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Abstract

Model compression methods are important to allow for
easier deployment of deep learning models in compute,
memory and energy-constrained environments such as mo-
bile phones. Knowledge distillation is a class of model
compression algorithms where knowledge from a large
teacher network is transferred to a smaller student network
thereby improving the student’s performance. In this paper,
we show how optimal transport-based loss functions can
be used for training a student network which encourages
learning student network parameters that help bring the
distribution of student features closer to that of the teacher
features. We present image classification results on CIFAR-
100, SVHN and ImageNet and show that the proposed opti-
mal transport loss functions perform comparably to or bet-
ter than other loss functions.

1. Introduction
Deep convolutional neural networks are currently the

most effective methods for many applications in computer
vision including image classification and object detection
[22]. However, network architectures yielding state-of-
the-art network accuracies are memory and compute heavy
[6]. Furthermore, recent evidence shows that it is nec-
essary for neural networks to be overparameterized for
gradient-based training procedures to be maximally effec-
tive [34, 3, 49]. This makes it difficult to employ them in
resource-constrained environments such as mobile phones,
drones etc. In order to overcome this disadvantage and
reduce computational and memory requirements for in-
ference, several model compression techniques have been
shown to be of value. In particular, many knowledge dis-
tillation methods have been devised in order to improve
the accuracy of smaller networks – student networks – by
transferring the knowledge from more accurate larger neu-
ral networks – teacher networks [8]. Such approaches can
reduce the network size by about 5× with only a small
drop in accuracy. The focus of this paper is however to de-
velop a novel knowledge distillation approach by devising

loss functions based on the optimal transport cost between
teacher and student feature distributions.

As mentioned above, different classes of methods have
been developed for model compression such as (a) pruning,
where weights which do not affect the performance are re-
moved [43, 38, 17], (b) training compact CNNs with spar-
sity constraints [27, 50, 44], (c) low-rank approximations
of convolutional filters and weights [16, 45, 35, 20] and (d)
knowledge distillation where the performance of a smaller
student network is improved by transferring the knowledge
from a larger more accurate teacher network [5, 19]. These
methods can also be combined with each other for improved
performance. Please read this excellent survey by Cheng et
al. [8] for a more detailed treatment of these ideas.

In this paper, we consider an important class of knowl-
edge distillation methods where a new loss function is used
to train the student network in addition to the cross-entropy
loss so as to encourage the student features to more closely
match the teacher features. Optimal transport is a principled
method of comparing two distributions which may not share
support [42, 33]. We show that it is naturally applicable to
the task of knowledge distillation and we design novel loss
functions based on optimal transport tailored for the task of
knowledge distillation. In our case, the two distributions are
given by discrete measures of the student and teacher fea-
tures, and the loss function encourages learning a student
network that reduces the optimal transport cost between the
two sets of features. We employ two different computation-
ally efficient algorithms for computing the optimal transport
cost on-the-fly while optimizing for the student network pa-
rameters. We conduct experiments on image classification
on a variety of teacher-student network pairs using standard
datasets and show that optimal transport-based losses help
improve student network accuracies better than other com-
parable losses which match teacher and student features.
We now review in more detail some closely related works
in the literature.



2. Background and related work

2.1. Knowledge distillation methods

The earliest methods of knowledge distillation (KD)
were developed by Buciluǎ et al. [5] and Hinton et al. [19]
and have proven to be an effective method for transferring
the knowledge learned by a complex teacher neural network
into a simpler student network. Here, the basic idea is to
use the softmax outputs of the last layer of the teacher net-
work (i.e., soft labels) in the loss to train the student net-
work, along with the usual cross-entropy loss to map to the
one-hot vector given by the ground-truth label. Kullback-
Leibler (KL) divergence, or a closely related variant, is used
as the additional loss function between student outputs and
the teacher’s outputs, as both are probability distributions
over the class labels and share support. In this paper, fol-
lowing recent works, we will refer to this loss as the KD
loss. However, KD loss takes into account only the final
outputs. Subsequent papers have looked at ways of exploit-
ing intermediate layer outputs of the teacher network (i.e.
from internal network layers) to further guide the training
of the student network as in FitNets [36], attention trans-
fer [48], relational knowledge distillation (RKD) [30], prob-
abilistic knowledge transfer [31] etc. When combined with
KD, all these methods result in significant improvements
over KD alone. FitNets tries to match intermediate feature
maps of teachers and students exactly, which may be too
rigid of a constraint. On the other hand, RKD first com-
putes pairwise relationships among teacher and student fea-
tures in a batch and matches these geometric relationships
between intermediate feature maps, rather than the feature
maps themselves, which may be too loose of a constraint.
Attention transfer (AT) [48] matches intermediate attention
maps which are derived from intermediate feature maps.

In contrast to these methods, we propose a new loss for
knowledge distillation based on optimal transport, to com-
plement the standard KD loss. The central idea is to use
optimal transport (OT) distance to measure the distance be-
tween the distributions of teacher and student feature maps
in intermediate layers of the network. Another closely re-
lated work is Neuron Selectivity Transfer (NST) [21] which
employs Maximum Mean Discrepancy (MMD) to measure
the distance between the teacher and student feature sets.
MMD is an alternative class of geometry-aware distances
between distributions and is computed using the distance
between kernelized versions of the teacher and student dis-
tributions. However, MMD suffers both from theoretical
and practical drawbacks [13]. Theoretically, MMD does
not faithfully capture the notion of distance in the original
space. And practically, its gradient vanishes at the extreme
points of the feature space. However, MMD is more easily
scalable to large batches, compared to OT. We also note that
recent methods also allow for interpolating between MMD

and OT [13], however we do not investigate this direction in
this paper. We also point readers to recent works by Menon
et al. [28] and Zhou et al. [51] for a more theoretical treat-
ment of knowledge distillation.

A recent paper based on the idea of using contrastive ob-
jectives [39] called Contrastive Representation Distillation
[40] shows improvements over standard KD. The basic idea
is to use a contrastive loss [39] to compare features from in-
ternal layers between a teacher and a student network. For
every pair of teacher and student features corresponding to
the same input image, referred to as a ”positive” pair, a large
set of ”negative” teacher-student pairs is stored in memory.
The authors then devise an algorithm to learn a student net-
work that brings feature vectors in the positive pair closer
to each other and drives feature vectors in negative student-
teacher pairs away from each other. It achieves state-of-
the-art accuracy on CIFAR-100. However, one of the draw-
backs is that the method need access to large amounts of
memory to store the large number of negative examples. We
will refer to this loss as CRD. We consider this idea to be
complementary to both KD, as well as various other match-
ing losses like FitNets, NST and OT. That is, in principle,
contrastive versions of FitNets and OT can also be devel-
oped and we consider this to be part of our future work.
In our experiments, we show that combining OT + KD +
CRD improves the state of the art for knowledge distillation
for CIFAR-100. We also show results for optimal transport
knowledge distillation using ImageNet and SVHN where
we achieve results competitive with or better than the cur-
rent state of the art.

2.2. Optimal transport for other applications in
computer vision

Optimal transport is a principled, theoretically well-
studied problem and is applicable to tasks where the notion
of distance between two distributions is important [42]. The
optimal transport problem was first studied in the late 18th
century as a formalization of the problem of minimizing the
cost of transporting resources to different locations. Around
1970, the concept of the Wasserstein distance (also known
as the Earth Movers Distance) was proposed for a version
of the optimal transport problem as a way of measuring the
cost of transforming one probability distribution into an-
other [12]. As a way of comparing probability distributions,
the Wasserstein distance does not require the two distribu-
tions to have overlapping support unlike KL-divergence, for
example. So in the case of comparing two distributions of
feature vectors, if the distributions do not overlap, the KL-
divergence would be infinity, while the Wasserstein distance
would be a positive real number measuring the distance fea-
ture vectors in one distribution need to be moved to cover
the feature vectors in the other.

In terms of applications to computer vision, optimal



transport has previously been employed for domain adapta-
tion, where the features of an unseen test domain are trans-
formed into the training domain so as to achieve invariance
to domain transformation [9]. In a similar vein, it has been
applied to the problem of style transfer where the low-level
features of a content image are transformed in such a way
that they more closely match those of a style image [24].
Optimal transport loss functions have also been used to im-
prove generative models as in the papers by Salimans et al.
[37] and Genevay et al. [15]. We are the first to propose us-
ing optimal transport as a cost function for improved model
compression.

3. Optimal transport for knowledge distillation
Given a trained teacher network and a student network

which is to be trained using a gradient-based method, we
pass a training set with b images through both the networks.
Let the teacher features be X = {x(l)

1 ,x
(l)
2 , . . .x

(l)
b } and the

corresponding student features be Y = {y(l)
1 ,y

(l)
2 , . . .y

(l)
b }

for some intermediate layer l. Let c and ĉ be the ground-
truth class-conditional distributions (one-hot encodings)
and the corresponding predictions by the student network.
The student network is trained by minimizing a combined
loss function given by

L = LCE(c, ĉ) + α

lmax∑
l=1

LOT (X
(l), Y (l)), (1)

where LCE(·, ·) is the usual cross-entropy loss used for
classifcation and LOT (·, ·) is the proposed optimal trans-
port loss. lmax is the total number of layers at the which
the sets of features are compared. In particular, we use
the Wasserstein-1 metric, also called the Earth Movers Dis-
tance. α ∈ R is used to balance the two losses. As we
will discuss later, additional loss terms can be added to the
above such as KD loss (LKD) [19] and CRD loss [40] with
appropriate weights. For example, we can combine LOT

and LKD as

L = LCE(c, ĉS)+α

lmax∑
l=1

LOT (X
(l), Y (l))+γLKD(ĉS , ĉT ).

(2)
Note that, in order to convert the given discrete feature

sets into distributions, we use a uniformly scaled Dirac (unit
mass) measure at each point. The optimal transport cost is
given by

LOT (X
(l), Y (l)) = min

T≥0

∑
i,j

T
(l)
i,j C

(l)
i,j

s.t.
∑
i

T
(l)
i,j =

∑
j

T
(l)
i,j =

1

b
,

(3)
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Figure 1. The figure illustrates the motivation for the proposed
combination of cross-entropy loss with optimal transport for distil-
lation. The student features yj’s get closer to the teacher features
xi’s of the right class. Otherwise, the cross-entropy loss becomes
high. However, note that yj can be closest to xi, where i ̸= j.
This is indeed a good solution for maximizing student accuracy
and the one-to-one corresponding alignment of teacher and stu-
dent features is not a requirement. Optimal transport allows this
solution and potentially results in greater flexibility when learning
student features.

where T (l) ∈ Rb×b is called the transport matrix which
encodes the soft-alignment between the two sets of vec-
tors and C is the cost matrix which contains the distance
between all teacher-student feature pairs at layer l. By
T (l) ≥ 0, we mean that ∀i, j, T (l)

i,j ≥ 0. In the case of
model compression, we want to learn the student parameters
such that the optimal transport cost is reduced. This means
that the student features should be geometrically close to
the teacher features. In this paper, we employ the cosine
distance on the unit sphere as the cost function. That is,

C
(l)
i,j = 1−

x
(l)T
i y

(l)
j∥∥∥x(l)

i

∥∥∥∥∥∥y(l)
j

∥∥∥ , (4)

∥·∥ is the Euclidean norm. We assume here that the in-
termediate features of both the teacher and the student have
the same number of dimensions for all l ∈ {1, . . . , lmax}.
We relax this assumption later in some of the experiments.

Motivation and key insight: The OT loss function can be
seen as a compromise between FitNets and RKD. It can be
observed that this loss is less restrictive than FitNets [36]
as it allows different examples fom the teacher features to
be aligned to the student features as well as soft alignment,
while it is more strict than RKD [30] as it requires the fea-
tures to come closer to each other as measured by the dis-
tance function. To elaborate, the OT loss function is com-
puted between two sets of features and is minimized when
the two sets are equal even if only up to a permutation. As
we are matching distributions of feature maps rather than



directly matching feature maps, this constraint is less strin-
gent than that used by FitNets. However, the constraint im-
posed by optimal transport is more stringent than the con-
straint imposed by RKD of merely matching pairwise geo-
metric relationships computed separately in the teacher and
student feature spaces. Our conjecture is that a loss based
on optimal transport provides a better balance as a way of
encouraging student feature maps to be similar to teacher
feature maps. Our experiments will show that OT loss com-
bined with KD loss improves over KD alone and also does
better than FitNets + KD and RKD + KD. Figure 1 provides
a clear illustration of the potential effect of the loss function
presented in Equation 1 on the student features.

The expression for LOT is computationally prohibitive
to compute and scales cubically with b. Instead, we turn
to two more tractable versions of the same expression, as
discussed below.

3.1. Inexact Proximal Optimal Transport (IPOT)

A popular way of reducing the computational complex-
ity of the OT problem is by adding an entropic regulariza-
tion term [10], which we call regularized OT (ROT):

LROT (X
(l), Y (l)) = min

T≥0

∑
i,j

T
(l)
i,j C

(l)
i,j + ϵh(T )

s.t.
∑
i

T
(l)
i,j =

∑
j

T
(l)
i,j =

1

b
,

(5)

where h(T ) =
∑

i,j Ti,j log(Ti,j) measures the entropy
of the transportation matrix. The problem can then be
solved efficiently using Sinkhorn iterations [4] which has
been shown to scale close to quadratically with the batch
size b [2]. However, the efficiency and numerical stability
are sensitive to the choice of ϵ and in practice it is diffi-
cult to tune. Having too small a value ϵ leads to signifi-
cantly larger number of Sinkhorn iterations needed for con-
vergence, while having a large value of ϵ leads to numerical
instability.

In this paper, we employ an improved version called the
Inexact Proximal point method for exact Optimal Transport
(IPOT) by Xie et al. [46] in order to compute LOT and
henceforth refer to this method as IPOT shown in Algorithm
3.1. Here, inexact proximal point iterations based on Breg-
man divergence are used. There exist works which show
fast linear convergence under certain conditions for such
methods. Xie et al. [46] show both theoretically and ex-
perimentally that the algorithm overcomes the drawbacks of
earlier methods and converges to the exact solution with the
same computational complexity as the Sinkhorn iterations.
We note that it is easy to integrate algorithms to compute
optimal transport with deep learning toolboxes with auto-
matic differentiation and many dedicated libraries have also
been developed for this purpose [14, 7].

Algorithm 1 Algorithm to compute IPOT(µ, ν, C) [46]
1: Input: The scaled Dirac masses µ, ν at the feature

points in X,Y and the cost matrix C computed using
Eqn. (4)

2: Output: The optimal transport cost LOT =∑
i,j T

∗
i,jCi,j

3: Initialize: v← 1
b1b, Gi,j = e−

Ci,j
β , T (0) ← 11T

4: while t < N do
5: Q← G⊙T (t), where⊙ is the element-wise product
6: u← µ

Qv ,v←
ν

QTu

7: T (t+1) ← diag(u)Qdiag(v)
8: end while

3.2. Relaxed Earth-Mover’s Distance (REMD)

As we will see from the experiments, although IPOT per-
forms well, the training time can be quite long, depending
on the number of Sinkhorn iterations. Instead, we consider
a computationally efficient relaxation of the optimal trans-
port problem following the work of Kusner et al. [26]. In-
stead of solving Equation (3), two simpler problems are first
generated by dropping one set of constraints. We then have

R
(1)
OT (X

(l), Y (l)) = min
T≥0

∑
i,j

T
(l)
i,j C

(l)
i,j s.t.

∑
i

T
(l)
i,j =

1

b

R
(2)
OT (X

(l), Y (l)) = min
T≥0

∑
i,j

T
(l)
i,j C

(l)
i,j s.t.

∑
j

T
(l)
i,j =

1

b
.

(6)

The final relaxed EMD (REMD) is computed using

LREMD(X(l), Y (l))

= max(R
(1)
OT (X

(l), Y (l)), R
(2)
OT (X

(l), Y (l)))

=
1

b
max

∑
i

min
j

C
(l)
i,j ,

∑
j

min
i

C
(l)
i,j

 (7)

4. Experimental results

4.1. CIFAR-100 [25]

This dataset1 consists of 50000 training images and
10000 test images. Each image needs to be classified into
1 of 100 fine-grained categories. Each class has about 600
images in the dataset. All the images are in RGB format
and are of size 32× 32.

We use the same teacher and student combinations as in
the paper by Tian et al. [40] as they provide a common

1https://www.cs.toronto.edu/ kriz/cifar.html



Teacher
Student

WRN-40-2
WRN-16-2

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

resnet32x4
ShuffleNetV2

Teacher 75.61 72.34 74.31 74.31 79.42 74.64 79.42
Student (no distillation) 73.26 69.06 69.06 71.14 72.50 70.36 71.82

KD [19] 74.92 70.66 70.67 73.08 73.33 72.98 74.45

CRD [40] 75.48 71.16 71.46 73.48 75.51 73.94 75.65
CRD+KD 75.64 71.63 71.56 73.75 75.46 74.29 76.05

FitNet [36] 73.58 69.21 68.99 71.06 73.50 71.02 73.54
AT [48] 74.08 70.55 70.22 72.31 73.44 71.43 72.73
SP [41] 73.83 69.67 70.04 72.69 72.94 72.68 74.56
CC [32] 73.56 69.63 69.48 71.48 72.97 70.71 71.29
VID [1] 74.11 70.38 70.16 72.61 73.09 71.23 73.40
RKD [30] 73.35 69.61 69.25 71.82 71.90 71.48 73.21
PKT [31] 74.54 70.34 70.25 72.61 73.64 72.88 74.69
AB [18] 72.50 69.47 69.53 70.98 73.17 70.94 74.31
FT [23] 73.25 69.84 70.22 72.37 72.86 70.58 72.50
FSP [47] 72.91 n/a 69.95 71.89 72.62 70.23 n/a
NST [21] 73.68 69.60 69.53 71.96 73.30 71.53 74.68

REMD 74.19 70.66 70.76 72.96 73.97 72.45 73.58
REMD + KD 75.79 71.59 70.98 73.66 76.06 74.35 76.66
IPOT 74.79 71.04 70.79 72.87 74.19 72.80 73.97
IPOT + KD 75.63 71.32 71.29 73.68 75.99 74.29 76.78

Table 1. Comparison of various knowledge distillation methods on the CIFAR-100 dataset [19]. We are reporting the Top-1 accuracy (%)
on the test set. We observe that the OT loss functions proposed in this paper – REMD and IPOT – generally outperform or are very close to
all comparable methods which also measure similarity between internal teacher and student features such as FitNets, RKD etc. We find that
IPOT leads to slightly better performance compared to REMD. All the numbers except for the OT losses are retrieved from [40]. Although
using a contrastive objective i.e., CRD yields better results than other loss functions, OT + KD leads to the best results in several cases.
The best results without KD are shown in bold and the best results with KD are shown in red. In row 2, ”Student” refers to the student
networks trained without using a distillation loss. The numbers for the OT losses are averaged over 3 runs and the standard deviation are
shown in Table 4.

framework for benchmarking various knowledge distilla-
tion methods. The teacher and student networks on which
we conduct experiments, the number of weights and the cor-
responding compression ratios are given in the supplement.

Implementation details: All the hyperparameters are
held constant for all the methods, We use a batch size of 64
and train for 240 epochs. An initial learning rate of 0.05 is
used and reduced by multiplying by 1

10 after 150, 180, 210
epochs. We use Top-1 accuracy on the test set to compare
the performance between various distillation methods. We
compare our method with several other recent and popular
knowledge distillation methods that also encourage similar-
ity between teacher and student features at different layers
including FitNets [36], RKD [30], AT [48], SP [41], CC
[32], PKT [31], AB [18], FT [23], FSP [47] and NST [21],
as well as KD [19] and CRD [40].

We report results on two methods of calculating the OT
distance: REMD and IPOT and furthermore, the combina-
tion of the OT losses with KD and CRD. All the student

networks are divided into 4 stages of approximately equal
depth, independent of the architecture or depth of the over-
all network. The output of the fourth stage is the penul-
timate layer output, immediately before the softmax oper-
ation. During training of student networks, along with the
softmax outputs required to calculate the cross-entropy loss,
features at the outputs of these 4 intermediate stages for
both student and teacher features are extracted. Then OT
losses can be computed for one or more of four sets of fea-
tures between the student and teacher which is also the pro-
cedure used for all the baseline algorithms. The number of
stages used for loss computation is a hyperparameter. For
all of our main experiments, we compute and add the OT
loss between all four sets. Later, as an ablative study, we
show that even computing the OT loss at a single layer can
yield close to optimal performance.

Also note that when the teacher and student architectures
are different as in the case of resnet32x4/ShuffleNetV2,
we use additional embedding layers which map from the
teacher space to the student space, following FitNets [36]



and CRD [40]. In particular, if the features being compared
are from the penultimate layer, we use separate linear layers
to map both the teacher and student features to a common
dimensional space. When the features being compared are
derived from intermediate convolutional layers, we use ad-
ditional convolutional layers to map the teacher features to
the same dimensionality and shape as the student features.
In our experiment with resnet32x4/ShuffleNetV2, the em-
bedding dimensionality for the penultimate layer is set to
128.

When adding the OT loss to cross-entropy, we experi-
mented with two weights for the OT loss (see Eq. (1)),
α = 0.9, 1.0 and we report the better of the two results
in the main paper based on a validation set. Accuracies ob-
tained for both values for IPOT are provided in Table 2.
When using IPOT, we employ β = 20 following Xie et al.
[46] and the number of proximal point iterations, N = 50,
as it provides a good balance between training time and ac-
curacy. In our experiments on an Nvidia GTX 1080, REMD
and IPOT take about 2.5 hours and 10 hours, respectively,
for training.

Features used for loss computation IPOT IPOT + KD

Output of stage 1 73.59 75.20
Output of stage 2 74.01 75.39
Output of stage 3 74.25 75.53
Output of stage 4 73.27 75.66

Using outputs of all 4 stages 74.19 75.99
Table 2. Contribution of IPOT loss to performance per layer used
for loss computation. We report the Top-1 accuracy (%) on the
CIFAR-100 test set using resnet32x4 teacher and resnet8x4 stu-
dent. Note that resnet8x4 without distillation yields 72.50% accu-
racy.

Results: All the main results for CIFAR-100 are shown
in Tables 1 and 3. The results for the baseline methods are
taken from the paper by Tian et al. [40]. Table 1 contains
the Top-1 accuracy on the CIFAR-100 test using various
knowledge distillation methods for various pairs of teacher-
student architecture pairs. We make the observation that
both REMD and IPOT either outperform or yield similar
performance to all comparable baselines with the exception
of CRD. Note that CRD uses a contrastive objective, un-
like all the other methods. More importantly, in Table 3, we
show results when we combine various loss functions with
the KD loss. Again, we see similar trends as before. How-
ever, the boosts in performance are more pronounced for
both REMD+KD and IPOT+KD, which outperform all the
baseline loss functions, including CRD+KD, for nearly all
teacher-student pairs. We also show that we can obtain fur-
ther improved results by combining IPOT+CRD+KD. For
this setting, we use an equal weight of 1.0 for all the four
loss terms. This is just an illustration that a combination

of more loss terms can result in better performance. This
may occur with other combinations of other loss functions.
However, conducting such a large experiment to find the
optimal combination is beyond the scope of this paper.

Ablation study: In the experiments above, we use the stu-
dent and teacher features from all four layers to compute
the OT loss. Here, we find out their individual contribu-
tion to the final performance when using IPOT, as shown
in Table 2. Surprisingly, we find that even though using all
layers yields better performance, even computing the OT
loss on a single layer yields nearly as good performance for
this dataset. It is possible that combining specific pairs or
triplets of layers rather than using all layers, may lead to
even better performance.

Effect of α and γ for IPOT-based loss functions: The
loss function used to train the student networks is given
in Equation (2). It shows that, in addition to the usual
cross-entropy loss LCE(·, ·) (between the ground-truth la-
bels written as a one-hot encoding c and the output of the
student network ĉ), we add the optimal transport (OT) loss
proposed in this paper, weighted by α, and the KD loss [19]
weighted by γ. For the experiment on CIFAR-100, we in-
vestigate the effect of α and γ, and the results for different
teacher-student pairs are shown in Table 4. All the numbers
show the top-1 accuracy on the test set averaged over 3 runs.
Additionally, the table also shows the standard deviation for
the 3 runs.

Transportation matrix from using the optimal transport
loss: We conduct the following analysis on the trained
models on CIFAR-100 using the proposed IPOT loss func-
tion for training the student models. For each teacher-
student pair, we compute the final layer features for all the
images in the test set (10000 images) throughout the train-
ing process. We then compute the transportation matrix T
using IPOT. T is of size 10000 × 10000, and thus, can-
not be visualized easily. Instead, we compute the trace
tr(T ) =

∑
i Ti,i. Note that T is normalized appropri-

ately such that, if each student feature is aligned exactly
with the corresponding teacher feature, tr(T ) = 1.0. Fig-
ure 2 shows the evolution of tr(T ) as the student network
is trained. We see that, even when the training is finished,
the student features are not exactly aligned with the corre-
sponding teacher features. At the same time, the test set
performance produced by this method is higher than most
other KD methods. Particularly surprising are the results
of resnet32x4/resnet8x4 and WRN-40-2/WRN-16-2 where
the final tr(T ) is only about 0.88. This can be interpreted
as, on average, 12% of the student features not being ex-
actly aligned with the corresponding teacher features, but



Teacher
Student

WRN-40-2
WRN-16-2

resnet110
resnet20

resnet32x4
resnet8x4

vgg13
vgg8

resnet32x4
ShuffleNetV2

Teacher 75.61 74.31 79.42 74.64 79.42
Student (no distillation) 73.26 69.06 72.50 70.36 71.82

KD [19] 74.92 70.67 73.33 72.98 74.45

CRD+KD [40] 75.64 71.56 75.46 74.29 76.05

FitNet+KD [36] 75.12 70.67 74.66 73.22 75.15
AT+KD [48] 75.32 70.97 74.53 73.48 75.39
SP+KD [41] 74.98 71.02 74.02 73.49 74.88
CC+KD [32] 75.09 70.88 74.21 73.04 74.71
VID+KD [1] 75.14 71.10 74.56 73.19 74.85
RKD+KD [30] 74.89 70.77 73.79 72.97 74.55
PKT+KD [31] 75.33 70.72 74.23 73.25 74.66
AB+KD [18] 70.27 70.97 74.40 73.35 74.99
FT+KD [23] 75.15 70.88 74.62 73.44 75.06
NST+KD [21] 74.67 71.01 74.28 73.33 75.24

REMD + KD 75.79 70.98 76.06 74.35 76.66
IPOT + KD 75.63 71.29 75.99 74.29 76.78
IPOT + CRD 75.57 71.47 76.06 74.30 76.81
IPOT + CRD + KD 76.22 71.81 76.82 74.79 76.81

Table 3. Comparison of various knowledge distillation methods on the CIFAR-100 dataset when combined with KD loss [19]. We are
reporting the Top-1 accuracy (%) on the test set. We can easily observe that the OT loss functions proposed in this paper – REMD+KD and
IPOT+KD – outperform all comparable methods which measure similarity between internal teacher and student features. All the numbers
except for the OT losses are retrieved from [40]. We also see that CRD + KD, which proposes a contrastive objective produces similar
performance as REMD+KD and IPOT+KD. The best results are shown in red and the second best results are shown in bold. In row 2,
”Student” refers to the student networks trained with only the usual cross-entropy loss and without using a distillation loss. The numbers
for the OT losses are averaged over 3 runs and the standard deviation are shown in Table 4.

Weights

Teacher
Student WRN-40-2

WRN-16-2
resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

resnet32x4
ShuffleNetV2

α = 0.9, γ = 0.0 74.17± 0.62 71.04± 0.32 70.79± 0.39 72.87± 0.06 74.19± 0.50 72.75± 0.15 73.06± 0.20
α = 1.0, γ = 0.0 74.79± 0.09 70.64± 0.13 70.67± 0.05 72.66± 0.07 74.03± 0.18 72.80± 0.29 73.97± 0.62
α = 0.9, γ = 1.0 75.63± 0.21 71.21± 0.28 71.29± 0.24 73.54± 0.25 75.99± 0.04 74.29± 0.31 76.78± 0.12
α = 1.0, γ = 1.0 75.35± 0.20 71.32± 0.22 71.18± 0.54 73.68± 0.57 75.88± 0.41 74.21± 0.36 76.37± 0.51

Table 4. Effect of α and γ on the Top-1 accuracy for CIFAR-100 classification for IPOT and KD, and the corresponding standard deviation
over 3 runs.

more with the features of other images, as shown in Figure
1 of main paper.

4.2. Imagenet [11]

The ILSVRC2012 dataset2, also called the ImageNet
dataset is a large database containing 1.2 million RGB im-
ages in the training set and 50000 RGB images in the val-
idation set. The task is image classification and each im-
age belongs to one of 1000 categories. As the test set is not
available, the validation set is itself employed as the test set.
All the images are resized to 224×224 for training. We con-

2http://www.image-net.org/download-images Figure 2. tr(T ) during training.



Teacher Student KD Online KD * CRD CRD+KD AT SP CC IPOT IPOT+KD

Top-1 26.69 30.25 29.34 29.45 28.83 28.62 29.30 29.38 30.04 29.54 28.88
Top-5 8.58 10.93 10.12 10.41 9.87 9.51 10.00 10.20 10.83 10.48 9.66

Table 5. Top-1 and Top-5 error rates (%) on ImageNet validation set for different knowledge distillation losses. The teacher network is
ResNet-34 and the student network is ResNet-18. IPOT+KD performs close to the state-of-the art which is CRD+KD. ”Student” refers to
the student network trained with only the usual cross-entropy loss and without using a distillation loss.

T-S pair Teacher Student KD CRD CRD+KD FitNet Fitnet+KD RKD RKD+KD PKT PKT+KD REMD REMD+KD IPOT IPOT+KD

resnet32x4
resnet8x4

94.36 90.39 94.49 94.96 95.47 91.32 94.48 93.30 94.58 90.77 94.38 89.66 94.49 91.63 94.73

WRN-40-2
WRN-16-2

94.52 93.45 95.22 94.74 95.25 93.93 95.27 95.23 95.39 93.68 95.15 93.15 94.94 94.28 95.41

Table 6. Accuracy (%) on the SVHN test set for different knowledge distillation losses for two teacher-student (T-S) pairs. IPOT+KD yields
state-of-the-art performance for WRN-40-2/WRN-16-2 and the second-best results for resnet32x4/resnet8x4. The best results are shown
in red and the second best results are shown in bold. ”Student” refers to the student networks trained with only the usual cross-entropy
loss and without using a distillation loss.

duct our experiment comparing the proposed optimal trans-
port loss using IPOT with other loss functions which are
applied at the intermediate layers including AT, SP and CC,
as well as KD and CRD. A pretrained ResNet-34 released
by PyTorch serves as the teacher network while a ResNet-
18 is used as the student network. The results are shown
in Table 5 where we report the Top-1 and Top-5 error per-
centages on the validation set for all the methods. We see
that IPOT loss leads to comparable performance with other
loss functions while CRD clearly performs the best. When
IPOT is combined with KD, the top-1 error rate decreases to
28.88% which is comparable to the 28.62% top-1 error rate
using CRD+KD. Note that the all the results except those
involving IPOT loss function are reported as in the paper by
Tian et al. [40].

4.3. SVHN dataset [29]

The Street View House Numbers (SVHN) 3 contains im-
ages belonging to 10 classes consisting of 10 digits 0-9
cropped from real world images of house numbers. The
images are of size 32 × 32 and have RGB channels. The
training set contains 73257 images and the test set con-
tains 26032 images. We perform a similar set of experi-
ments as in the case of CIFAR-100. We use two pairs of
teacher-student networks and for training the student net-
works, we use a batch size of 200, an initial learning rate of
0.001 and 150 epochs for training the networks. The learn-
ing rate is reduced by multiplying by 1

10 after 80, 110, 135
epochs. The remaining hyperparameters are identical to
those employed for the experiments on CIFAR-100. We
compare IPOT and REMD with KD, FitNets, RKD, PKT
and CRD for two sets of teacher-student pairs. The results
thus obtained are shown in Table 6. We immediately see

3http://ufldl.stanford.edu/housenumbers/

that IPOT outperforms REMD in all cases. Overall, IPOT
yields better results than other loss functions except CRD
and RKD for this dataset. However, when KD is added to all
the loss functions, IPOT+KD yields state-of-the-art perfor-
mance for WRN-40-2/WRN-16-2 and the second-best re-
sults for resnet32x4/resnet8x4.

5. Discussion

In this paper, we proposed loss functions for model com-
pression based on optimal transport. The loss functions
measure the distance between the distribution of features
from a teacher network and the distribution of student fea-
tures. Minimizing these losses while training student net-
works encourages them to learn features that belong to the
same distribution as the teacher. We verified experimen-
tally on CIFAR-100, ImageNet and SVHN that the pro-
posed losses perform better or as well as various other loss
functions proposed in the KD literature. This is true across
many teacher-student architecture pairs as well. This work
suggests a future direction in developing “contrastive” opti-
mal transport loss functions for knowledge distillation, fol-
lowing the work of [39], is a promising direction. The loss
functions can encourage bringing closer teacher and stu-
dent distributions for positive pairs and push farther apart
distributions for negative pairs. These losses could further
take into account the semantic content in the training im-
ages while creating positive and negative pairs. (CRD only
labels a teacher/student feature pair as positive if it comes
from the same image, as opposed to coming from the same
object class.) Another interesting avenue involves develop-
ing and employing faster methods for comparing distribu-
tions such as using interpolated distances between MMD
and OT which combines advantages of both methods [13].
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