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Abstract
Blind pansharpening addresses the problem of generating a high spatial-resolution multi-
spectral (HRMS) image given a low spatial-resolution multi-spectral (LRMS) image with the
guidance of its associated spatially misaligned high spatialresolution panchromatic (PAN)
image without parametric side information. In this paper, we propose a fast approach to
blind pansharpening and achieve state-of-the-art image reconstruction quality. Typical blind
pansharpening algorithms are often computationally intensive since the blur kernel and the
target HRMS image are often computed using iterative solvers and in an alternating fash-
ion. To achieve fast blind pansharpening, we decouple the solution of the blur kernel and
of the HRMS image. First, we estimate the blur kernel by computing the kernel coefficients
with minimum total generalized variation that blur a downsampled version of the PAN im-
age to approximate a linear combination of the LRMS image channels. Then, we estimate
each channel of the HRMS image using local Laplacian prior to regularize the relationship
between each HRMS channel and the PAN image. Solving the HRMS image is accelerated
by both parallerizing across the channels and by fast numerical algorithms for each channel.
Due to the fast scheme and the powerful priors we used on the blur kernel coefficients (total
generalized variation) and on the cross-channel relationship (local Laplacian prior), numer-
ical experiments demonstrate that our algorithm outperforms state-of-the-art model-based
counterparts in terms of both computational time and reconstruction quality of the HRMS
images.
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Abstract—Blind pansharpening addresses the problem of gen-
erating a high spatial-resolution multi-spectral (HRMS) image
given a low spatial-resolution multi-spectral (LRMS) image
with the guidance of its associated spatially misaligned high
spatial-resolution panchromatic (PAN) image without parametric
side information. In this article, we propose a fast approach
to blind pansharpening and achieve the state-of-the-art image
reconstruction quality. Typical blind pansharpening algorithms
are often computationally intensive since the blur kernel and
the target HRMS image are often computed using iterative
solvers and in an alternating fashion. To achieve fast blind
pansharpening, we decouple the solution of the blur kernel and
of the HRMS image. First, we estimate the blur kernel by
computing the kernel coefficients with minimum total generalized
variation that blur a downsampled version of the PAN image to
approximate a linear combination of the LRMS image channels.
Then, we estimate each channel of the HRMS image using local
Laplacian prior(LLP) to regularize the relationship between each
HRMS channel and the PAN image. Solving the HRMS image is
accelerated by both parallelizing across the channels and by fast
numerical algorithms for each channel. Due to the fast scheme
and the powerful priors we used on the blur kernel coefficients
(total generalized variation) and on the cross-channel relationship
(LLP), numerical experiments demonstrate that our algorithm
outperforms the state-of-the-art model-based counterparts in
terms of both computational time and reconstruction quality of
the HRMS images.

Index Terms—blind image fusion, pansharpening, local Lapla-
cian prior, total generalized variation

I. INTRODUCTION

PANSHARPENING is a data fusion technique that aims
to generate well-aligned multi-spectral (MS) and panchro-

matic (PAN) images preserving both the spectral resolution of
the MS image and the spatial resolution of the PAN image.
In remote sensing, the physical constraints of an onboard
imaging system limit the ability to simultaneously capture
high spectral and spatial resolution from the raw data. Instead,
two types of images with complementary spectral and spatial
characteristics are generated. Specifically, the images involve
a multi-spectral image with multiple channels covering a wide
electromagnetic spectrum, each of which is of low spatial
resolution, and a panchromatic image which records a wide
electromagnetic spectrum in a single channel but with higher
spatial resolution. Practically, the raw MS and PAN images are
often misaligned relative to each other, since they are typically
captured by imaging sensors at different spatial positions.
The gaps in spectral and spatial resolution, as well as the
spatial misalignment, necessitate a pansharpening algorithm
to address the fusion of the MS and PAN images.

The fusion objective of a pansharpening algorithm ensures
that each of the generated MS channel shall 1): be well-aligned
to the PAN image; 2) carry the same spatial resolution as the
PAN image; and 3) carry similar sharpness to the PAN image.
For notational convenience, we refer to the target MS image as
the high spatial-resolution multi-spectral (HRMS) image and
the input MS image as the low spatial-resolution multi-spectral
(LRMS) image.

Various approaches to the pansharpening problem can be
found in the literature [1]. Those approaches vary with differ-
ent extents of information on the imaging platform, e.g., the
spatial displacement between the HRMS and PAN images,
the point spread functions corresponding to the LRMS and
PAN channels, and the spectral responses of the multi-spectral
sensors for simulating the PAN image. In this article, we
focus on addressing the blind pansharpening problem. Namely,
we assume other than the LRMS and PAN images and their
associated electromagnetic spectra, none of the following
information is known: 1) the displacement between the LRMS
image and the PAN image; 2) the point spread functions
corresponding to the LRMS and the PAN images; and 3)
the spectral responses of the MS sensors. The assumptions
are rooted in the fact that the available information about
the sensors is often scarce. Even though the information is
available, the actual responses can be inconsistent with the
responses provided by the manufacturers due to the diversity
of the physical scenes and atmospheric turbulence. Enforcing
such inconsistency when solving the pansharpening problem
can lead to performance degradation.

Blind pansharpening is an ill-posed inverse problem. One
challenging aspect is how to deal with the spatial mis-
alignment. Traditional approaches perform registration before
pansharpening. However, registration cannot guarantee precise
alignment and tiny misaligned registration can lead to a
significant performance drop on pansharpening stage. Later
approaches overcome this drawback by jointly modeling the
spatial alignment and the relative blur between the LRMS
image and the HRMS/PAN images as center-shifted blur
kernel coefficients. The blur kernel coefficients are solved in
a unified optimization framework where the objective func-
tion regularizes the blur kernel coefficients, the relationship
between the HRMS image and the PAN image, as well as
the relationship between the LRMS image and the HRMS
image. Within the optimization framework, the blur kernel
coefficients and the target HRMS images are often solved by
iterative numerical algorithms. These approaches that employ
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regularization and are solved via optimization algorithms are
often called model-based approaches.

The success of model-based blind pansharpening ap-
proaches heavily depends upon the quality of modeling the
blur kernel coefficients. The major reason is that the measured
LRMS images are modeled as downsampled version of the
convolution of the blur kernel with the associated HRMS
images. Therefore, the blur kernel coefficients significantly
influence the low frequency components of the target HRMS
images, which constitute the vast majority of the signal energy.
Simões et al. [2] proposed HySure which regularizes the blur
kernel by penalizing the `2 norm of its gradients. Such ap-
proach often generate non-zero coefficients far from the peak
and violates the short-support property of blur kernels. Later
approaches [3], [4] utilized Total Variation (TV) to regularize
the blur kernel’s gradients. TV-based regularizers are beneficial
to preserving the kernel’s compact spatial support. However,
they force small gradients to be 0 and form a sharp boundary
surrounding the peak of the coefficients. These characteristics
of the blur kernels regularized by TV violate the overall
smoothness of blur kernel coefficients.

The success of model-based blind pansharpening ap-
proaches is also rooted in the quality achieved in modeling
the cross-channel relationship between the HRMS image and
the PAN image. Current state-of-the-art blind pansharpening
approaches often utilize variational approaches to model the
cross-channel relationship. Typical models exploit the spectral
correlation between the HRMS and the PAN channels [2], [5],
low-dimensionality of the cube consisting of the HRMS and
the PAN channels [2], the overall piecewise smoothness of the
target HRMS image [5], and the local linear model between an
MS channel and a PAN image [4], [6]. Unfortunately, the spec-
tral correlation-based model is flawed since the PAN image is
not necessarily approximated by a linear combination of the
MS channels and forcing such constraint in the pansharpening
stage often lead to spectral distortion. In addition, the local
linear model in [4] imposes constraints on the pixel domain
(including low- and high-frequency components) of the HRMS
image and conflicts with the data fidelity term that regularizes
the low-frequency components of the HRMS image. This com-
promises the regularization on the low-frequency subbands and
leads to performance drop.

In addition to the limitations on regularizers, current model-
based blind pansharpening approaches often demand high
computational cost. This is because they [4], [6] iteratively
solve for the blur kernel and the HRMS image in an alternating
fashion. HySure largely saved the computational cost by
decoupling the solution of the blur kernel and the HRMS
image. However, the pansharpening stage requires hundreds
of iterations. Wei et al. [5] proposed a fast algorithm rooted
in R-FUSE [7]. This algorithm offered a close-form solution
accelerated by the Fast Fourier Transform (FFT). Yet, it failed
to handle spatial misalignment. It is worth mentioning that
an unrolled projected gradient descent convolutional neural
network (PGDCNN) proposed by Lohit et al. [8] exploits the
convolutional neural networks (CNN) to replace the projection

operator within the optimization framework. This approach
can be considered as the hybrid approach combining the in-
gredients of both model-based and learning-based approaches.
PGDCNN managed to efficiently implement blind pansharp-
ening on GPU. However, due to the limited remote-sensing
dataset to train the network, its capability to deal with a large
variety of blur and spatial misalignment is limited.

In this article, we propose a novel model-based approach
that efficiently addresses the blind pansharpening problem with
state-of-the-art image quality. This approach utilizes novel and
powerful regularizers on both the blur kernel coefficients and
on the cross-channel relationship (between the HRMS image
and the PAN image). To save the overall computational cost,
our approach not only decouples the solution of the blur
kernel and the HRMS image but also accelerates solving each
HRMS channel via a fast algorithm. In addition, our approach
allows parallelizing the solution of the HRMS images in a
channel-wise fashion to save runtime. In summary, our article
contributes to the following:

1) We use second-order total generalized variation
(TGV2) [9] to regularize the blur kernel coefficients,
which offers a more robust and more accurate estimation
of the blur kernel than existing TV-based and `2-based
priors.

2) We propose a novel local Laplacian prior (LLP) to
regularize the relationship between each HRMS channel
and the PAN image, which offers better performance than
related regularizers on the cross-channel relationship.

3) We propose a fast numerical algorithm that accelerates
the estimate of the HRMS images via efficient solutions
in a parallel, channel-wise fashion.

The remaining sections of this article are organized as
follows. In Section II, we formulate the problems in an opti-
mization framework. In Section III, we provide the numerical
algorithm to address the optimization problems. In Section
IV, we first validate the advantages of our regularizers in
controlled experiments. Then, we assess the performances
of the proposed approach and compare it with state-of-the-
art blind pansharpening approaches. Section V concludes the
article and draws future developments.

II. PROBLEM FORMULATION

A. Notation

In this article, we use X ∈ Rhw×N to denote the measured
LRMS image with N spectral channels, where h and w are the
height and width of each channel, respectively. We denote the
measured PAN image as Y ∈ RHW×1, where H and W are
its height and width, respectively. H and W are multiples of h
and w with the same ratio, i.e. (H/h) = (W/w) = c, c > 2.
The target HRMS image is denoted as Z ∈ RHW×N . The
blur kernel is denoted as u ∈ Rn2×1, where n is significantly
smaller than h and w. We typically denote a single channel of
an image by stacking their columns into a vector. For example,
the i th channel (1 6 i 6 N ) of the HRMS image Z is denoted
as Zi. Also, we use A> to denote the Hermitian transpose of a
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matrix A and ‖A‖F to denote the Frobenius norm of a matrix
A, i.e., the squared root of the sum of squared entries in A.
The 2-D circular convolution operator is denoted as ~ so that
the result of circularly convolving an image (e.g., Y) with u
is also an image of the same dimension of the input (e.g.,
HW × 1).

B. General Formulation

We formulate an objective function in an optimization
framework to appropriately regularize the relationship between
the target HRMS image and the measured LRMS image, the
blur kernel coefficients, and the cross-channel relationship
between the PAN channel and the HRMS channels. The
problem is formulated as

min
Z,u

1

2
‖DB(u)Z−X‖2F + R1(u) + R2(Z,Y), (1)

where the first term is the data fidelity term that forces the
blurred and downsampled version of the HRMS image to be
close to the LRMS image. In the first term, the blur kernel
u incorporates the spatial displacement of Y and X, and
the relative blur between Z and a version of X prior to
downsampling. B(u) ∈ RHW×HW is the Toeplitz matrix
implementing the convolution of the HRMS image Z with
the blur kernel u, and D ∈ Rhw×HW is the downsampling
operator. The second term R1(u) is the regularizer on the blur
kernel coefficients. The third term R2(Z,Y) is the regularizer
on the relationship between the HRMS image and the PAN
image.

C. Efficient Surrogate

Solving (1) is typically computationally-intensive, since it
necessitates many iterations to solve the blur kernel and the
HRMS image in an alternating fashion. To pursue an efficient
solution, we decouple the estimation of the blur kernel and
the estimation of the HRMS image in (1). Specifically, we
first estimate the blur kernel and then perform pansharpening.
When solving the blur kernel u, we choose not to regularize
the downsampled and blurred version of the HRMS image
to approximate the LRMS image as our previous work [6]
did. Instead, we exploit a well-known observation that the
PAN image can be well approximated by a linear combi-
nation of its corresponding well-aligned MS channels that
share the electromagnetic spectrum with the PAN image [10].
The observation was exploited by Simões et al. in [2] to
enforce an unknown linear combination of a known subset
of LRMS channels that are spectrally overlapped with the
PAN image to approximate the downsampled version of the
PAN image blurred by u. We denote these LRMS channels
as X′ ∈ Rhw×N ′ and the weights to linearly combine these
LRMS channels as ω ∈ RN ′×1, where N ′(N ′ 6 N) denotes
the number of MS bands overlapped with the PAN image in
the electromagnetic spectrum. We aim to solve the following
optimization problem for estimating the blur kernel u:

min
u,ω

1

2
‖X′ω −DB(u)Y‖2F + R1(u) + R3(ω), (2)

in which the first term is the data fidelity term to enforce
the blurred and then downsampled version of PAN image be
close to an image synthesized by the linear combination of
the PAN image’s corresponding LRMS channels. The second
term R1(u) is our regularizer on the blur kernel and the third
term R2(ω) is a regularizer on the weights. We will discuss
them in details in Section II-D and III-A.

Given the estimated u from solving (2), we solve the HRMS
image in a channel-wise, parallel fashion to save the runtime.
Namely, for the i th HRMS channel, we solve

min
Zi

1

2
‖DB(u)Zi −Xi‖2F + R2(Zi,Y), (3)

where the first term is the data fidelity term and the sec-
ond term is the regularizer on the cross-channel relationship
between the i th HRMS channel and the PAN image. The
regularizer on the cross-channel relationship will be detailed
in Section II-E.

D. The Blur Kernel Prior

In this article, we assume that the spatial misalignment is
strictly a translational shift between the HRMS/PAN images
and the LRMS images, and no rotational distortion is involved.
The spatial misalignment and the blur between the HRMS
images and the LRMS images are determined by center-shifted
blur kernel coefficients. Instead of using a parametric represen-
tation, for example, 2-D Gaussain kernels, to model the blur
kernel, we design a regularizer that targets generic properties
for the blur kernel. Namely, the blur kernel coefficients shall
be smooth, band-limited, and have compact spatial support
with a non-vanishing tail. Recognizing the aforementioned
drawbacks of `2-based and TV-based regularizers, we propose
to use a higher-order total variation based regularizer to
preserve higher-order smoothness of the blur kernel and to
simultaneously reject non-trivial coefficients far from the peak.
Therefore, we adopt the TGV2 [9] as the regularizer, given
by

R1(u) = min
p
{α1‖∇u− p‖2,1 + α2‖E(p)‖2,1}+ IS(u),

(4)
where ∇u = [∇hu ∇vu] ∈ Rn2×2 are the horizontal
and vertical gradients of u; p = [p1 p2] is an
auxiliary variable to approximate ∇u; E(p) =
[∇hp1 ((∇vp1 +∇hp2)/2) ((∇vp1 +∇hp2)/2) ∇vp2]
represents the first-order partial derivatives of p;
‖X‖2,1 =

∑n
i=1(

∑m
j=1 x

2
i,j)

1/2 represents the sum of
the vector norms of the partial derivatives of p, α1, α2 are
both scalars that control the regularization strength of p’s
approximation to ∇u and of the partial derivatives of p;

S = {S ∈ Rn
2×1|si > 0,

∑
i

si = 1} (5)

Equation (5) is a simplex, and IS(·) is its indicator function,
which ensures that the computed blur kernel’s coefficients are
non-negative and has sum equal to 1 to preserves the energy
of the image. The intuition behind using TGV2 is that the
desired smooth blur kernel shall also have small second-order
derivatives, which favors the minimization of α2‖E(p)‖2,1.
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E. The Cross-Channel Prior

The data-fidelity term in (3) reliably constrains the low-
frequency components of the HRMS image to match the
LRMS image. To recover the high-frequency components of
the HRMS image, we regularize the high-frequency com-
ponents of the HRMS image to be similar to those of the
PAN image. The similarity is rooted in the well-admitted
local linear model [11], i.e., for an image recording multiple
channels of the electromagnetic signals from the same scene,
the pixel values in a spatial block from a channel can be
well approximated by a linear affine function of the pixel
values in the same spatial block from another channel. Thus,
from the variational perspective if we were to regularize
the cross-channel relationship on high-frequency domain, we
can minimize the overall loss of approximating each block
of high-frequency components of a target channel by the
closest linear affine function of each block of high-frequency
components from another channel. In light of the variational
viewpoint inspired by the local linear model, we express the
regularization function as

R2(Z,Y) =

λ

2

∑
i,j

∑
k∈wj

[(
[L(Zi)]j,k − ai,j [L(Y)]j,k − ci,j

)2
+ εa2i,j

]
,

(6)
and name it as the local Laplacian prior (LLP) since we
use a 2-D Laplacian, expressed as L(·) to extract the high-
frequency component. In (6), the parameters are defined as
follows: λ is a scalar to control the regularization strength;
wj is the j th square window of size (2r + 1) × (2r + 1)
in a H × W image, with r an integer that is significantly
smaller than H and W ; k refers to the k th element within
the window, k = 1, 2, . . . , (2r + 1)2; L(Zi) = Zi ~ S, with

S =

 0 −1 0
−1 4 −1
0 −1 0

; ai,j and ci,j are scalar coefficients of

the linear affine function in window ωj , corresponding to the
Laplacian of the i th band; Zi is the i th band of Z; ε is a
constant to avoid having a large ai,j . The motivation behind
using the `2 loss here is to pursue a closed-form solution to
save the runtime.

It is worth noticing that Local Gradient Constraint (LGC)
from the literature [12] had the same idea as we do in terms of
regularizing the high-frequency components and demonstrated
impressive performance when regularizing the cross-channel
relationship. LGC is expressed as

R′2(Z,Y) =
λ

2

∑
i,j

∑
k∈ωj{[(

[Gh(Zi)]j,k − ahi,j [Gh(Y)]j,k − chi,j
)2

+ ε(ahi,j)
2

]
+

[(
[Gv(Zi)]j,k − avi,j [Gv(Y)]j,k − cvi,j

)2
+ ε(avi,j)

2

]}
,

(7)
where Gh(·) and Gv(·) are functions that compute the horizon-
tal and vertical gradient of the input image, respectively, i.e.,
Gh(Zi) = Zi~Sh, with Sh = [−1 1] and Gv(Zi) = Zi~Sv ,

Fig. 1: LGC’s regularization on 2-D frequency. The hori-
zontally and vertically shaded regions denote the schematic
pass band of the 2-D frequency response of the horizontal
and vertical gradients, respectively. A and B are two closely
located 2-D frequency components, in the intersected region
and the non-intersected region, respectively.

with Sv = [−1 1]>; ahi,j and chi,j , a
v
i,j and cvi,j are both

constant coefficients of the linear affine function in window
ωj , corresponding to the horizontal and vertical gradient of the
ith band. The major drawback of LGC lies in that its flawed
regularization on 2-D high-frequency components. Since the 2-
D high-frequency components whose 1-D absolute frequencies
are beyond π

2 (shown as the intersection of the horizontally and
vertically shaded regions in Fig. 1) will be more regularized
than the non-intersected shaded region, two high-frequency
components close to each other on the 2-D spectrum (e.g.,
A and B) are distinctly regularized. Therefore, LGC’s 2-D
high-frequency regularization is unreasonably non-smooth.

The power of LLP lies in multiple aspects:

1) Complimentary Regularization: the regularization on the
high-frequency domain avoids the HRMS image to bear a
resemblance to the PAN image in terms of low-frequency
components, which can compromise the effectiveness of
the data fidelity term in (3).

2) Adaption: our regularizer will favor the high-frequency
details in the HRMS image that are aligned with the PAN
image in terms of location and direction, and will not
force the unaligned details in the HRMS image to be
close to the details in the PAN image.

3) Smoothly-varying Regularization Strength: LLP will en-
force 2-D high-frequency components that are close on
the 2-D spectrum to have close regularization strictness.

4) Short Support: LLP’s kernel is small enough to allow
flexible regularization on fine details.

We will demonstrate the superiority of LLP over the related
regularizers in Section IV.
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III. PANSHARPENING ALGORITHM

A. Solving the Blur Kernel

Variables u and ω in (2) can be simultaneously solved by
the alternating direction method of multipliers (ADMM) [13]
with respect to both variables at the same time. However, we
choose to separately solve u and ω. The major reason is that
our solver for u is accelerated by the FFT, which necessitates
the coefficient matrix of u, (i.e. corresponding to ∇u in (4))
be Toeplitz. When combining u and ω as an individual vector,
the corresponding coefficient matrix will not be Toeplitz and
the FFT acceleration is no longer applicable.

Therefore, we decouple (2) into two sequential sub-
problems: solving ω and solving u. To estimate ω, we take
the same approach as [2]. To mitigate the effect of not
knowing u, we blur X′ω and DB(u)Y with strong blur
kernels. Specifically, we solve the following convex problem
for estimating ω:

min
ω

1

2
‖B(u1)X′ω −DB(u2)Y‖22 + R3(ω), (8)

where u1 ∈ R(2l+1)2×1 and u2 ∈ R(cl+1)2×1 are two
vectorized unit gain 2-D box filters with the window size of
(l+1)×(l+1) and (cl+1)×(cl+1), respectively. u1 and u2 are
low-pass filters with non-trivial l to make sure u will trivially
influence the estimation of ω. R3(ω) = (λω)/(2)‖∇ω‖22
penalizes the difference between consecutive entries of ω to
enforce neighboring MS bands to have similar weights. ∇ is
an operator that computes the differences and λω , a scalar,
is the regularization parameter. ∇ operator is effectively pre-
multiplying ω by G ∈ R(N ′−1)×N ′ , a matrix extracting the
gradients between the weights of adjacent bands. (8) can
be solved with a closed-form solution. After solving ω, we
estimate u via solve the following problem:

min
u,p

1

2
‖DC (Y)u−X′ω‖22+

α1‖∇u− p‖2,1 + α2‖E(p)‖2,1 + IS(u),
(9)

where we use C (Y)u to express B(u)Y since B(u)Y =
u ~ Y = Y ~ u = C (Y)u. C (Y) is a HW × n2 matrix,
each row of which stores Y’s pixels that convolve with the
blur kernel u to generate a pixel in the blurred Y.

To solve (9), we introduce constraints x = ∇u − p,
y = E(p), and z = u, and apply the classical augmented
Lagrangian method by minimizing

Φ(u,p,x,y, z,Λ1,Λ2,Λ3) =
1

2
‖DC (Y)z−X′ω‖22

+ α1‖x‖2,1 +
α1µ1

2
‖x− (∇u− p)−Λ1‖2F

+ α2‖y‖2,1 +
α2µ2

2
‖y − E(p)−Λ2‖2F

+ IS(z) +
µ3

2
‖z− u−Λ3‖22 ,

(10)
where µ1, µ2, µ3 > 0 are scalars. We solve the problem
using the generalized ADMM [14] by alternating between
a succession of minimization steps and update steps. After

applying the generalized ADMM, we arrive at the following
algorithms:

xt+1 = argmin
x
‖x‖2,1 +

µ1

2

∥∥x− (∇ut − pt)−Λt
1

∥∥2
F

yt+1 = argmin
y
‖y‖2,1 +

µ2

2

∥∥y − E(pt)−Λt
2

∥∥2
F

zt+1 = argmin
z

1

2
‖DC (Y)z−X′ω‖22 +

µ3

2

∥∥z− ut −Λt
3

∥∥2
2

+ IS(z)

(ut+1,pt+1) = argmin
u,p

α1µ1

2

∥∥xt − (∇u− p)−Λt
1

∥∥2
F

+

α2µ2

2

∥∥yt − E(p)−Λt
2

∥∥2
F

Λt+1
1 = Λt

1 + ρ(∇ut+1 − pt+1 − xt+1)

Λt+1
2 = Λt

2 + ρ(E(pt+1)− yt+1)

Λt+1
3 = Λt

3 + ρ(ut+1 − zt+1),
(11)

where ρ is a constant that controls the convergence. For fixed
positive µ1, µ2, and µ3, we typically choose 0 < ρ < (1 +√

5)/(2) to guarantee convergence based on the convergence
analysis in [14] and [15].

The x- and y- subproblems are similar to each other and
the solutions are given by component-wise soft-thresholding.
The l th row of xt+1 and yt+1 are updated using

xt+1(l) = shrink2(∇ut(l)− pt(l) + Λt
1(l),

1

µ1
), (12)

yt+1(l) = shrink2(E(pt)(l) + Λt
2(l),

1

µ2
), (13)

where shrink2(e, t) = max (‖e‖2 − t, 0) e
‖e‖2 .

To solve the z-subproblem, we first solve

min
z

1

2
‖DC (Y)z−X′ω‖22 +

µ3

2

∥∥z− ut −Λt
3

∥∥2
2
. (14)

Specifically, we first generate a hw × n2 matrix E =
DC (Y) and a hw × 1 vector f = X′ω in the first regu-
larization term. Then, (14) can be solved through

z = (E>E + µ3I)−1[E>f + µ3(ut + Λt
3)]. (15)

To enforce z in simplex S, we projects z onto S with the
algorithm’s details in [16].

The {u,p}-subproblem, that is, the fourth argmin problem
in (11), can be solved using the first-order necessary condi-
tions [17]. The detailed derivation can be found in Appendix
A. After introducing the solutions for all the subproblems
in (11), we conclude the algorithm for solving the blur kernel
in Algorithm 1.

B. Solving the HRMS Image

Given the estimated blur kernel u, solving the HRMS image
Z can be implemented by solving each channel in a parallel
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Algorithm 1 Blur Kernel Estimation

Initialization:
1. Input MS image X′ and PAN image Y.
2. Choose λω , R, l, α1, α2, µ1, µ2, µ3, ρ, ε, tmax, th.
3. Initialize Λ0

1, Λ0
2, Λ0

3, x0, y0, z0, u0, p0.
ω is given by solving (8).
For t = 0, 1, 2, . . . , tmax, run the following computations:

1. xt+1 is given by (12).
2. yt+1 is given by (13).
3. zt+1 is given by (15) and the algorithm in [16].
4. ut+1 and pt+1 are given by (34).
5. Λt+1

1 = Λt
1 + ρ(∇ut+1 − pt+1 − xt+1).

6. Λt+1
2 = Λt

2 + ρ(E(pt+1)− yt+1).
7. Λt+1

3 = Λt
3 + ρ(ut+1 − zt+1).

Until : ‖ut − ut+1‖2/‖ut+1‖2 < th.
Output:

blur kernel u.

fashion. Therefore, solving (3) effectively solves the following
problem for each channel

min
Zi,Ai,Ci

1

2
‖DB(u)Zi −Xi‖22+

λ

2

∑
j

∑
k∈ωj

[(
[L(Zi)]j,k − ai,j [L(Y)]j,k − ci,j

)2
+ ε(ai,j)

2

]
,

(16)
where Ai, Ci are the vectors storing all ai,j , ci,j corre-
sponding to Zi. (16) is a multi-convex, non-convex problem.
Fu et al. [12] proposed to use a Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [18] to address this problem.
This solver can be computationally intensive since it often
requires a large number of iterations. To shorten the runtime,
we aim to compute a better initial estimate of Zi (i.e. Z0

i ) to
save the number of iterations. Generally speaking, the closer
Z0
i to the solution of (16), the fewer iterations are needed.

To efficiently compute Z0
i , we aim to estimate Z0

i by solving
a problem with a closed-form expression as a function only
of u, Xi and Y, without involving Ai, Ci. Fortunately, this
closed-form expression exists based on Theorem 1 from [19]
which states that the minimum of the expression

J(α,a, c) =
∑
j∈I

∑
k∈ωj

[(
αj,k−ajIj,k−cj

)2
+ ε(aj)

2

]
(17)

among all the choices of a, c, is α>Mα, where k refers to the
kth element within a window, aj and cj are scalars coefficients
of the linear affine transform in window ωj that maps the
pixels in image I to another image α: αi ≈ aIi + c,∀i ∈ ω,
M is a HW ×HW sparse matrix, where its (m,n) th entry
is (1 6 m 6 HW, 1 6 n 6 HW )∑
k|(m,n)∈wk

[
δmn −

1

|wk|

(
1 +

(Im − µk) (In − µk)
ε
|wk| + σ2

k

)]
.

(18)
Here, δmn is the Kronecker delta, µk and δ2k are the mean and
variance of the intensities in the window wk around k, and
|wk| is the number of pixels in this window. Because matrix

M was originally proposed to solve the natural image matting
problem, we call M the matting matrix of image I .

Equation (17) is the same as the second term in (16) except
with different notations. Similar to (16), (17) minimizes the
overall loss of approximating each block of image α by the
closest linear affine function of the co-located block in I . The
α that minimizes J(α,a, c) is analogous to the L(Zi) that
minimizes the second term in (16). α is constrained to be
within the null space of matrix M and should be regularized
via an extra constraint to have a unique solution. Therefore,
we involve the data fidelity term in (16) as the constraint and
solve Z0

i by solving

min
Z0
i

1

2
‖DB(u0)Z0

i −Xi‖22 +
λ

2
(LZ0

i )
>MLY(LZ0

i ), (19)

where L ∈ RHW×HW denotes the Toeplitz matrix of the
Laplacian operator and MLY is the matting matrix of the
Laplacian of the PAN image. Equation (19) can be solved
with a closed form expression:

Z0
i = (B>D>DB + λL>MLYL + εIHW )−1(B>D>Xi).

(20)
Here IHW is a HW × HW identity matrix and ε is a very
small constant to make sure B>D>DB+λL>MLYL+εIHW
is invertible. Z0

i in (20) is numerically solved by the conjugate
gradient method. Since MLY is a sparse matrix, solving (20)
is fast. We will verify its usefulness in initializing a closer
approximation to the solution of Zi in Section IV-G.

Due to Z0
i ’s close distance to the converged result, we use

only one iteration involving solving Ai,Ci-subproblem and
solving Zi-subproblem to generate the pansharpened Z.

1) Solving Ai, Ci-Subproblem: The Ai,Ci-subproblem
can be solved by guided image filtering. ai,j , ci,j can be stably
computed using L(Zi)’s local window as the input image and
L(Y)’s local window as the guide imageai,j =

1
(2r+1)2

∑
k∈ωj [L(Y)]j,k[L(Z0

i )]j,k − µi,j p̄i,j
(σi,j)2 + ε

ci,j = p̄i,j − ai,jµi,j ,
(21)

where µi,j and σi,j are the mean and stand deviation of L(Y)
in the j th window ωj . p̄i,j is the mean of L(Zi) in ωj .

2) Solving Zi-Subproblem: Given the solved Ai, Ci

from (21), we denote L̂z
i as the output of guided image filtering

using L(Y) as the guide image and using L(Zi) as the filtering
input. Solving the Zi-subproblem is effectively solving

min
Zi

1

2
‖DB(u)Zi −Xi‖22 +

λ

2
‖LZi − L̂z

i ‖22, (22)

Zi can be solved by the conjugate gradient method. To
accelerate the solution, we take the approach of [20] and
replace the iterations in the conjugate gradient method with
a single iteration with a few FFT operations. In the interest of
space, we refer the readers to [20], [21] for details.

We conclude the details of our fast approach in solving the
pansharpening problem given the blur kernel in Algorithm 2.
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Algorithm 2 Fast Pansharpening

Initialization:
1. Input MS image X, PAN image Y and blur kernel u.
2. Choose λ, r, ε.
3. Compute Matting Matrix MLY by solving (18).

For i = 1, 2, . . . , N , do in parallel:
Compute Z0

i via (20).
Solve Ai, Ci via (21) given Z0

i and Y.
Solve Zi via (22) (accelerated by FFT) given Ai, Ci, u.

Output:
HRMS image: Z.

C. Summary of the Blind Pansharpening Scheme

Since the spatial misalignment between the LRMS and PAN
images in remote sensing data are typically bounded to a
few pixels, the estimation of ω is sufficient to have a good
estimation of the blur kernel and the pansharpened images. Re-
finement of ω via (2) given u provides marginal improvement
on image quality. Therefore, the blind pansharpening scheme
involves Algorithm 1 and 2 for only once without iterative
loops. We summarize our scheme as:

1) Solve the blur kernel via Algorithm 1;
2) Solve the HRMS image via Algorithm 2.

IV. NUMERICAL EXPERIMENTS

A. Dataset

To evaluate the proposed approach, we run it on extensive
datasets, Pavia University, Moffett, Los Angeles, Cambria
Fire, Chikusei [22], and Stockholm, from various remote-
sensing platforms.

1) Pavia University: a 4-channel MS image (blue, green,
red and infra-red) and a PAN image, both of spatial resolution
610 × 338. These images are synthesized from the Pavia
University dataset using the spectral response of the IKONOS
satellite: each MS channel or PAN is generated by a weighted
linear combination of bands of hyper-spectral imagery span-
ning the 430− 860-nm spectral range from the ROSIS.

2) Moffet, Los Angeles, Cambria Fire: the dataset is from
AVIRIS NASA airborne hyper-spectral dataset with a MS
imager with 16 channels and a PAN image of spatial resolution
of 512×512. These images are synthesized using the AVIRIS
hyper-spectral image database so that each MS image channel
is a weighted linear combination of hyper-spectral channels.

3) Chikusei: the original Chikusei dataset is an airborne
hyper-spectral dataset spanning 363 ∼ 1018 nm and mosaiced
by multiple images from the Headwall Hyperspec-VNIR-C
imaging sensor. It involves 128 bands of images, each of
which has the spatial resolution of 2517 × 2335. Using the
same technique as we synthesized Pavia University dataset,
we synthesize a 4-channel MS image and a PAN image and
crop three typical regions: manmade, grass, farmland, and a
region of the mixture of these three regions, each of whose

channels has 512 × 512 pixels. We name them as Manmade,
Grass, Farmland, Mix for notational convenience.

4) Stockholm: the original dataset is from World View-
2 satellite, downloaded from digitalglobe-marketing.
s3.amazonaws.com/product samples/Stockholm zipped/
Stockholm View-Ready 8 Band Bundle 40cm.zip, with 8
MS bands of images (Coastal, Blue, Green, Yellow, Red, Red
Edge, Near Infra-Red 1 and Near Infra-Red 2) of 1882×2335
spatial resolution and a PAN image of 9340 × 7528 spatial
resolution. We crop 10 pairs of 128 × 128 LRMS and
512 × 512 PAN images as the dataset. We draw the reader’s
attention that the ground-truth HRMS image is not available.
The quantitative metric on the pansharpening quality without
the reference will be detailed in Section IV-C.

B. Simulating the LRMS images

The MS bands of images from Pavia University, Mof-
fett, Los Angeles, Cambria Fire and Chikusei will be blurred
and downsampled without adding noise to simulate the ob-
served MS images. The motivation behind not adding noise is
because in many satellite images, the physical size of each
pixel are large and the Time Delay Integration (TDI) [23]
technique allows effective noise cancellation. In addition, we
model the blur kernel as the convolution of a 2-D Gaussian
with the motion blur. The Gaussian blur is due to the difference
of the motion-free point spread functions corresponding to the
PAN and the LRMS images and is modeled as follows

g(x, y) =
1

Σg
e−

(x−cx)2+(y−cy)2

2σ2 , (23)

where σ is the standard deviation, (x, y) is an integer coor-
dinate, (cx, cy) is the coordinate of the peak of Gaussian and
carries the spatial misalignment information, the denominator
ΣG is the sum of all the coefficients to make sure the blur
kernel has unit gain. The motion blur is due to the difference
between the scan duration of each line of the PAN sensor
and the LRMS sensor. For the satellite platform where there
exists a ×4 resolution resolution gap between the PAN and
the LRMS images along horizontal and vertical dimensions,
scanning each line of LRMS sensor takes four times the
time as scanning each line of the PAN sensor. Therefore, in
this case, the motion blur is three-pixel wide. Likewise, the
motion blur is one-pixel wide when the resolution gap is ×2.
Considering the possible rotation of satellites [24], we assume
the direction along the satellite orbit not perpendicular to the
scan line of LRMS/PAN sensors, but with a θ offset. Therefore,
we model the motion blur as

h(x, y) =


δ(−x sin θ + y cos θ)

d
, ‖x cos θ + y sin θ‖ 6 d

2
0, otherwise,

(24)
where δ is the Dirac delta function, d is the width of the
motion blur. The blur kernel U is the convolution of g and
h and is expressed in (37) in Appendix B. We simulate
the LRMS images when the downsampling rate is 2 and
4 whose corresponding σ of g are 1 and 2, respectively.

digitalglobe-marketing.s3.amazonaws.com/product_samples/Stockholm_zipped/Stockholm_View-Ready_8_Band_Bundle_40cm.zip
digitalglobe-marketing.s3.amazonaws.com/product_samples/Stockholm_zipped/Stockholm_View-Ready_8_Band_Bundle_40cm.zip
digitalglobe-marketing.s3.amazonaws.com/product_samples/Stockholm_zipped/Stockholm_View-Ready_8_Band_Bundle_40cm.zip
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(For Pavia University, we crop the bottom and right borders
of each band of the ground-truth HRMS image to make sure
its spatial resolution is 608× 336 before downsampling by a
factor of 4.) Each set of simulated LRMS and PAN images
will be fed into the algorithm to generate the HRMS image.
For Stockholm without the ground-truth HRMS image we
directly feed the observed LRMS and PAN images into the
algorithm to generate the HRMS image.

C. Quantitative Metrics for Pansharpening Quality

To quantify the quality of pansharpening results, four met-
rics taken from the literature are used when a ground-truth
HRMS image is available, as in the case for datasets Pavia
University, Moffett, Los Angeles, Cambria Fire and Chikusei.
Notice that the intensities in all channels will be scaled within
the range of 0 to 255. The first index is Average Peak Signal-
to-Noise Ratio (PSNR), which is the mean of PSNRs of all
reconstructed HRMS channels, namely

PSNR(MŜ,MS) =
1

N

N∑
i

PSNR(MŜi,MSi), (25)

PSNR(MŜi,MSi) = 20 log10

(
255/

√
MSEi

)
, (26)

and N is the number of spectral bands of a MS image,

MSEi = 1
HW

∥∥∥MŜi −MSi

∥∥∥2
2
, MŜi,MSi ∈ RHW×1 refer

the i-th channel of estimated HRMS image and the i-th
channel of ground-truth HRMS image, respectively. We also
use Average Regressed PSNR (PSNRreg) [25] as an index
to make a fair comparison only with a deep learning-based
approach [8]

PSNRreg(MŜ,MS) =
1

N

N∑
i

PSNRreg(MŜi,MSi), (27)

PSNRreg(MŜi,MSi) = arg max
a,b

PSNR(aMŜi + b,MSi).

(28)

The rest three indices are Erreur Relative Globale Adi-
mensionnelle de Synthèse (ERGAS) [26], Spectral Angle
Mapper (SAM) [27], and Relative Average Spectral Error
(RASE) [28]. Unlike the other three metrics, SAM mainly
accounts for spectral distortion. When a ground-truth HRMS
image is not available, as in the case for dataset Stockholm, we
use the spectral distortion index Dλ in reference-free metric,
Quality with No Reference (QNR) [29], to rate the quality of
pansharpened MS images. Note that we choose not to use the
spatial distortion index Ds in QNR due to the unknown spatial
misalignment.

D. Verification of the Blur Kernel Prior

To demonstrate the advantage of our blur kernel regularizer
over state-of-the-art blur kernel regularizers, we design an
experiment that seeks to estimate blur kernels by modeling
the observed low-resolution image as a noisy version of the

blurred and downsampled ground-truth image (given). The
reason we add noise in the measured image is to simu-
late the possible mismatches between the priors where the
blind pansharpening algorithms depend upon and the actual
statistics. We quantify each regularizer’s performance in each
experiment by comparing the relative error of the estimated
blur kernel to the actual blur kernel. Namely,

εr =
100‖U− Û‖F
‖U‖F

% (29)

is the metric to quantify the reconstruction performance, where
Û is the estimated blur kernel and U is the ground-truth blur
kernel parameterized by (37). In the experiment, we investigate
widely-used regularizers [2]–[4], [30] in the literature that
cover `2-based and TV-based regularizers.

For the convenience of enumerating the regularizers’ opti-
mization functions in both experiments, we first denote the
vectorized version of U as u ∈ R(2R+1)2×1. We also denote
E in the experiment as a matrix where each row stores the
pixels in the PAN image that convolve with the blur kernel
and generates a noise-free pixel in the measurement image.
We also denote f as the vectorized form of the measurement
image. Those regularizers can be expressed as follows

`2 + NN :

min
u

1

2
‖Eu− f‖22 + α1‖∇u‖22 + α2u

>u + IS(u), (30)

TV + NN :

min
u

1

2
‖Eu− f‖22 + α‖∇u‖2,1 + IS(u), (31)

TGV2 + NN :

min
u,p

1

2
‖Eu− f‖22 + α1‖∇u− p‖2,1 + α2‖E(p)‖2,1 + IS(u).

(32)

Equation (30) is based on a widely used `2-based regularizer
in the literature [2], [30]. ‖∇u‖22 is effectively ‖Dhu‖22 +
‖Dvu‖22 where Dh,Dv ∈ R(2R+1)2×(2R+1)2 are matrices
extracting the horizontal and vertical gradients of the blur
kernel. This regularizer operates on the sum of the squared
horizontal and vertical gradients to ensure the smoothness of
the blur kernel. The penalty term on the sum of the squared
coefficients is for tuning the steepness of the blur kernel.
We also add the simplex constraint (5), IS(u), in (30) to
make sure all the coefficients are non-negative. For notational
convenience, we denote the regularizer in (30) as `2 + NN,
where NN stands for non-negative. The TV-based regularizer
in (31) penalizes the `1 norm of the modulus of gradients of
the blur kernel to pursue a smooth blur kernel. We denote it
as isotropic total variation (TV). For notational convenience,
we denote the regularizer (31) as TV + NN. Similarly, our
regularizer (32) is denoted as TGV2 + NN.

We use R = 9, x = 1.33, y = 0.42, σ = 2, d = 3
and θ = −13.7◦ to initialize the blur kernel U via (37) for
blurring the 540× 600 PAN channel of West of Sichuan from
IKONOS satellite due to the rich variety of image structures,
edges, textures, smooth regions, etc. The blurred image will be
downsampled by a factor of 4, both horizontally and vertically,



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

TABLE I: Relative Error of Typical Blur Kernel Regularizers,
`2 + NN, TV + NN, TGV2 + NN, at Different Noise Levels.
The Smallest Error at each PSNR Level is Highlighted in Bold.

PSNR(dB) 10 20 30 40 50
`2 +NN 28.52% 16.03% 9.04% 5.05% 2.75%
TV +NN 32.91% 19.18% 9.73% 5.14% 3.09%

TGV2 +NN 17.39% 9.55% 5.15% 2.90% 1.68%

followed by adding Additive White Gaussian Noise, thereby
generating observed images at 10 dB, 20 dB, 30 dB, 40 dB
and 50 dB PSNRs (PSNR is defined in (26) using the blurred
image as the ground truth.).

Table I lists the relative errors for three regularizers in all
noise levels, with the smallest error in each case highlighted
in bold. Each experiment’s parameters have been fine-tuned to
ensure the smallest relative error. As evident, TGV2 recovers
the best estimate of the ground truth kernel and maintains the
highest robustness to noise among all the three regularizers.

We illustrate the estimated blur kernels from three regu-
larizers at 20-dB PSNR level in Fig. 2. The `2-based reg-
ularizer in (a) has non-zero coefficients beyond outskirts of
the ground truth kernel, which is an undesired feature for a
blur kernel. Due to the sparsity of l1 norm, the TV-based
regularizer addressed the undesired feature of `2-based regu-
larizers. However, its estimated blur kernel [See Fig. 2(b)] has
approximately 0-gradients near the peak of the blur kernel and
a sharp transition surrounding the peak, which is inconsistent
to the smoothness of the ground-truth blur kernel in (d). Our
TGV2 + NN is more suitable to regularize the blur kernel
than TV + NN and `2 + NN, since it preserves the overall
smoothness of the blur kernel: it neither forces the small
gradients of the blur kernel to be 0 as TV + NN does nor
generates non-trivial coefficients far from the blur kernel’s
peak as `2+NN does. In real blind pansharpening experiments,
TGV2+NN also has its superiority over TV+NN and `2+NN
in Table IV and V with the smallest relative errors εr.

E. Verification of Avoiding Bad Local Minima

To demonstrate our algorithm’s effectiveness in fusing
misaligned images, we conduct two experiments on Pavia
University dataset and set the kernel’s center to be (0.87, 0.11)
and (5.87, 4.11) to simulate small and large misalignments,
respectively, with the same standard deviation σ = 1, motion
displacement d = 1, and θ = 36.1◦. The LRMS image is
generated from the ground-truth HRMS image by applying
the blur kernel and downsampling by a factor of 2, both hor-
izontally and vertically. We compare our blur kernel with the
blur kernel from Graph Laplacian Regularization (GLR) [4], a
blind image fusion approach using a 2-D Dirac delta function
as the initial estimate of the blur kernel.

Quantitative performance comparisons of two algorithms
are shown in Table II. Our algorithm generates consistent
PSNR both at small and large misalignments. In comparison,
when the misalignment is large, GLR fails to generate a similar
PSNR as it generates when the misalignment is small. The

TABLE II: Quantitative analysis of blind pansharpening results
when spatial misalignments are (0.87, 0.11) and (5.87, 4.11),
respectively, in the task of pansharpening by a factor of 2
in Pavia University dataset.

Approach GLR Proposed
PSNR/dB 36.78/21.44 39.34/39.32
εr/% 84.43/135.10 0.85/2.16

blur kernel estimated when the offset is (5.87, 4.11), shown
in Fig. 3(a), was trapped in a bad local minimum which is
far away from the ground truth, shown in Fig. 3(c). This is
due to the poor initial estimate of the blur kernel. Similar
to [2], our approach enforces the blurred and downsampled
version of the PAN image to be close to the linear combination
of its corresponding LRMS channels. Therefore, since the
misalignment information has already been encoded in the blur
kernel coefficients, the blur kernel can be directly estimated
via solving (9).

F. Verification of the Cross-Channel Prior

To avoid the conflict with the regularizer on the low-
frequency components of the target HRMS that forces the
blurred and downsampled HRMS to be the input LRMS, we
choose the regularizer on the cross-channel relationship to only
constrain the relationship between the high-frequency compo-
nents of a HRMS channel and the high-frequency components
of the PAN image. We extract the high-frequency components
by a 2-D Laplacian and denoted our regularizer as local
Laplacian prior (LLP). This subsection demonstrates the su-
periority of Laplacian over alternative operators by comparing
the performance of solving problems similar to (16) when the
ground-truth blur kernel (ug) is given. Within the alternative
regularizers, we first introduce a cross-channel image prior,
local low-pass filtering prior (LPF), which regularizes the low-
frequency components of both channels by replacing L in (16)
with convolving with the blur kernel, i.e. the lowpass filter ug .
We also involve another prior in the comparison as local pixel
prior (LPP) which regularizes the pixels. For the high-pass
filters, we introduce a cross-channel image prior as local high-
pass filtering prior (HPF). HPF regularizes the high-frequency
components that is complementary to ug where L in (6) is
replaced with convolving with a high-pass filter which equals
to δ−ug , where δ is a 2-D Dirac delta function. Furthermore,
we also involve the aforementioned prior, LGC, in Section II-E
with the expression of (7).

Given all the priors, we solve (16) via Algorithm 2 in
scenarios of pansharpening by a factor of 2 and 4. To make a
fair comparison, we fine-tune the parameters to make sure the
output has the highest PSNR. We show each cross-channel
regularizer’s PSNR on Table III. From the LPF column, we
can tell that using low-pass coefficients to regularize the cross-
channel relationship has the lowest PSNR. This is due to the
conflict between the data fidelity term and the cross-channel
relationship that both operate on the lowpass frequencies of
HRMS. When replacing LPF with HPF, the PSNR grows
drastically. It is worth mentioning that compared with HPF,
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Fig. 2: Comparisons of the estimated blur kernels from (a) `2 + NN, (b) TV + NN, (c) TGV2 + NN regularizers with ground-
truth blur kernel (d) when the PSNR of the blurred and downsampled West of Sichuan image is 20 dB. Those three regularizers
have the relative estimation error: 16.03%, 19.18% and 9.55%, respectively.
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Fig. 3: Comparison of estimated blur kernels in the task of pansharpening Pavia University by a factor of 2. (a) The estimated
blur kernel from GLR. (b) The estimated kernel from the proposed approach. (c) The ground-truth blur kernel.

LPP’s PSNR significantly drops by 0.91 dB in the ×2 case,
and by 0.32 dB in the ×4 case. This demonstrates the advan-
tage of involving only high-pass coefficients when regularizing
the cross-channel relationship. It is worth mentioning that the
graph Laplacian regularization in GLR [4] is closely related
to LPP by replacing LPP with the regularizer similar to the
second term in (19). The gap between LPP and LLP partly
explains our algorithm’s performance over GLR.

HPF’s corresponding high-pass filter has a uniform regu-
larization strength on the 2-D high-frequency components and
has 0.07 dB PSNR gain over LGC in the ×2 case. However,
compared with LGC, HPF has a longer support when the blur
kernel is smooth, which compromises the flexibility to regu-
larize very localized structures and results in a 0.21 dB PSNR
drop in the ×4 case. LGC’s corresponding high-pass filter has
a short support so that each high-frequency coefficient is only
a function of two pixel values. This allows the approximation
in blocks to be localized enough. However, from the 2-D
perspective, the 2-D high-frequency components whose 1-D
absolute frequency are beyond π

2 shown as the intersection
of the horizontally and vertically shaded regions in Fig. 1
are distinctly regularized compared with the non-intersected
shaded regions. Thus, two high-frequency components close to
each other on the 2-D spectrum can have unreasonably distinct
regularization strictness.

TABLE III: The Average PSNR (in decibels) of different
cross-channel regularizers on different datasets in ×2 and ×4
scenario. The results with the highest Average PSNR averaged
on all the datasets are highlighted in bold.

Blur Kernel LPF HPF LPP LLP LGC
×2 (σ = 1) 4.25 43.10 42.19 43.34 43.03
×4 (σ = 2) 4.26 37.01 36.69 37.25 37.22

Our LLP avoids the drawbacks of both HPF and LGC.
It not only has a short filter support to make block-wise
cross-channel approximation localized enough but also has
a smoothly varying regularization strictness for 2-D high-
frequency components, thereby generating the highest PSNR
both in the ×2 case and in the ×4 case among all the related
cross-channel image priors.

G. Verification of Convergence Speed

To demonstrate the usefulness of our warmstart strategy,
we record the evolution of the PSNR during the iterations
when pansharpening the seventh MS channel of Los Angeles
dataset by a factor of 2, using the ground-truth kernel (σ =
2, x = 0, y = 0, d = 1, θ = −13.7◦). In Fig. 4, we compare
these evolutions corresponding to Algorithm 2 and the FISTA
algorithm for pansharpening in [12]. The iterations of FISTA



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

10 0 10 1 10 2

Iteration Step

27

28

29

30

31

32

33

34

35

36

P
S
N

R
/
d
B

PSNR vs Iterations

FISTA
Our Algorithm

Fig. 4: PSNR evolution in the process of sequentially solv-
ing (20) (solid curve) and solving (22) using [20] (short
straight solid segment in the last iteration) versus using FISTA
(dashed curve) from [12] in the task of pansharpening the
seventh MS channel of Los Angeles by a factor of 2.

algorithm will stop when its PSNR is equal to or larger than
ours after one iteration. Our algorithm generates a very fast
convergence, with only a tiny fraction of the iterations of
FISTA. What’s more, the initial estimate of the pansharpened
channel from our warmstart strategy (via solving (20)) is so
close to the converged result (solution) that we only use a
single iteration by solving each (21) and (22) in Algorithm 2
to get a closer approximation to the solution. Accelerating (22)
by a single iteration via FFT has a nontrivial PSNR increase
as shown in Fig. 4 which justifies its usefulness.

H. Implementation Details

1) Parameter Setting: We choose λω = 10 in (8) to solve
the spectral response ω, α1 = 1, α2 = 0.006, µ1, µ2, µ3 =
100, ρ = 0.5, tmax = 10000, th = 0.00001 in Algorithm 1
and λ = 0.0002, r = 1, ε = 1 × 10−16 for (16). When
solving (20) via the conjugated gradient method, we set the
threshold as 5 × 10−5 and when the relative change in the
Frobenius norm is below the threshold we stop the iteration.
In the task of pansharpening by a factor of 2 and 4, we set
the blur kernel’s size as 29× 29 to accommodate large spatial
misalignments.

2) Excluding Pixels Near the Boarder: Due to circular
convolution, the pixels near upper, lower, left and right bound-
aries will be involved in computing the Laplacian, which
will capture spurious high-frequency components. Some anti-
reflective operators [31], [32] manage to achieve better bound-
ary approximations than circular convolutions via trigonomet-
ric matrix algebras. To exclude the influence of these high-
frequency components in the metrics, we simply exclude the
pixels within 10 pixels distance to any of the four boundaries
when computing PSNR, ERGAS, SAM and RASE.

TABLE IV: Average Quantitative Metrics of Different Algo-
rithms on Different Datasets in Pansharpening by a Factor of
2 Task when the Misalignment is Small or Large. The Results
Closest to the Ideal Value are Highlighted in Bold.

Algorithm X2 (small misalignment
∣∣large misalignment)

PSNR/dB ERGAS SAM/◦ RASE εr/%
HySure 33.30 33.23 10.90 10.97 4.96 4.99 15.17 15.25 7.76 9.16
R-FUSE 33.68 25.59 9.78 24.18 3.29 8.75 15.17 37.18 16.95 15.89

GLR 39.60 23.95 5.33 28.02 2.11 8.16 7.46 47.25 93.97 216.36
BLT 40.93 40.93 4.80 4.80 1.97 1.97 6.57 6.57 12.01 12.00

F-BMP 43.29 43.18 3.85 3.87 1.59 1.61 5.16 5.19 2.64 3.17
Ideal Value ∞ 0 0 0 0

I. Experimental Results

We dub our algorithm F-BMP (Fast and high-quality Blind
Multi-spectral image Pansharpening). We compare F-BMP
with current reproducible blind pansharpening algorithms in
the literature: Hyperspectral Superresolution (HySure) [2],
Robust Fast Fusion of multi-band images based on solving
a Sylvester equation (R-FUSE) [5], Graph Laplacian Reg-
ularization (GLR) [4] and out previous work Blind pan-
sharpening with local Laplacian prior and Total generalized
variation prior (BLT) [6]. The parameters are fine-tuned to
achieve the highest PSNR. It is worth mentioning that recent
pansharpening work, Joint Spatial-Spectral Smoothing in a
Minimum-Volume Simplex for Hyperspectral Image Super-
Resolution (JSMV-CNMF) [33] is related to our approach.
JSMV-CNMF demonstrates a longer runtime but a higher
PSNR than HySure has. However, JSMV-CNMF does not take
spatial misalignment into consideration. Due to the unavailable
source code, we do not involve JSMV-CNMF in quantitative
comparison. In addition, we draw the reader’s conclusion that
many alternative approaches [12], [34] have different degrada-
tion models which instead model a LRMS image as the bicubic
interpolated version of its corresponding HRMS image. To
pursue a fair comparison, we only make comparisons with [2],
[4]–[6] since these approaches and our approach all model
a LRMS image as the downsampled version of the blurred
HRMS image through convolving with a blur kernel.

TABLE V: Average Quantitative Metrics of Different Algo-
rithms on Different Datasets in Pansharpening by a Factor of
4 Task when the Misalignment is Small or Large. The Results
Closest to the Ideal Value are Highlighted in Bold.

Algorithm X4 (small misalignment
∣∣large misalignment)

PSNR/dB ERGAS SAM/◦ RASE εr/%
HySure 31.67 31.81 6.50 6.88 6.61 6.53 18.17 18.05 7.89 7.60
R-FUSE 33.73 27.68 5.16 10.29 4.43 8.59 14.51 28.66 7.89 7.60

GLR 34.43 23.84 4.69 14.12 4.24 8.53 13.71 47.78 51.94 167.56
BLT 36.08 36.02 3.91 3.91 3.43 3.42 11.11 11.15 11.18 11.25

F-BMP 37.19 37.17 3.59 3.59 3.22 3.23 9.91 9.92 4.97 5.21
Ideal Value ∞ 0 0 0 0

Fig. 6 provides visual comparisons of the blindly pansharp-
ened HRMS images from these algorithms when dealing with
a small misalignment in a task of pansharpening by a factor
of 2. For illustrative convenience, we only show a typical
spatial region with rich edges and textures in Red, Green,
Blue (RGB) channels. The input PAN and LRMS images, as
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(a) (b) (c)

Fig. 5: The input images and the ground-truth HRMS image corresponding to the blind pansharpening experiment on Pavia
University. (a) The PAN image. (b) The RGB channels of the LRMS image. Each pixel is enlarged by a factor of 2, both
horizontally and vertically to fit the space. (c) The RGB channels of the ground-truth HRMS image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: Pansharpening results from different approaches and their residuals to the ground truth (only RGB channels are shown).
(a, f) Results and residuals from HySure. (b, g) Results and residuals from R-FUSE. (c, h) Results and residuals from GLR. (d,
i) Results and residuals from BLT. (e, j) Results and residuals from F-BMP. For illustrative convenience, the original residuals
are magnified by a factor of 2 and added with a constant pixel intensity value (128) in each channel.

well as the ground-truth HRMS image, are shown in Fig. 5(a),
(b), (c), respectively. The corresponding results are presented
in Fig. 6(a), (b), (c), (d), (e) for each of the aforementioned
approaches, respectively. To exaggerate each result’s distance
to the ground-truth HRMS image, in Fig. 6(f), (g), (h), (i), (j)
we demonstrate the residual images by magnifying the actual
residuals in RGB channels by a factor of 2 and adding the
magnified residuals with a constant pixel intensity value (128)
in each channel.

We observe from Fig. 6(a) and Fig. 6(f) that HySure fails
to preserve details around edges and textures. Further, the
saturation of the pansharpened yellow rectangles in Fig. 6(a) is
noticeably smaller than that of the ground-truth HRMS image
in Fig. 5(c). From Fig. 6(b) and Fig. 6(g), we find that R-FUSE
also has noticeable color distortion. Also, it generates blurry
edges of the yellow rectangles and three blurry parallel white
lines along the diagonal direction. Fig. 6(c, h) and Fig. 6(d,

i) show that GLR and BLT can both roughly preserve the
sharpness of the structures, but with noticeable residuals in
the vicinity of edges. Fig. 6(e) and Fig. 6(j) show that F-BMP
manages to generate the HRMS image with minor residuals
to the ground truth.

The quantitative performance comparisons of the five al-
gorithms are shown in Table IV and Table V. The results of
F-BMP, BLT and HySure have nearly consistent quantitative
image qualities across small and large misalignments in terms
of PSNR, EGRAS, SAM and RASE. For GLR and R-FUSE,
there exists significant performance drops when dealing with a
large misalignment. These drops in GLR are attributed to that
the convergence of estimating the blur kernel getting trapped
into bad local minima. These drops in R-FUSE is due to that
R-FUSE does not factor into spatial misalignment. When the
misalignment is small, in PSNR sense, F-BMP outperforms
BLT by 2.36 dB and the approaches other than BLT by at least
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(a) (b)

Fig. 7: Comparisons of runtime and PSNR between F-BMP and the baseline algorithms. (a) The runtimes and PSNRs in the
task of pansharpening Pavia University by a factor of 2, both with small and large misalignments; (b) The runtimes and PSNRs
in the task of pansharpening Cambria Fire by a factor of 4, both with small and large misalignments.

3.69 dB in the task of pansharpening by a factor of 2. Also,
it outperforms BLT by 1.11 dB and and the approaches other
than BLT by at least 2.76 dB in the task of pansharpening by
a factor of 4. When the misalignment is large, in PSNR sense,
F-BMP outperforms BLT by 2.25 dB and HySure by at least
9.95 dB in the task of pansharpening by a factor of 2. Also,
it outperforms BLT by 1.15 dB and HySure by 5.36 dB in
the task of pansharpening by a factor of 4. The superiority of
F-BMP over the related algorithms is also reflected in terms of
EGRAS, SAM and RASE, shown in Table IV and Table V.

F-BMP not only demonstrates state-of-the-art pansharpen-
ing quality, but also costs short runtime among the afore-
mentioned model-based approaches. To demonstrate both the
runtime and PSNR, we choose two typical datasets, Pavia
University and Cambria Fire, in pansharpening by a factor
of 2 and 4 tasks, respectively, both with small and large
misalignments. The runtimes are measured on a 2.6G Hz 18-
Core Intel i9 processor using MATLAB (R2020b) and are
demonstrated in Fig. 7. F-BMP takes the second shortest
runtimes and generates the highest PSNR among all the
blind pansharpening approaches. Though F-BMP’s runtimes
on both datasets are not the shortest, since R-FUSE is the
fastest algorithm solving the HRMS image via a closed-
form expression accelerated by FFT. However, R-FUSE cannot
handle large misalignment: both Fig. 7(a) and Fig. 7(b) show
significant PSNR drops when the spatial misalignments are
large. In addition, the algorithms, GLR and BLT, that itera-
tively compute the blur kernel and the HRMS image in an al-
ternating fashion are slow. In conclusion, there does not exist a
model-based blind pansharpening algorithm addressing spatial
misalignments with both high efficiency and high quality in
the literature. Among all the model-based blind pansharpening
algorithms that address the spatial misalignment issue, F-BMP

TABLE VI: Average PSNR (in decibels, upper two rows) and
Regressed PSNR (in decibels, lower two rows) Comparisons
of Blind Pansharpening Results Using F-BMP and PGDCNN.

Test Images Moffett Cuprite L.A. C.F. Mean
PGDCNN 38.16 38.92 37.86 33.70 37.15

F-BMP 41.38 43.25 40.52 41.53 41.67
PGDCNN 40.13 42.20 38.30 39.57 40.05

F-BMP 41.41 43.32 40.55 41.57 41.71

demonstrates the highest PSNR and the shortest runtime.

J. Comparison with a Deep Learning-based Approach

We also compare F-BMP with a deep learning-based al-
gorithm in the task of pansharpening by a factor of 2 with
small spatial misalignment. We choose the most recent work,
PGDCNN [8], as the benchmark and use PGDCNN’s dataset
for comparison. To make a fair comparison, we use the
same Gaussian blur kernel to simulate the LRMS images.
Table VI demonstrates that compared with PGDCNN, F-
BMP yields much higher performance, with a 4.52 dB PSNR
gain and 1.66 dB PSNRreg gain over PGDCNN in four test
images: Moffett, Cuprite, Los Angeles (L.A.), and Cambria
Fire (C.F.).

Fig. 8 compares the visual qualities of both algorithms in
recovering the RGB channels of Moffett and demonstrates the
exaggerated residual images. As evident from these residuals,
F-BMP outperforms PGDCNN in many smooth areas. The
main reason for this discrepancy seems to be that it is more
difficult for a learning algorithm to be trained in a large variety
of conditions, including blur, misalignment, etc., requiring
data to be provisioned for a wide variety of cases to provide
robustness. In contrast, F-BMP adaptively determines a kernel
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Fig. 8: Blind pansharpening results comparison between F-
BMP and PGDCNN (data source: Moffett). (a) The RGB
channels of the ground-truth HRMS image. (b) The RGB
channels of the input LRMS image. Each pixel is purposely
enlarged by a factor of 2, both horizontally and vertically,
to fit the space. (c) The RGB channels of the HRMS image
from F-BMP. (d) The RGB channels of the HRMS image from
PGDCNN. (e) The residual RGB channels between the HRMS
image from F-BMP and the ground-truth HRMS image. (f)
The residual RGB channels between the HRMS image from
PGDCNN and F-BMP. The original residuals are magnified
by a factor of 4 and added by a constant intensity(128) to
generate (e) and (f).

for each pair of PAN and LRMS images, providing more
robustness, especially to the level of blurring under different
blur conditions.

K. Experiments when the Ground Truth is not Available

We use Stockholm dataset to test F-BMP by comparing with
HySure, R-FUSE, GLR and BLT. In Fig. 9, we demonstrate

TABLE VII: Average Performance Comparison on 10 Stock-
holm Images. The idea value of Dλ is 0.

Algorithm HySure R-FUSE GLR BLT F-BMP
Dλ 0.1119 0.1163 0.1016 0.1092 0.0933

their pansharpened HRMS images in RGB channels with the
spatial resolution of 512×512 corresponding to one of the 10
datasets to evaluate the visual qualities. Meanwhile, we use
Dλ in QNR as the metric to quantify the blindly pansharpened
image qualities from F-BMP and the related algorithms and
show the results in Table VII. It is worth noticing that this
dataset typically has a less blurry blur kernel than we use
before and the LRMS images exhibit aliasing. Thus, we use a
larger λ than that in previous experiments to better regularize
the high-frequency components of the HRMS image.

F-BMP yields the smallest Dλ as shown in Table VII and
its pansharpened HRMS images appear to carry the highest
visual quality, with consistent color to the LRMS images, as
well as with smoothness along the edge contours and sharpness
across the edge profiles. The HRMS images from HySure in
Fig. 9(c) with noticeable color distortion from the original
LRMS images. For example, the original orange roof in the
LRMS image from Fig. 9(b) turns yellow in Fig. 9(m). The
HRMS images from R-FUSE have blur and color artifacts in
the roof within Fig. 9(n). The HRMS images from GLR and
BLT have blurry white lines on the soccer field in Fig. 9(j, k)
and blurry roof in Fig. 9(o, p).

V. CONCLUSION

In this article, we propose a novel and fast method for
misaligned multi-spectral image pan-sharpening based on the
local Laplacian prior and the Second-Order Total Generalized
Variation and develop an algorithm named F-BMP (Fast and
high-quality Blind Multi-spectral Pansharpening). Numerical
experiments show that F-BMP significantly outperforms state-
of-the-art model-based baselines in terms of both quantitative
image qualities (involving known ground-truth image in the
metric) and running speed. Further, when applying F-BMP to
the imagery from WorldView-2 satellite without the ground-
truth HRMS images, the blindly pansharpened results demon-
strate the highest visual quality. F-BMP also outperforms a
deep learning-based baseline in terms of average PSNR and
average regressed PSNR. Moreover, F-BMP has a better gener-
alization ability than a deep learning-based algorithm, without
external training data, providing flexibility and adaptability
to deal with multi-spectral imagery from a large variety of
imaging platforms.

Overall, the image priors we are exploiting in this article
is rooted in the local relationship between image channels.
In the future, we will exploit non-local similarity within each
image channel and across image channels to pursue a higher
pansharpening quality.
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(a) PAN (b) LRMS

(c) HySure (d) R-FUSE (e) GLR (f) BLT (g) F-BMP

(h) HySure (red) (i) R-FUSE (red) (j) GLR (red) (k) BLT (red) (l) F-BMP (red)

(m) HySure (blue) (n) R-FUSE (blue) (o) GLR (blue) (p) BLT (blue) (q) F-BMP (blue)

Fig. 9: Blind pansharpening results comparison and the input data (data source: Stockholm). (a) The input PAN image. (b) The
RGB channels of the input LRMS image (each pixel are purposely enlarged by a factor of 4, both horizontally and vertically,
to fit the space). (c) The HRMS image from HySure. (d) The HRMS image from R-FUSE. (e) The HRMS image from GLR.
(f) The HRMS image from BLT. (g) The HRMS image from F-BMP. (h-l) show the zoom-in version of the region within the
red block in (c-g). (m-q) show the zoom-in version of the region within blue block in (c-g).

APPENDIX A
SOLVING THE {u,p}-SUBPROBLEM

To solve the {u,p}-subproblem efficiently, we take the
approach in [17]. First, we split p into the left and right
column as p1 and p2. Likewise, we split Λt

1 into the left and
right column as Λt

1,1 and Λt
1,2, xt into xt1 and xt2. We also

denote the first column of Λt
2 as Λt

2,1, the fourth column of
Λt

2 as Λt
2,2 and the second or the third column of Λt

2 as Λt
2,3.

Likewise, we also denote the first column of yt as yt1, the
fourth column of yt as yt2 and the second or the third column
of yt as yt3. By enforcing the first-order necessary conditions
for optimality, we obtain the following linear equations:



α1µ1D
>
h (Dhu− p1 + Λt

1,1 − xt1)+

α1µ1D
>
v (Dvu− p2 + Λt

1,2 − xt2) = 0

α1µ1(p1 −Dhu + xt1 −Λt
1,1)+

α2µ2D
>
h (Dhp1 + Λt

2,1 − yt1)+

α2µ2D
>
v (

1

2
Dvp1 +

1

2
Dhp2 + Λt

2,3 − yt3) = 0

α1µ1(p2 −Dvu + xt2 −Λt
1,2)+

α2µ2D
>
v (Dvp2 + Λt

2,2 − yt2)+

α2µ2D
>
h (

1

2
Dhp2 +

1

2
Dvp1 + Λt

2,3 − yt3) = 0
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After grouping the terms, we have the following linear system:d1 d>4 d>5
d4 d2 d>6
d5 d6 d3

 u
p1

p2

 =

B1

B2

B3

 (33)

where the block matrices are defined as follows:

B1 = α1µ1D
>
h (xt1 −Λt

1,1) + α1µ1D
>
v (xt2 −Λt

1,2)

B2 = α1µ1(Λt
1,1 − xt1) + α2µ2D

>
h (yt1 −Λt

2,1)+

α2µ2D
>
v (yt3 −Λt

2,3)

B3 = α1µ1(Λt
1,2 − xt2) + α2µ2D

>
v (yt2 −Λt

2,2)+

α2µ2D
>
h (yt3 −Λt

2,3)

d1 = α1µ1(D>hDh + D>v Dv)

d2 = α1µ1 +
1

2
α2µ2D

>
v Dv + α2µ2D

>
hDh

d3 = α1µ1 +
1

2
α2µ2D

>
hDh + α2µ2D

>
v Dv

d4 = −α1µ1Dh

d5 = −α1µ1Dv

d6 =
1

2
α2µ2D

>
hDv

(33) can be efficiently solved by block-diagonalizing the
coefficient matrix:F 0 0

0 F 0
0 0 F

d1 d>4 d>5
d4 d2 d>6
d5 d6 d3

F 0 0
0 F 0
0 0 F

∗  Fu
Fp1

Fp2

 =

F 0 0
0 F 0
0 0 F

B1

B2

B3


where F is the Fourier Transform matrix. By denoting d̃j =

diag(FdjF
∗) and d̃>j = conj(diag(FdjF

∗)), we have:
d̃1. ∗ (Fu) + d̃>1 . ∗ (Fp1) + d̃>5 . ∗ (Fp2) = FB1

d̃4. ∗ (Fu) + d̃2. ∗ (Fp1) + d̃>6 . ∗ (Fp2) = FB2

d̃5. ∗ (Fu) + d̃6. ∗ (Fp1) + d̃3. ∗ (Fp2) = FB3

By applying Cramer’s rule, u,p1,p2 can be solved in the
closed form as follows:

u = F∗


∣∣∣∣∣∣∣
FB1 d̃>4 d̃>5
FB2 d̃2 d̃>6
FB3 d̃6 d̃3

∣∣∣∣∣∣∣ ./denom


p1 = F∗


∣∣∣∣∣∣∣
d̃1 FB1 d̃>5
d̃4 FB2 d̃>6
d̃5 FB3 d̃3

∣∣∣∣∣∣∣ ./denom


p2 = F∗


∣∣∣∣∣∣∣
d̃1 d̃>4 FB1

d̃4 d̃2 FB2

d̃5 d̃6 FB3

∣∣∣∣∣∣∣ ./denom



(34)

where the division is element-wise and

denom =

∣∣∣∣∣∣∣
d̃1 d̃>4 d̃>5
d̃4 d̃2 d̃>6
d̃5 d̃6 d̃3

∣∣∣∣∣∣∣ .

| · | is defined as:

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =

a11. ∗ a22. ∗ a33 + a12. ∗ a23. ∗ a31 + a13. ∗ a21 · ∗a32−
a13. ∗ a22. ∗ a31 − a12. ∗ a21. ∗ a33 − a11. ∗ a32. ∗ a23,

where .∗ is element-wise multiplication.

APPENDIX B
DERIVATION OF U

Consider g and h defined in continuous domain. Since g
is isotropic, the convolution of g and h can be computed
by first convolving the shifted by (−cx,−cy) version of g
with the rotated by −θ version of h, followed by shifting the
convolution result by (cx, cy) and rotating by θ. For notational
convenience, we denote the shifted version of g and the rotated
version of h as g′ and h′, respectively.

g′(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , and

h′(x, y) =


1

d
δ(y), − d

2
6 x 6

d

2
0, otherwise.

Step I: Convolve g′ with h′.

U′ = g′ ∗ h′

=
1

d

∫ +∞

−∞

∫ +∞

−∞
g′(u, v)δ(x− u, y − v) du dv

=
1

2πdσ2

∫ x+ d
2

x− d2
e−

u2

2σ2 du

∫ +∞

−∞
e−

v2

2σ2 δ(y − v) dv

=
1√

2πdσ
[Φ(x+

d

2
;σ)− Φ(x− d

2
;σ)]e−

y2

2σ2 ,

(35)

where Φ(x;σ) = 1√
2πσ

∫ x
−∞ e−

t2

2σ2 dt.

Step II: Shift by (cx, cy) and rotate by θ.

Ũ(x, y) = U′(x′, y′), where: (36)

{
x′ = (x− cx) cos θ + (y − cy) sin θ,

y′ = −(x− cx) sin θ + (y − cy) cos θ.

Step III: Discretize Ũ.

U(i, j) =
1

ΣU
Ũ(i, j), (37)

where R is the radius of U, σ is the standard deviation, (i, j)
are integer coordinates, where −R 6 i 6 R, −R 6 j 6 R,
the denominator ΣU is the sum of all the sampled U to make
sure the blur kernel has unit gain.
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