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Abstract

This paper presents a method of co-design of models and observers for buoyancy-driven turbulent flows. Re-
cent work on data-driven techniques for estimating turbulent flows typically involve obtaining a dynamical
model using Dynamical Mode Decomposition (DMD) and using the model to design estimators. Unfor-
tunately, such a sequential design could result in state-space models that do not possess control-theoretic
properties (such as detectability) that ensure guaranteed performance of the observer. In this paper, we
propose semi-definite programs (SDPs) that allow us to simultaneously construct observer gains, along with
DMD models which exhibit desired properties. Since DMD models for turbulent flows are typically high-
dimensional, we provide a tractable algorithm for solving the high-dimensional SDP. We demonstrate the
potential of our proposed approach on an industrial application using real-world data, and illustrate that
the co-design significantly outperforms sequential design.
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1. Introduction

Buildings contribute around 40% of the energy consumption in the United States. Building simulation
involves simulating thermo-fluid systems that couple dynamical information from heating, ventilation and
air-conditioning (HVAC) equipment along with airflow within the built environment. Building dynamics
are typically complex, multi-rate, multi-scale, multi-physics, and subject to a wide variety of exogenous
disturbances and systemic uncertainties [1, 2]. Designing computationally tractable tools for analysis and
synthesis of controllers and estimators for energy-efficient buildings is a challenging problem due to inherent
complexity of building dynamics [3]. A critical component of building models includes dynamics contributed
by thermo-fluid systems such as those produced by airflow systems.

A realistic model for describing airflow dynamics employs the Boussinesq equations, which are nonlinear
partial differential equations (PDEs) [4, 5], that combine the Navier-Stokes (NS) equation and heat transfer
equations. Since closed-form solutions to such PDEs are generally impossible to find, the Boussinesq equa-
tions are solved numerically. Numerical simulations are performed by discretizing in space and marching in
time. This meshing approach usually generates large-scale discrete-time systems, where the state-variables
describe local dynamics on the mesh nodes; therefore, it is not uncommon for the state-space to be 104 to
106 dimensional, even for low- to medium-resolution grids. Since such massive state-spaces are intractable
for controller and estimator design, this motivates the use of data-driven reduced-order models (ROMs)
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for efficient simulation of the system dynamics, wherein the data is generated from physics-informed sim-
ulations [6]. One reduced-order modeling technique that has gained popularity in the fluid dynamics and
control community is the Dynamic Mode Decomposition (DMD) [7, 8, 9]. DMD employs singular-value
decomposition (SVD) to efficiently fit a linear evolution model to high-dimensional snapshot data. DMD
provides an approximation of the Koopman operator – a linear but infinite dimensional operator that gov-
erns the time evolution of scalar functions defined on the state space. DMD can be shown to be a faithful
representation of the Koopman operator under some assumptions [10].

In addition to an appropriate reduced-order model, one also needs observers so that measurements
obtained from spatially local subregions of the space of interest can be used to glean spatially global state
information, which can be fed to control algorithms. Therefore, observer design is critical for the design
pipeline in thermo-fluid systems. A few ROM-based state observers have been proposed for the Navier-
Stokes equation, see for example [11, 12, 13]. For the Boussinesq equation, far fewer estimation results
are available due to the presence of a coupling nonlinearity between the NS equation and the thermal
equation. This nonlinearity makes the estimation problem significantly more challenging and standard linear
observers difficult to construct or limited in use even after construction. In [14], the authors proposed a
learning-based robust observer design for the two-dimensional Boussinesq equation under model parametric
uncertainties. They proved that the closed loop system for the observer error state satisfies an estimate
of L2 norm in a sense of locally input-to-state stability (L-ISS) with respect to parameter uncertainties.
Then they proposed to learn the uncertain parameters estimate using a data-driven extremum seeking (ES)
algorithm, and more recently, using Bayesian optimization [15]. In [16], the authors introduced a method for
designing robust, proper orthogonal decomposition (POD)-based, low-order observers for a class of infinite-
dimensional nonlinear systems, with application to the 2D Boussinesq equation. Robustness to bounded
model uncertainties was incorporated using the Lyapunov reconstruction approach from robust control
theory. The gains of the observer were optimized online using a data-driven learning approach. Other
approximators, such as neural networks for learning-based observer design has been investigated in [17]. In
our previous work [18], we developed a sequential algorithm for designing H∞ and Kalman filters based on
a state-space representation obtained using DMD.

While sequential algorithms have demonstrated success, they posses a fundamental problem: in sequen-
tial design, one cannot impose explicit control-theoretic properties on the models such as observability or
controllability. However, such conditions are crucial for subsequent design and synthesis: obtaining a DMD-
based ROM that is not controllable or observable will break the controller design pipeline, as no linear
state-feedback will exist to drive the system to a desired state. To overcome this fundamental limitation of se-
quential designs, recent research has proposed co-design formulations that exhibit high performance [19, 20].
The most common application of co-design is to shift poles and zeros of the system into desired regions of
the complex domain to provide certificates on closed-loop control performance [21]. Co-design has also been
applied to mechanical engineering and aerospace engineering systems, including vehicles [22, 23, 24], com-
bined heat and power systems [25], aircraft [26], and chemical engineering systems such as mixing tanks [27].
Very recently, co-design has been explored in thermo-fluid systems to tradeoff nominal (steady-state) effi-
ciency with transient efficiency while also ensuring robustness to highly transient disturbances via nonlinear
parameterized models [28, 29]. However, to the best of our knowledge, the co-design of DMD-based models
and observers from simulation data has not been explored prior to this work; prior art has always tackled
the co-design problem by assuming complete knowledge of the full-order model.

In this paper, we use CFD simulation data directly to construct reduced-order models and state observers
simultaneously in a co-design framework. We propose new sufficient conditions for designing the model
and observer pair, and ensure detectability of the identified system. We also provide computationally
tractable algorithms based on Burer-Monteiro approaches [30] that can solve the main semidefinite program
proposed in this work. Our contributions in this paper are as follows: (i) To the best of our knowledge,
this paper contains the first data-driven formulation of state and observer co-design for systems whose
dynamics are described by partial differential equations. Note that the data used for our method could be
obtained by experiments or computational fluid dynamics simulations. (ii) Since turbulent flow dynamics
typically reside in large state-spaces, our proposed SDP-based solution has a large number of variables.
Furthermore, it is well-known that simultaneous co-design of models and controllers/estimators results in
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non-convex, large-scale optimization problems, and approximations are typically required to solve them in
polynomial time [28]. To this end, we propose the use of Burer-Monteiro methods to solve the large SDPs
that arise in our simultaneous co-design formulation. (iii) We numerically validate the proposed co-design
framework for turbulent flows using data obtained from a real-world industrial air conditioning application,
and demonstrate instabilities arising from sequential design, even in simple scenarios.

The rest of the paper is organized as follows. In Section 2, we present two PDE models for airflow dy-
namics: a simpler Advection-Diffusion model which describes temperature dynamics, and the more complex
Boussinesq equations used to describe the temperature and velocity of turbulent flows. We also formally
present the problem and proposed solution. In Section 3, we present the sequential method of ROM-based
estimator design. The proposed co-design framework is explained in Section 4, and methods for solving the
large-scale SDPs arising in this framework is also presented there. We demonstrate the potential of our
method in optimizing modeling and estimation of thermo-fluid systems in Section 5 via real-world examples
of turbulent flows in industrial buildings and warehouses. We provide concluding remarks in Section 6.

2. Background and Motivation

2.1. PDE Models for Airflow Dynamics

We use two well-known PDE-based models of thermo-fluid flows in building systems to test the algorithms
developed in this work. Our proposed methodology is generalizable to other PDEs since it is data-driven
and does not depend on the details of the PDE. The first model is given by the linear advection-diffusion
equation – a scalar-valued PDE that describes the time evolution of the temperature distribution in a
domain. This simplified description ignores the effect of non-uniform temperature distribution on the air
velocity. A steady velocity field consisting of a double vortex is used in this model. The second model is
given by the Boussinesq equations – a nonlinear vector-valued PDE which is a realistic representation of
airflow in a room, since it models the two-way coupled evolution of temperature and velocity distributions.
The two models are now described in further detail.

2.1.1. Advection-Diffusion Equation Based Model

We consider airflow in a closed room modeled as a 2D domain Ω ⊂ R2, with boundary denoted by
∂Ω. The temperature field T ((x, y), t) : Ω × R+ → R evolves under the combined action of advection by a
velocity field v((x, y), t) : Ω × R+ → R2, and diffusion. The velocity field is an incompressible vector field
that comprises of two counter-rotating vortices, given explicitly by

v = sin(πx) cos(πy)i− cos(πx) sin(πy)j, (1)

where i, j are unit vectors in the horizontal and vertical directions, respectively. The advection-diffusion
PDE expressed in the Einstein notation is

0 =
∂T

∂t
+ T

∂vj
∂xj

− ∂

∂xj

(
1

Pe

∂T

∂xj

)
, (2)

where the Peclet number Pe = vcLc/κ, and Lc and vc are the characteristic length and velocity scales of
the problem, respectively. The boundary conditions are given by

T (∂Ω1, t) = Tb, (3a)

ni
∂T (∂Ω2, t)

∂xi
= 0, (3b)

where n is the unit normal vector. Here, the boundary is split into two components, i.e., ∂Ω = ∂Ω1 ∪
∂Ω2, where ∂Ω1 is the boundary component with Dirichlet boundary conditions, and ∂Ω2 is the boundary
component with no-flux Neumann boundary conditions. In our case study, ∂Ω1 is comprised of the top and
bottom surfaces, and ∂Ω2 is comprised of the the lateral walls.
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2.1.2. Boussinesq Equations Based Model

We consider airflow in a 2D slice of a real environment with an inlet and an outlet. Fig. 1 illustrates
a snapshot of such a flow using temperature colored streamlines. Cold air enters the room through a
distributed inlet (diffuser) at the top vent Γi, subject to Dirichlet boundary conditions of prescribed inlet
velocity and temperature. The air leaves the room through an exhaust located at the top left corner of
the domain Γo, subject to zero-Neumann boundary conditions. The model is described by the Boussinesq

Figure 1: Exemplar solution of the 2-D Boussinesq equation in a representative built environment.

system of equations, consisting of incompressible Navier-Stokes equations governing the 2D velocity field,
coupled with the advection-diffusion equation governing the scalar temperature distribution. In Einstein
notation, the equations are

0 =
∂uj

∂xj
, (4a)

0 =
∂ui

∂τ
+

∂uiuj

∂xj
+

∂pi
∂xi

−Ri δi2 T − ∂

∂xj

(
1

Re

∂ui

∂xj

)
, (4b)

0 =
∂T

∂τ
+

∂ujT

∂xj
− ∂

∂xj

(
1

Pe

∂T

∂xj

)
, (4c)

where u, p, T are scaled ensemble-averaged velocity, pressure, and temperature respectively, and δij is the
Kronecker delta. Non-dimensional numbers in (4) are given by

Re =
uc,inLc,in

νeff
, P e =

uc,inLc,in

κeff
, Ri =

uc,inθc,inLc,in

V 2
in

,

where subscript ‘in’ denotes the values at the inlet. The effective viscosity and diffusivity are νeff and κeff ,
respectively, and are computed by unsteady Reynolds-averaged Navier Stokes (RANS) approach, in which
there is a scale separation between the unsteadiness of the mean flow and the turbulence. The closure of (4)
are k-ϵ equations to model the Reynolds stress and turbulent heat flux. Consequently, the closure is used
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to determine νeff and κeff [31]. Boundary conditions are provided as follows:

Inlet : Γi =


u.n = uin,

u− u.n = 0,

T = Tin,

nj
∂p
∂xj

= 0,

(5a)

Outlet : Γo =


nj

∂ui

∂xj
= 0,

nj
∂T
∂xj

= 0,

p = 0,

(5b)

Wall :
4⋃

k=1

Γw,k =


u = 0,

T = Twall,

nj
∂p
∂xj

= 0,

(5c)

where n is the unit vector normal to the surface. The exterior serves as the heat source for the domain by
prescribing temperature at boundaries Γw,1–Γw,4. In practice, the wall temperature Twall is not known and
is modeled as a disturbance input. Note that this disturbance input rarely conforms to standard stochastic
distributions (e.g. Gaussian) because it depends on ambient/exterior temperatures, wall material, amongst
other factors, and therefore requires careful selection of robust estimators.

2.2. Problem Statement and Proposed Solution

Due to the infinite-dimensionality of systems described by PDEs, and the nonlinearity of, for example,
the Boussinesq equations, it is difficult to directly use the PDE equations to generate state estimators or
observers. However, due to space and expense limitations, only fixed-points in space have sensors installed,
and therefore, only a few locations of temperature and velocity are measured in real-time. However, real-
world applications require state estimators or observers to study the overall dynamics of these flows so that
the flows can be subsequently controlled via state-feedback.

Offline, we can use archived data obtained from sensors and actuators in a building (such as temperature
and velocity sensors and HVAC equipment as actuators) or run high-fidelity computational fluid dynamics
(CFD) simulations in order to obtain a dataset D. Online, however, such spatial data is impossible to collect
in real-time, and therefore, a predictive model and state observer is required to ascertain the state of the
system.

The dataset D typically comprises of time series data which can be used to construct a reduced-order
model M : X × U → X × Y, where X ⊆ Rnx is the ambient state-space induced by the ROM, U ⊆ Rnu is
the admissible set of control inputs, and Y ⊆ Rny is the set of measurements that can be obtained real-time
in the building. Since ny < nx, we will also construct an estimator/observer E : Y ×U → X that is capable
of reconstructing the states of the dynamical system with exponentially stable error decay. In the sequential
design procedure, one designs M and then leverages this ROM to design E ; see for example, [18].

While sequential design methods are both common and perform well under most circumstances, they do
not always ensure that the final M and E together satisfy desired properties [32]. For instance, one may
wish to design a E such that the pair (M, E) satisfies detectability conditions or such that the combination
maximizes disturbance rejection. We posit that incorporating such desirable properties into the design re-
quires co-design. Co-design involves simultaneously searching for both M and E such that the combination
of systems exhibits prescribed performance guarantees.

Concretely, we assume the availability of an ordered time-series of data snapshots {xk,uk}mk=0 obtained
from high-fidelity CFD simulations of a thermo-fluid system, where k is a time index. We assume there
exists a mesh on which the CFD simulations have been constructed, and that the state variables of the
system are associated with nodes on the mesh. In particular, the k-th snapshot is comprised of column
vectors of measured states xk ∈ Rnx and inputs uk ∈ Rnu , and (m + 1) ∈ N denotes the total number
of snapshots. We also assume that the data is available in its entirety during design time, and has been
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collected in such a way that the dynamics are excited and therefore, non-trivial. Using this data, we aim to
construct a discrete-time model of the form

xk+1 = Axk +Buk, (6a)

yk = Cxk (6b)

such that the approximation error
∥xk+1 −Axk −Buk∥F (7)

is minimized over all snapshots.
In (6), the system matrix A is of size nx × nx, the input matrix B is of size nx × nu, and the output

measurement matrix C is of size ny ×nx. We make the following assumptions on the system to ensure that
the system identification problem is well-posed.

Assumption 1. The state-space dimensions nx, nu, and ny are known. The matrix C is known. There
exists some A such that the pair (A,C) is observable. The input sequence uk is persistently exciting.

Assumption 1 is relatively mild. Since the mesh on which the simulation data from CFD simulations are
known, and states are defined on nodes, the total number of states are easy to compute. In most practical
applications, the number of inputs and measurements are known. The knowledge of the output matrix is
stronger, but since the underlying mesh is assigned on the domain Ω of interest, and each state is assigned to
a node, the knowledge of C is equivalent to knowing which node(s) in Ω have sensors installed in them, i.e.,
this knowledge is provided at design time by a sensor placement algorithm. Finally, persistently exciting
inputs are well-known to be necessary for identifying dynamical systems, see for example, [33].

In the sequel, we propose a co-design strategy for synthesis of system matrices and observer gains for fluid
flow problems using a non-convex optimization method, ensuring that the error dynamics of the observer are
asymtotically stable. We cast this original problem as a semidefinite program (SDP). To provide tractability
when the ROM also needs to be large to yield desired approximation properties to the given data, we convert
this problem to a unconstrained non-convex problem which allows us to use scalable optimization algorithms.

3. Sequential Design

In sequential (classical) design, we first construct reduced-order models (ROMs) based on experimental
or simulated data. Subsequent to the system identification phase, we construct an observer based on the
ROM matrices. In particular, we employ DMDc for constructing the ROM and standard linear matrix
inequalities for generating the observer gains. This section provides a brief discussion of both DMDc and
the observer design.

Unfortunately, the full-order model (6) may not always be amenable to analysis or design, since PDEs of
turbulent flows are represented using high-resolution discretization of space, that in turn result in excessively
large nx. Therefore, it becomes necessary to design ROMs of lower state-space dimension; i.e., rx ≤ nx. In
particular, dynamic mode decomposition with control (DMDc) yields a ROM of the form

x̂k+1 = Âsx̂k + B̂suk, (8)

where x̂ ∈ Rrx , u ∈ Rnu , are reduced-order states and inputs, respectively. The reduced-order system
matrices Âs and B̂s have dimensions rx × rx and rx × nu, respectively, and are tractable for analysis and
design.

We now briefly describe how to generate this ROM with DMDc; for more details, we refer the reader
to [34]. Let

X+ =
[
x1 x2 · · · xm

]
, (9a)

X =
[
x0 x1 · · · xm−1

]
, and (9b)

U =
[
u0 u1 · · · um−1

]
(9c)
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denote data matrices constructed using the available snapshots. By construction, we obtain

X+ = AsX+BsU, (10)

which can be rewritten as

X+ =
[
As Bs

] [X
U

]
=: ĀsX̄. (11)

Note that the augmented matrix X̄ is of size (nx + nu)×m.
We deduce from (10) that minimizing the approximation error (7) is tantamount to minimizing ∥X+ −

ĀsX̄∥F.
We take a truncated SVD of X̄ up to a truncation value of r′ > rx, that is X̄ ≈ ŪΣ̄V̄⊤, where Σ̄ has r′

non-zero diagonal entries. This yields Ās ≈ X+V̄Σ̄−1Ū⊤. The matrix Ās can be partitioned into the state
and input matrices As and Bs described in (6) as follows:[

As | Bs

]
=
[
X+V̄Σ̄−1Ū⊤

1 | X+V̄Σ̄−1Ū⊤
2

]
, (12)

where Ū1 ∈ Rnx×r′ and Ū2 ∈ Rnu×r′ .
As explained earlier, the ambient state space nx may be prohibitively large for estimator and controller

design. Therefore, we need an additional projection step to bring this state-dimension down to rx. The target
state dimension rx is a design parameter. One heuristic that is commonly used to inform the selection of rx
is by generating the spectrum of X+ and selecting rx based on the cumulative concentration of DMD modes,
for example, by only considering singular values that contribute 99% of the variance. Unlike conventional
DMD, we cannot use Ū to find the projection subspace basis because Ū contains both state and input data.
Instead, we find the basis from the pure state data matrix X+. This involves computing another truncated
SVD, that is,

X+ = ÛΣ̂V̂⊤,

where Σ̂ has rx non-zero diagonal elements due to truncation. The projected state is then given by

x̂ := Û⊤x. (13a)

Consequently, the reduced-order system matrices are computed using

Âs = Û⊤ĀsÛ = Û⊤X+V̄Σ̄−1Ū⊤
1 Û, (13b)

B̂s = Û⊤B̄s = Û⊤X+V̄Σ̄−1Ū⊤
2 . (13c)

This, along with û := u yields the desired reduced-order model (8).
The ROM (8) is also equipped with the measurement output equation

yk = Ĉsx̂k, (14)

where Ĉs := CÛ is a ny×rx measurement matrix, and y is the measured output. Note that this computation
is possible because (by Assumption 1), we know the output matrix C.

With the ROM matrices available, we can now design a discrete-time Luenberger observer of the form

zsk+1 = Âzsk + B̂sûk + L̂s(Ĉsz
s
k − yk), (15)

with the observer gain L̂s. It is well known [35] that observer gain can be designed by computing a positive
definite matrix P̂ such that

P− (Âs + L̂sĈs)P(Âs + L̂sĈs)
⊤ ≻ 0.
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Taking Schur complements of this matrix inequality yields[
P (Âs + L̂sĈs)P
⋆ P

]
≻ 0, (16)

where the ‘⋆’ notation implies that the matrix is symmetric. Performing a congruent transformation with
P−1, we get [

P−1 P−1(Âs + L̂sĈs)
⋆ P−1

]
≻ 0.

Substituting Ps = P−1 and Q̂s = P−1L̂s yields the linear matrix inequality (LMI)[
Ps PsÂs + Q̂sĈs

⋆ Ps

]
⪰ 0, (17)

in Ps ≻ 0 and Q̂s, which can be solved by standard semidefinite programming solvers, as long as rx is small
(empirically, < 50 ROM states). Such a design ensures that the state estimation error with the observer
gain L̂s = PsQ̂s is asymptotically stable, i.e., the estimate zsk → x̂k as k → ∞.

Pseudocode for sequential design is provided in Algorithm 1.

Algorithm 1 Sequential Design

Require: Data, X+, X̄
Require: Output matrix, C
Require: Target state dimension, rx
Require: Truncation value, r′ > rx
Require: Truncated SVD subroutine, [U,Σ,V] = svd(·, ·)

[Ū,∼,∼] = svd(X̄, r′)
Partition Ū =

[
Ū1 Ū2

]
Compute As and Bs as in (12)
[Û,∼,∼] = svd(X+, rx)
Compute Âs using (13b)
Compute B̂s using (13c)
Compute Ĉs using (14)
Solve the LMI (17) for Ps ≻ 0, Q̂s

Compute L̂s = PsQ̂s

return Âs, B̂s, Ĉs, L̂s

4. Model and Observer Co-Design

In this section, we propose a co-design method to simultaneously identify the system matrices and
observer gains directly from data; the co-design is done offline. The sequential design may result in an Âs

matrix for which the pair (Âs, Ĉs) is not observable, and therefore, no feasible solution to (17) will exist.
This is a fundamental problem that can break down the pipeline for subsequent controller design. In our
proposed co-design framework, we ensure that the identified system is observable, and that an observer is
guaranteed to exist.

4.1. System/Observer Co-Design

In the co-design setting, we assume that, like the sequential design, we have the snapshot data, and
therefore, we can perform SVD in order to compute the lower-dimensional data snapshot matrices. That is,
we have access to X+, X, and U, as per (9), and with Û we can compute Ĉs, as described in (14). We have
an additional assumption to enable the co-design; in practice, this assumption is mild.
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Assumption 2. The matrix
[
X⊤ U⊤]⊤ has full row rank.

In order to make this co-design tractable, we modify the original system identification cost function (7)
to the following weighted cost:

Jc =

∥∥∥∥∥ WL

(
X+ −

[
Âc B̂c

] [X
U

])
WR

∥∥∥∥∥
2

F

, (18)

where the system matrices Ac ∈ Rnx×nx and Bc ∈ Rnx×nu are the matrices to be identified in the co-
design, and WL and WR are the weighting matrices. The role of the weighting matrices is to enable a
convex relaxation of the co-design problem, as we shall see in this subsection. We reiterate that solving the
problem (18) could result in an Ac matrix such that (Ac, Ĉs) is not observable. In order to co-design Ac

and an observer gain Lc we can follow the same arguments made in the previous section, and rewrite (16)
as [

P (Âc + L̂cĈs)P

P(Âc + L̂cĈs)
⊤ P

]
≻ 0. (19)

by replacing Âs, L̂s with Âc, L̂c.
Let

WR =

[
X
U

]‡
and WL =

[
P−1 0
0 I

]
, (20)

where (·)‡ denotes the Moore-Penrose pseudoinverse operator. Note that WR exists because of Assump-
tion 2, and WL exists because P ≻ 0. Substituting WR and WL from (20) in (18), yields the equivalent
modeling cost function

Jc =

∥∥∥∥∥
[
P−1 0
0 I

](
X+

[
X
U

]‡
−
[
Âc B̂c

])∥∥∥∥∥
2

F

. (21)

Let

[X1 | X2] := X+

[
X
U

]‡
, (22)

where X1 ∈ Rnx×nx and X2 ∈ Rnx×nu . Minimizing the cost (21) is equivalent to minimizing its components

Jc,1(Âc) := ∥P−1(X1 − Âc)∥2F, (23)

Jc,2(B̂c) := ∥X2 − B̂c∥2F.

Clearly, the optimal B̂c = X2.
Our proposed sufficient condition required for the co-design, i.e., to obtain both a state matrix Âc

that minimizes (23) and is guaranteed to form an observable pair with Ĉs can be obtained by solving the
optimization problem

min
P,Ac,Lc

∥P−1(X1 − Âc)∥2F

subject to:

[
P−1 P−1Âc +P−1L̂cĈs

⋆ P−1

]
≻ 0.

(24)

With the following change of variables

P̄ := P−1, Āc := P−1Âc, L̄c := P−1L̂c, (25)
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we can formulate a set of LMIs given by

min
P̄,Āc,L̄c

∥P̄X1 − Āc∥2F

subject to:

[
P̄ Āc + L̄cĈs

⋆ P̄

]
≻ 0.

(26)

Essentially, this proves the following theorem.

Theorem 1. Suppose Assumptions 1–2 hold. If there exists matrices Āc, L̄c, and P̄ = P̄⊤ ≻ 0 such
that (26) holds, then the observer

zck+1 = Âcz
c
k + B̂cuk + L̂c(Ĉsz

c
k − yk) (27)

with state matrix Âc = P̄−1Āc, B̂c = X2 and observer gain L̂c = P̄−1L̄c exhibits error dynamics that are
asymptotically stable, that is, zck → x̂k as k → ∞.

The pseudocode for exact co-design is provided in Algorithm 2.

Algorithm 2 Exact Co-design

Require: Data, X+, X̄
Require: Output matrix, C
Require: Target state dimension, rx
Require: Truncated SVD subroutine, [U,Σ,V] = svd(·, ·)

[Û,∼,∼] = svd(X+, rx)
Partition data using (22)
Compute Ĉs using (14)
Solve the SDP (26) for P̄, Āc, and L̄c

Compute Âc = P̄−1Āc

Compute L̂c = P̄−1L̄c

return Âc, B̂c = X2, L̂c

4.2. Burer-Monteiro Heuristics for Large-Scale LMIs

To obtain a good fit, the required model order may be large, that is, rx is large. Therefore, the set of LMI
conditions (26) may be large, implying that state-of-the-art SDP solvers based on interior point methods
may require prohibitive time to solve the co-design problem exactly. In fact, the worst-case computational
complexity incurred by solving an SDP with m×m matrices has been reported to be O(m6.5) [36]. For such
cases, we propose the use of Burer-Monteiro methods [37] to provide a tractable algorithm for computing
an approximate solution to (26). Note that these approximations typically result in suboptimal solutions,
but are scalable to high-dimensional SDPs. Heuristics based on Burer-Monteiro methods are discussed next.
Let

F =

[
P̄ Āc + L̄cĈs

⋆ P̄

]
denote the left hand side of the matrix inequality in (26). Suppose that there exists a matrix Ξ such that
F = ΞΞ⊤. Therefore, rank(F) = rank(Ξ). Since any feasible solution to the co-design LMI requires F ≻ 0,
F needs to be full rank.

Let F have the block representation

F =

[
F1 F2

F⊤
2 F3

]
.

10



Therefore, comparing blocks, we have F1 = P̄, F2 = Āc + L̄cĈs, and F3 = P̄. Following the philosophy of
Burer-Monteiro methods, we define Ξ as the decision variable matrix. Using Ξ we can replace the co-design
objective by constructing F using the outer product ΞΞ⊤, and recasting the problem (26) as

min
Ξ,L̄c

∥F1X1 − F2 + L̄cĈs∥2F + ∥F3 − F1∥2F =: J (28)

since P̄ = F1, and Āc = F2 + L̄cĈs. The distance between F1 and F3 needs to be minimized in order to
ensure they are both identical to P̄.

The approximated co-design problem (28) can be solved using gradient-based methods. In particular,
the gradients of f(U, L̃c) with respect to U and L̃c are given by

∇ΞJ =

[
∇ΞJ11 ∇ΞJ12

⋆ ∇ΞJ22

]
,

∇L̄c
J = (F1X1 − F2 + L̄cĈsF1)(ĈsF1)

⊤,

where

∇ΞJ11 = (F1X1 − F2 + L̄cĈsF1)(X1 + L̄cĈs)
⊤ − 2(F3 − F1),

∇ΞJ12 = −X1F3 + F2 − L̄cĈsF3,

∇ΞJ22 = F3X1 − F2 + L̄cĈsF3)(X1 + L̄cĈs)
⊤ + 2(F3 − F1).

Since this problem has a large number of decision variables (all the elements of Ξ), we use a scalable, low-
memory quasi-Newton method called L-BFGS for solving this problem; c.f. [38]. The pseudocode is provided
in Algorithm 3.

Algorithm 3 Co-design with Burer-Monteiro Heuristics

Require: Data, X+, X̄
Require: Output matrix, C
Require: Target state dimension, rx
Require: Truncated SVD subroutine, [U,Σ,V] = svd(·, ·)
Require: Full rank Ξ

[Û,∼,∼] = svd(X+, rx)
Compute Ĉs using (14)
Solve (28) using L-BFGS with F = ΞΞ⊤

Partition F into F1, F2, F3

Compute P = F−1
1

Compute Lc = P̄−1L̄c

Compute Ac = F2 − L̄cĈs

return Ac, Bc, Lc

5. Results and Discussion

In this section, we compare the proposed co-design algorithm with a sequential design approach. We begin
by describing the numerical solver and the data collection methodology. Subsequently, we demonstrate that
even for the simpler Advection Diffusion equation, the sequential design pipeline may result in instability of
the observer. Finally, we show that the co-design eliminates this problem, and we illustrate the effectiveness
of the co-designed system on the more challenging Boussinesq equations. All simulations are executed on
an Intel Core i5 CPU with 8 GB RAM.
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5.1. Data Collection

5.1.1. Advection Diffusion PDEs

We used the method of lines to approximately solve the advection-diffusion system; see Section 2.1.1
for the complete description and notation. Obtaining solutions for the Advection Diffusion PDEs involves
discretizing the spatial domain Ω and replacing the PDE with a system of ordinary differential equations
(ODEs), which can then be integrated in time. For the spatial discretization, we developed a stencil matrix
A based on finite volume methods. For the convection terms, we use second-order Gaussian integration, and
for diffusion equations we use Gaussian integration with central-difference-interpolation. The computational
domain Ω is represented by a 50×50 grid such that T (x, t) is a 2500 dimensional real-valued vector. For the
purpose of mesh sensitivity analysis, we used a finer grid of 100×100, which resulted in essentially the same
behaviour. Finally, we used MATLAB’s ode45 for generating the snapshots. We generate 2000 snapshots,
sampled at every 0.5 s, for 1000 s. The initial temperature for simulation was set to be 230K uniformly. No
exogenous input was added to the system, but boundary condition noise produced excitory dynamics.

5.1.2. Boussinesq PDEs

For numerical solution of the Boussinesq system (4), we use OpenFOAM [39], an open-source object-oriented
finite-volume based CFD software with a collocated grid arrangement. The solver is based on the OPEN-
FOAM native solver buoyantBoussinesqPimpleFoam. Pressure and velocity are decoupled using the SIMPLE
algorithm [40]. For the convection terms, we use second order Gaussian integration with the Sweby limiter to
account for propagation of density fronts, and numerical stability. For diffusion, we use Gaussian integration
with central-differencing-interpolation. The advective terms in the energy equation are discretized using the
second order upwind scheme of the van Leer method. The time integration was performed with the implicit
Crank-Nicolson method, which is second-order bounded. The discretized algebraic equations are solved us-
ing the Preconditioned biconjugate gradient method. The mesh sensitivity analysis is performed to ensure
independence of results from the number of nodes. The dataset is generated with initial conditions at 251 K
for temperature (uniformly) and airflow velocity is zero. This replicates a common real-world condition for
quiescent rooms. The sampling time for collecting the snapshots is chosen to be 0.5 s, in accordance with the
Nyquist-Shannon sampling theorem. Furthermore, we verify via numerical simulations that such a sampling
time is much smaller than the initial transients for both temperature and velocity fields to ensure that the
collected snapshots capture the relevant dynamics. We selected one temperature sensor for this simulation,
whose location is at the boundary of the left and right large circulations (see Fig. 1) adjacent to the bottom
wall, as representative of coherent structures consistent with [41]. We set the time horizon of simulations to
be long enough time to capture all the dominant phenomena. The CFD simulations illustrate that the time
horizon is well beyond the settling times of the relevant dynamics. Our solver has been verified for various
buoyancy-driven application within the built environment and more details can be found in [31, 42]. The
same integration time step was used as in the previous example, and the inputs were boundary condition
noise, snapshots are collected as the system’s transients decay and the system reaches steady-state.

5.2. Instability with Sequential Design: Illustrative Example

Even for the linear Advection Diffusion system, we see that the sequential method does not always
succeed. Based on the data obtained from this system we employ Algorithm 1 for a sequential design and
Algorithm 2 for an exact co-design. Figure 2 shows a subset of the eigenvalues of (As+LsCs) (corresponding
to the highest magnitude) for i) sequential design and exact co-design. It is apparent that, for the sequential
case, a pair of eigenvalues (blue) lie outside the unit circle (cyan, dashed) rendering the discrete-time
estimation error dynamics of the observer (15) unstable. Conversely, the co-design eigenvalues (red) based
observer (27) results in stable error dynamics.

5.3. Numerical Results for Boussinesq System

In this section, we consider the problem of jointly estimating the model and observer for the Boussinesq
system described in Section 2.1.2.
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Figure 2: Eigenvalue map of (As + LsCs) for sequential design and exact co-design. Only the highest magnitude poles are
shown. A slice of the unit circle is shown with dashed cyan lines.

Sequential Design. We apply DMDc (Algorithm 1) to our dataset. The dimension of the data-set is 39, 600
with the full-order model. The target dimension found for the algorithm is rx = 34, which is a reduction of
three orders of magnitude. The resulting system matrices are then used to compute a Luenberger observer
following Algorithm 1. If DMDc results in no instabilities, this procedure is quite straight-forward and
inexpensive, but empirically, we found that this method fails quite often as the observer generated does not
exhibit desired stability properties.

Co-design. We follow the procedure presented in Section 4 for jointly computing the system matrices and
observer. Specifically, we use Algorithm 3 to solve the co-design SDP via scipy.optimize. L-BFGS
maintains a history of the past m updates of the decision variables and gradient; we use m = 10. The
gradient is computed using autograd which is intrinsic to scipy.optimize.

L-BFGS can handle much larger problems than classical quasi-newton methods due to its inherently low
memory usage. However, it is still difficult to solve the problem in hand (start dimension = 39600). The
state dimension is thus reduced to 100 using a truncated SVD. It is worth noting that although the state-
space is relatively small (rx = 100), the variable space for the optimization problem (26) is 20100, which is
too large for standard solvers like CVX or YALMIP. The progress of the L-BFGS algorithm is measured using a
Euclidean norm of the gradient. When this Euclidean norm is below ϵ = 10−3, we terminate the algorithm.

Figure 3 shows results pertaining to model identification. The top plot shows the temperature profile
at 100 unique locations in the room. The bottom plot shows the relative error1 for the sequential and
co-design models against CFD simulations: it is clear that our proposed co-design method has significantly
lower relative error compared to sequential design. Both of these results indicate that the model obtained
using co-design is in good agreement with the generated data. From the bottom subplot, we see that the co-
design model has very small relative error with respect to the CFD data. This is a beneficial property of the

1Relative error % = 100 × (CFD data - ROM outputs) / CFD data
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Figure 3: (Top) Temperature profiles of 100 different locations in the room. (Bottom) Relative error % for both methods with
respect to the given CFD simulation data.

co-design; note however, that this does not imply that the model identified is exactly the same as the CFD
model, since this low relative error is for a specific location in the room. The extrapolative properties of the
model will be illustrated via the state estimation plots later in this subsection. This is further corroborated
with the contour plot shown in Figure 4. Here, we consider snapshots of the simulation at various times.
The flow is originated from the top boundary, and due to the momentum and the gravitational forces, the
cold air starts to mix with the ambient. In the process, large vortical patterns form at the tip of inlet,
which intensify the mixing. After some time, say t = 200, there is clear subdivision between left and right
of the room, which now exhibit temperature disparities. We see that the distribution of temperature at
each time is closely captured in the top plot (co-design) in relation to the bottom (CFD simulation). More
importantly, vital features of flow, such as the boundary of left/colder to the right/warmer region is fully
captured in the results of ROMs obtained by co-design.

Figure 5 shows shows the relative estimation error % for the sequential and co-design models against
CFD simulations. The co-design method has significantly lower relative estimation error as compared to
sequential. While both sequential and co-design demonstrate non-zero final estimation error after 600 s, that
is because the identified model has a mismatch with the true dynamics. While the code-design finishes with
an estimate that exhibits small drift, the sequential estimate worsens with time and starts to demonstrate
instability, further motivating the use of co-design methods in practice. A time-wise comparison of state
estimation with only the co-design observer is illustrated in Fig. 6. From t = 10 s, note that the initial
conditions of the observer and the system are not identical. While there are certainly state estimation errors
in specific tempeerature values, it is clear the the overall trends are quite similar over the transient. At
quasi-steady-state (t = 1500 s), the performance of the observer is excellent and visual inspection of the
bottom right subplot yields no discernible differences even at the corners of the space, demonstrating the
potential of the co-design method.
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t = 10s t = 30s

t = 200s t = 1500s

Figure 4: Model Fit: Temperature distribution in the room at various times in the simulation. In each subplot, we show
simulations for identified model using co-design (upper) and the true model (lower).

6. Conclusions

The problem of estimating fully turbulent flows, described by Boussinesq equations is studied in presence
of uncertainties such as disturbance inputs on walls and unmodeled dynamics. Due to the large-scale system
at hand, which are in turn result of discretized PDEs, a dynamic mode decomposition method is used for
identifying a reduced-order state-space model that enables estimator design. An advantage of our proposed
approach is that the model is constructed directly from data, and does not require the direct solution of
Boussinesq equations which would make the problem intractable on-line due to scalability issues. Based on
the DMDc model, we propose sequential and simultaneous co-design formulations for model identification
and observer design. We demonstrate that even with simpler PDEs like the Advection Diffusion system,
sequential design may result in instabilities of the state estimation error dynamics, which is eliminated
with co-design. Since the co-design results in a complex optimization problem that is not tractable with
standard SDP solvers, we propose heuristics for enabling the solution of such problems based on quasi-
Newton approaches. Our proposed methodology can also be used in a wide range of applications involving
large-scale systems that exhibit turbulent flows such as drag reduction in aerospace systems and wind energy
systems.
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Figure 5: Estimation: Relative estimation error % for both sequential and co-design methods.

t = 10s t = 30s

t = 200s t = 1500s

Figure 6: Estimation: Temperature distribution in the room at various times in the simulation. In each case, we show the
estimated state using co-design (top) and the true temperature (bottom).
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