shape of a source image
to a target image. Our results show that our method (left) is
able to transfer the face shapes accurately, while maintain-
ing photorealism and keeping the albedo, lighting, and hair
unchanged. This is in contrast to the shape transfer results
by the previous state of the art (right, a combination of Sty-
leRig (Tewari et al. 2020a) and PIE (Tewari et al. 2020b)),
where for a given source shape, the transfer results have vary-
ing face shapes with noticeable differences in expressions.
When the source and target images are identical (images on
the diagonal), our method produces the original reconstruc-
tion by design, whereas PIE + StyleRig struggles to maintain
the original identity. Our method can also transfer albedo
alone, transfer multiple physical attributes (such as albedo
and shape) simultaneously, and smoothly interpolate between
different shapes and albedos in the latent space continuously.
(See the supplementary material for examples.)

Pose manipulation. In Fig. 7, we compare our pose ma-
nipulation results (odd rows) to PIE (Tewari et al. 2020b)
(even rows). To edit the pose of a given portrait image, we
rotate the reconstructed faces in 3D and warp the hair in
2D using our 3D-guided hair manipulation algorithm de-
scribed in the Hair Model section. The results show that our
method is able to rotate portrait images all the way to profile
pose while keeping the identity, expression, and illumination
conditions unchanged. For the 0◦ pose, PIE (Tewari et al.
2020b) is slightly better at reconstructing the original iden-
tity. However, PIE relies on a costly optimization over the
latent space of a pretrained GAN, whereas our method recon-
structs 3D faces at interactive framerates (30 fps) using our
encoder-decoder style architecture. Furthermore, PIE cannot
handle extreme rotations that were not well represented in the
StyleGAN training set, yielding unrealistic artifacts and an
inability to achieve larger desired (target) poses. To quantify
the latter, we calculate the mean absolute error between the
desired and achieved head poses using a head pose estima-
tion network (Ruiz, Chong, and Rehg 2018). In particular, we
randomly sampled 100 images from our test dataset, reposed
them in a range of yaw angles using our method and PIE, and
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Figure 7: Pose manipulation results. From an input portrait image,
our method accurately rotates the reconstructed 3D face all the way
to profile pose. (Faces in more extreme poses appear larger due to the
FFHQ alignment.) In contrast, PIE (Tewari et al. 2020b) struggles
to maintain photorealism and cannot achieve large rotations.

calculated the average absolute pose error of each method.
The results, in Table 1, show that our method yields much
more accurate pose manipulation at all pose angles.

Limitations. Since we disentangle hair from the physical
attributes by design, changing the lighting conditions has a
limited effect on the hair, and that effect is achieved by the
refiner. Since the hair appearance is strongly dependent on
the head pose and lighting conditions, this issue could be
addressed by coupling the pose and lighting with the hair
model at training time. Also, since the reconstruction quality
of hair is heavily influenced by the hair orientation map in the
MichiGAN framework, achieving consistency of orientation
maps over large pose variation is crucial to render photoreal-
istic hair for reposed images. Currently, however, we handle
dis-occlusions of the hair by warping the orientation maps in
2D, which sometimes yields inconsistent orientations (and
thus unrealistic hair rendering) after large pose changes. In
addition, our model tends to attribute skin color mostly to
the lighting component, which is due to the fact that samples
from the FLAME albedo basis, which we use to regularize
our albedo reconstructions, do not exhibit much variation in
skin tone. Finally, our face model tends to yield smooth 3D
shape reconstructions, sometimes attributing fine shape de-
tails such as wrinkles on the face to the albedo instead of the
shape. We believe that this is related to our shape generator
following a convolutional architecture, which promotes local
consistency between neighboring vertices of the face mesh.

Conclusion
In this work we introduce MOST-GAN, a novel frame-
work for manipulating face images in a 3D controllable and



Table 1: Mean absolute errors between the desired and estimated head poses in degrees, on 100 random images from our test set. Our method’s
average head pose error is significantly smaller than that of PIE (Tewari et al. 2020b), indicating our method’s superior pose disentanglement.

-90◦ -75◦ -60◦ -45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Ours 13.2 6.0 3.5 4.5 4.7 4.8 2.3 2.6 5.0 6.0 3.9 2.7 6.7
PIE 61.7 38.0 22.1 15.8 10.8 7.6 3.5 6.2 13.1 22.5 35.5 54.8 81.0

fully disentangled way. We achieve this by combining the
physically-grounded modeling of 3DMMs with the expres-
sive power of style-based GANs. We employ an encoder-
decoder style architecture built on a 3DMM template, where
we represent 3D shape, albedo, pose, and lighting indepen-
dently by design. By coupling our 3D face model with a
state-of-the-art 2D hair model, we develop a full portrait im-
age manipulation pipeline. Unlike state-of-the-art methods,
which require costly optimizations before manipulating real
images, our method enables efficient image manipulation at
inference time. Our results demonstrate the ability of our
method to photorealistically manipulate 3D shape, albedo,
pose, and lighting of face images, facilitating larger variations
compared to state-of-the-art methods, and achieving better
disentanglement in face image manipulation tasks.
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Supplementary Material

Architecture Details
Encoders. For encoders {Eα,Eβ,Eγ ,Eθ}, we employ the
ResNet-18 architecture (He et al. 2016) (starting from the Ima-
geNet (Deng et al. 2009) pretrained weights) where we change the
final layer to reflect the dimensionality of each latent representation:
α ∈ R150, β ∈ R200, γ̂ ∈ R27, and θ̂ ∈ R6.

Generators. For the albedo generator Gβ , we employ the origi-
nal StyleGAN2 (Karras et al. 2020) architecture up to the 256×256
layer. (We omit the final layers with higher resolutions.) For the
shape generator Gα, we use the architecture shown in Table 2. The
output of this network is a UV-representation of shape from which
we sample points corresponding to the UV-coordinates of each ver-
tex in the FLAME (Li et al. 2017) topology. Then, we add these
as an offset to the FLAME mean shape to obtain a 3D shape in
Euclidean space.

Refiner. For the refiner, we employ a U-Net (Ronneberger, Fis-
cher, and Brox 2015) with 5 convolutional layers followed by 5
transpose convolutional layers with skip connections. We provide
the U-Net architecture details in Table 3.

Training Details
Pretraining on Synthetic Data. Our disentangled face model al-
lows for pretraining each of the physical attributes separately. We
carry out pretraining in three independent phases: albedo-only,
lighting-only, and shape & pose jointly. Using the notation we
have introduced before, we minimize the following loss functions
for the three phases:

shape & pose: 0.1Lsyn
image+ 1000Lsyn

shape+ 100Lsyn
pose + 1.0‖α‖22

(16)

albedo-only: Lsyn
gan + 10Lsyn

image + 100Lsyn
albedo + 1.0‖β‖22 (17)

lighting-only: 10Lsyn
image + 100Lsyn

light (18)

For each of these phases, we set the batch size to 16 and use the
Adam optimizer (Kingma and Ba 2014). Eα, Eβ , Eγ , Eθ , and Gα

are all trained with a learning rate of 0.0001. During the albedo-only
phase, we alternate optimization steps between training the albedo
generator Gβ and an image discriminator D (both with learning
rate 0.002), where the discriminator is trained to minimize the loss:

Lsyn
disc = −

1

2
logD(x)− 1

2
log(1−D(x̂f )) (19)

Training on Real Data. In the training stage, we split the FFHQ
dataset (Karras, Laine, and Aila 2019) into train and test sets with
90% − 10% split, using the first 63,000 face images for training
and the last 7,000 images for testing. During training, we optimize
over all networks in our face model (Eα, Eβ , Eγ , Eθ , Gα, Gβ)
jointly in an end-to-end fashion, and we alternate optimization steps
between the face model and an image discriminator D. For the first
50,000 iterations, we minimize loss function (20) for all blocks in
the face model, using a batch size of 16 and the Adam optimizer
with learning rate 0.00001.

Lreal
gan + 1000Lreal

image + 10Lreal
identity + 100Lreal

landmark

+ 1.0Lreal
albedo + 10−5Lreal

lighting + 1.0‖α‖22 + 1.0‖β‖22 (20)

We also use a batch size of 16 and a learning rate of 0.00001 for
the discriminator to minimize the loss:

Lreal
disc = −

1

2
logD(x�Mf )−

1

2
log(1−D(x̂f �Mf )) (21)

After training the network for 50,000 iterations, we fine tune Eβ ,
Eγ , Gβ for another 50,000 iterations by freezing the weights of
Eα,Eθ,Gα and discarding the landmark loss to further improve
the reconstruction quality.

Refinement. Denoting the combined face-and-hair reconstruc-
tion as x̂c := x̂f �Mf + x̂h �Mh, the refined image as x̂ :=
R(x̂c), and the original face and hair as x′ := x� (Mf +Mh),
we employ the following loss function for the refiner:

Lref
gan + 8.0‖fVGG(x

′)− fVGG(x̂)‖22
+ 10

(
1− cos(fid(x

′), fid(x̂))
)
. (22)

The first term in (22), the post-refiner GAN loss Lref
gan, is given by:

Lref
gan = − logDref(x̂f �Mf + x̂h �Mh), (23)

where Dref is an image discriminator trained to minimize the loss:

Lref
disc = −

1

2
logDref(x� (Mf +Mh))

− 1

2
log(1−Dref(x̂f �Mf + x̂h �Mh)). (24)

The second term in (22) represents the VGG-16 perceptual loss (Si-
monyan and Zisserman 2014; Johnson, Alahi, and Fei-Fei 2016).
With a batch size of 16, we alternately train the refiner and the dis-
criminator for 500,000 iterations, with learning rate 0.0001 (using
the Adam optimizer). To prevent overfitting, we randomly trans-
late x′ and x̂c together (with horizontal and vertical translations
uniformly sampled from the range [−15, 15] pixels). The whole
training process took 3 weeks on one Nvidia Volta V100 GPU.

Hair Manipulation Algorithm Details
Warp field calculation. In each iteration of our hair manipulation
algorithm, we first identify the visible triangles of the given face
mesh with its reference pose, and compute the center of each triangle
by taking the average of its vertices. Then, we project these triangle
centers onto the image plane under both the reference and the target
pose. Using the correspondences between the two projections, we
construct a 2D warp by calculating how much each of the projected
triangle centers moves in pixel space as a result of the pose change.
To complete the warp field, we use the technique described below.

For the vertical component of the warp field, we simply copy
the vertical warp component from the nearest neighbor that was
assigned a warp. For the horizontal component, we use a heuristic
to assign a fixed horizontal warp to every pixel on the left edge of
the image and a different fixed horizontal warp to every pixel on
the right edge; then the horizontal component of the warp field for
the entire image is simply interpolated from the assigned warps. In
particular, when we rotate the faces clockwise (counter-clockwise)
around the vertical axis, we extend a ray from the center of the 3D
face to the left (right) perpendicular to the face’s plane of symmetry
and identify the 3D point on the ray whose projection lies on the
leftmost (rightmost) edge of the image. Next, we calculate by how
much this point’s projection into the image plane moves when
the head rotates, and we multiply this number by 3 to obtain the
horizontal warp that we assign to the leftmost (rightmost) column of
the warp field. For the rightmost (leftmost) column, we heuristically
choose a displacement of 10 pixels to the right (left). Finally, we
interpolate between the assigned pixels using linear interpolation to
obtain the horizontal warp of every image pixel.

Regularization of the hair mask. After we obtain a complete
warp field, we apply it to the reference hair mask and orientation.



Table 2: Architecture of the shape generator Gα. The output of the network is a UV-representation of 3D shape, where the three channels of
the 256× 256 output represent 3D offsets (in x, y, and z) from the FLAME mean head shape (Li et al. 2017).

layer type kernel size / stride output shape activation

linear – 1024× 1 none
reshape – 16× 8× 8 –
conv2d 4× 4 / 1 32× 8× 8 tanh

upsample – 32× 16× 16 –
conv2d 4× 4 / 1 64× 16× 16 tanh

upsample – 64× 32× 32 –
conv2d 4× 4 / 1 64× 32× 32 tanh

upsample – 64× 64× 64 –
conv2d 4× 4 / 1 64× 64× 64 tanh

upsample – 64× 128× 128 –
conv2d 4× 4 / 1 64× 128× 128 tanh

upsample – 64× 256× 256 –
conv2d 4× 4 / 1 3× 256× 256 tanh

Table 3: Architecture of the refiner R. We employ a U-Net (Ronneberger, Fischer, and Brox 2015) with skip connections between the encoder
and decoder parts of the network. In all layers of the encoder, we use the LeakyReLU activation function with a negative slope of 0.2. All
layers of the decoder use the ReLU activation function.

layer type kernel size / stride output shape activation

conv2d 4× 4 / 2 64× 128× 128 LeakyReLU
conv2d 4× 4 / 2 128× 64× 64 LeakyReLU
conv2d 4× 4 / 2 256× 32× 32 LeakyReLU
conv2d 4× 4 / 2 512× 16× 16 LeakyReLU
conv2d 4× 4 / 2 512× 8× 8 LeakyReLU

conv2d_transpose 4× 4 / 2 512× 16× 16 ReLU
conv2d_transpose 4× 4 / 2 256× 32× 32 ReLU
conv2d_transpose 4× 4 / 2 128× 64× 64 ReLU
conv2d_transpose 4× 4 / 2 64× 128× 128 ReLU
conv2d_transpose 4× 4 / 2 3× 256× 256 ReLU

The orientation is regularized as part of the MichiGAN (Tan et al.
2020) pipeline, whereas we regularize the mask by projecting it
onto a PCA basis that we calculate from a dataset of hair masks. In
particular, we construct our hair mask dataset by randomly selecting
10,000 samples from our FFHQ training set and combining it with
10,000 masks that we obtain from the USC Hair Salon database (Hu
et al. 2015). For the latter, we attach 3D hair models from the USC
Hair Salon database to the FLAME mean head model, which we
rotate around the vertical axis by an angle uniformly sampled from
[−90◦, 90◦]. The hair masks are obtained by rendering these 3D
shapes. Finally, after downsampling all masks to 64× 64 resolution,
we construct a PCA basis with 50 principal components, onto which
we project the hair masks at each iteration of our reposing algorithm.
In this work, starting from the pose of the original face image, we
invoke this algorithm sequentially by imposing a pose change of 5◦

in each iteration, going all the way to the full profile (±90◦) poses.

Ablation Study
Training and loss functions. In our experiments, we observed that
pretraining on synthetic data training is crucial for our method to
work, since we observed stability issues when we started out by
training on real data. For real data training, our experiments sug-
gested that all loss functions except for equations (11)–(13) in the
paper (all loss functions except for the albedo regularization, light-
ing regularization, and regularization of shape and albedo codes) are
crucial for our method to achieve reasonable face reconstructions.

When we omitted albedo and lighting regularizations, we observed
that our method converges to a state in which the albedo recon-
structions are washed out and the appearance of the face is mostly
attributed to the lighting, which suggests that albedo and lighting
regularizations are important to achieve better albedo and lighting
disentanglement.

Refinement. In this section, we analyze the impact of the refiner
on our reconstructions by providing qualitative and quantitative
comparison of our results with vs. without the refiner. In addition,
we compare our reconstructions with a state-of-the-art nonlinear 3D
morphable model proposed by Tran and Liu (Tran and Liu 2019).
We illustrate our qualitative comparisons in Figure 8. It is clear
that our reconstructions are much more accurate and photorealistic
than those of Tran and Liu. We also observe a notable improve-
ment in photorealism using our complete model (with refiner) vs.
using our model without the refiner. To quantify our observations,
we calculate a face recognition (FR) score as the average cosine
similarity between the feature vectors extracted from the ArcFace
face recognition network (Deng et al. 2019a) for the original and
reconstructed images (from our test dataset). We also compute the
structural similarity index measure (SSIM), peak signal-to-noise
ratio (PSNR) (Hore and Ziou 2010), and learned perceptual image
patch similarity (LPIPS) (Zhang et al. 2018) between the original
and reconstructed images. We quanitatively compare our model
with versus without the refiner in Table 4. In Table 5, we perform
quantitative comparisons with Tran and Liu. To obtain the results in
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Figure 8: Ablation study and comparison with Tran and Liu (2019). On images from the test set (never seen during training), our method is
able to reconstruct faces more accurately and photorealistically than Tran and Liu (2019). These results also demonstrate that our full model
(with refinement) shows a notable improvement in image quality vs. our model without the refiner.

Table 4: Average face recognition (FR) scores, SSIM, PSNR, and LPIPS between the original and reconstructed face images from our dataset.
We observe a notable improvement due to the refinement.

FR score ↑ SSIM ↑ PSNR ↑ LPIPS ↓
Ours (without refinement) 0.66± 0.10 0.72± 0.09 22.24± 2.63 0.15± 0.05
Ours (with refinement) 0.68± 0.10 0.74± 0.08 23.20± 2.47 0.12± 0.04

Table 5: Average face recognition (FR) scores, SSIM, PSNR, and LPIPS between the original and reconstructed face images for our method
(both with and without refinement) and Tran and Liu (2019). To obtain the results in this table, we masked out the hair, background, clothing,
and teeth for fair comparison with Tran and Liu (2019). Our method achieves better scores in all three metrics.

FR score ↑ SSIM ↑ PSNR ↑ LPIPS ↓
Tran and Liu (2019) 0.51± 0.12 0.87± 0.03 20.96± 1.57 0.092± 0.026
Ours (without refinement) 0.69± 0.10 0.87± 0.04 25.08± 2.92 0.086± 0.035
Ours (with refinement) 0.71± 0.10 0.88± 0.04 26.17± 2.71 0.062± 0.031

Table 5, we masked out the hair, background, clothing, and teeth for
fair comparison with Tran and Liu (Tran and Liu 2019).

Additional Experiments and Results
In this section, we provide additional experiments and qualitative
results.

Expression manipulation. In Fig. 9, we present additional ex-
pression manipulation results, generated using the same method
described in the main paper (see Fig. 4 in the main paper).

Lighting manipulation. In Fig. 10, we present additional light-
ing manipulation results, generated using the same method described
in the main paper (see Fig. 4 in the main paper).

Shape transfer. In Fig. 11, we present additional shape transfer
results, generated using the same method described in the main
paper (see Fig. 5 in the main paper), where we also compare with
results obtained by a combination of StyleRig (Tewari et al. 2020a)
and PIE (Tewari et al. 2020b). In this combination of previous
methods, the image embedding is carried out by the optimization
algorithm proposed in PIE, and the shape transfer is performed
using StyleRig.

Pose manipulation. In Fig. 12, we present additional pose ma-
nipulation results, generated using the same method described in
the main paper (see Fig. 6 in the main paper).

Joint transfer of physical attributes. Our face model’s full dis-
entanglement is demonstrated by its ability to transfer all physical
attributes either individually or jointly. In Fig. 14, we present re-
sults of joint albedo and lighting transfer, as well as results of joint
transfer of albedo, lighting, and shape.

Interpolation in the latent space. Although we do not impose
any smoothness constraints within the latent spaces, the learned
shape and albedo latent spaces enable smooth interpolation between
different latent codes. We present our interpolation results in Fig. 13,
where we simultaneously interpolate between the reconstructed
shape code, albedo code, and lighting parameters of the reference
and target images.

Face anonymization. Our face model can also be turned into a
generative model for random faces by regularizing the latent code
distributions during training. At each iteration, we calculate sample
means and variances of the latent codes for shape and albedo over
minibatches and regularize these statistics to match those of the
standard Gaussian distribution by using a KL divergence loss. After



this regularized training, we can randomly sample codes from a stan-
dard multivariate Gaussian distribution to produce realistic shapes
and albedos. To enable random sampling of lighting conditions that
match the distribution of lighting conditions present in the training
set, we train a variational autoencoder on the reconstructed lighting
parameters from the training set. In Fig. 15, we use random sam-
pling of latent codes (i.e., random face generation) to anonymize
face images from the test set. In each row of the figure, the input
image is fed through our encoders to determine the pose and latent
hair code. To anonymize the face, we randomly sample latent codes
for shape, albedo, and lighting, while retaining the input image’s
background, pose, and hair code.

Video of our results. We also provide a video of our results
where we demonstrate smooth manipulations in expression, lighting,
albedo, shape, and their combinations.



Input 1 | 2.0 3 | 8.0 5 | 6.0 6 | 5.0 7 | 6.0 7 | -7.0 8 | 7.0 10 | 7.0 10 | -7.0 

Figure 9: Expression manipulation results. We illustrate several expression changes with varying intensities. The two numbers above each
column indicate which FLAME expression eigenvector is used and by how many standard deviations it is scaled.



Input 0° 90° 180° 270° -60° -30° 0° 30° 60°
Moderate Extreme

Figure 10: Lighting manipulation results. For moderate variation, we rotate the reconstructed lighting around the camera axis by the angle
listed above each column. For extreme lighting, we render the reconstructed 3D model using a point light source and Phong shading model.
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Figure 11: Shape transfer results and comparison. We transfer the 3D shape of each source image to each target image while keeping
everything else unchanged. Compared to the previous state of the art (StyleRig (Tewari et al. 2020a) + PIE (Tewari et al. 2020b)), our results
(top) demonstrate more accurate shape transfer and much better disentanglement between shape and other face attributes (e.g., albedo, pose,
and hair).
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Figure 12: Pose manipulation results and comparison with PIE (Tewari et al. 2020b). To edit the pose of a given portrait image, we rotate
the reconstructed faces in 3D and warp the hair in 2D. Our method is able to rotate portrait images all the way to profile pose while keeping the
identity, expression, and illumination conditions unchanged.

Reference Interpolations Target

Figure 13: Interpolation results. Our method also allows for interpolation in the latent spaces. In each row, given a reference and a target
image, we interpolate between their shape codes, albedo codes, and lighting parameters. For each interpolated image, the background and the
latent code for hair are copied from the reference image.
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Shape, albedo, and lighting transfer

Figure 14: Joint transfer of physical attributes. Our method is able to transfer physical attributes jointly as well as individually. In this
figure, we jointly transfer the indicated physical attributes of each source image to each target image while keeping the other parameters of the
target image unchanged. Left: Albedo and lighting transfer. Right: Shape, albedo, and lighting transfer.

Input Random samples

Figure 15: Face anonymization results. Our model can also be used to sample novel faces by regularizing the latent code distributions during
training, which can be used for face anonymization.
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