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Abstract
This paper addresses the problem of full state estimation and simultaneous learning of the
vehicle’s tire model on autonomous vehicles. The problem is motivated by the fact that
lateral distance measurements are typically available on modern vehicles while tire models
are difficult to identify and also vary with time. Tire forces are modeled in the estimator
using a neural network in which no a priori assumptions on the type of model need to be
made. A neuro-adaptive observer that provides globally stable estimation of the state vector
and of the neural network weights is developed. The developed observer is evaluated using
both MATLAB simulations with a low-order model as well as with an unknown high order
model in the commercial software CarSim. Cornering and lane change maneuvers are used
to learn the tire model over an adequately large range of slip angles. Performance with the
low-order vehicle model is excellent with near-perfect estimation of states as well as the tire
force nonlinear characteristics. Performance with the unknown high order CarSim model is
also found to be good with the tire model being estimated correctly over the range of slip
angles excited by the executed vehicle maneuvers. The developed technology can enable a
new approach to obtaining tire models that are otherwise difficult to identify in practice and
depend on empirical characterizations.
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Abstract— This paper addresses the problem of full state 

estimation and simultaneous learning of the vehicle’s tire model 

on autonomous vehicles.  The problem is motivated by the fact that 

lateral distance measurements are typically available on modern 

vehicles while tire models are difficult to identify and also vary 

with time.  Tire forces are modeled in the estimator using a neural 

network in which no a priori assumptions on the type of model 

need to be made.  A neuro-adaptive observer that provides 

globally stable estimation of the state vector and of the neural 

network weights is developed.  The developed observer is 

evaluated using both MATLAB simulations with a low-order 

model as well as with an unknown high order model in the 

commercial software CarSim. Cornering and lane change 

maneuvers are used to learn the tire model over an adequately 

large range of slip angles.  Performance with the low-order vehicle 

model is excellent with near-perfect estimation of states as well as 

the tire force nonlinear characteristics. Performance with the 

unknown high order CarSim model is also found to be good with 

the tire model being estimated correctly over the range of slip 

angles excited by the executed vehicle maneuvers.  The developed 

technology can enable a new approach to obtaining tire models 

that are otherwise difficult to identify in practice and depend on 

empirical characterizations. 

 
Index Terms—Autonomous vehicles, neural networks, 

observers, tire force models, vehicle lateral dynamics.  

 

I. INTRODUCTION 

HIS work is motivated by the fact that tire force models are 

most often represented empirically and are difficult to 

identify in practice. Linear models are often used and suffice 

for nominal non-aggressive operation on dry safe roads. 

However, nonlinear models become necessary when electronic 

stability control or other active safety systems need to be 

utilized, or in the case of slippery roads or aggressive 

maneuvers. Such nonlinear tire models are represented 

empirically using the Pacejka Magic Formula tire 

representation, the brush tire model or the Dugoff tire model 

[1]. The parameters of these imperfect models are difficult to 

identify in practice. Even in the case where a tire manufacturer 

has extensive test facilities to fully characterize and represent a 

tire, the real-world characteristics will vary with time due to 

both tire wear and also due to changes in pneumatic tire 
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pressure. 

This paper focuses on autonomous vehicles with automated 

steering for lane keeping. On such vehicles, the lateral distance 

with respect to the center of the lane and orientation with 

respect to the lane markers are measured and are used for 

automated steering, both to follow the lane and to perform 

automated lane changes during autonomous driving. The 

technical objectives in this paper are defined as real-time 

estimation of the state vector of the vehicle and simultaneous 

estimation of the tire force model of the vehicle. The tire force 

function is represented using a neural network and the weights 

of the neural network are identified in real-time. Unlike 

traditional neural networks, backpropagation is not utilized for 

training and no requirement to measure tire forces is necessary 

even for training the neural network. Instead, a neuro-adaptive 

observer is utilized to estimate both states and tire forces and 

the only measurements needed are the lateral feedback 

variables used in automated steering. 

Previous researchers have developed a number of different 

vehicle state estimation methods while trying to use affordable 

sensors such as wheel speed sensors, IMUs, and GPS. In the 

development of these vehicle state estimation methods, various 

tire models are utilized. Lateral velocity estimation using state 

observers [2] and sideslip angle estimation using unknown 

input observer [3] have been developed based on linear tire 

models (tire force is linearly proportional to slip angle). 

Nonlinear observers [4], [5] have been developed for slip angle 

estimation based on the brush tire model. Slip angle estimation 

methods have also been developed by using the EKF [6], [7], 

UKF [8], and Fuzzy observers [9] based on the Dugoff tire 

model. Kalman filter-based methods (EKF, UKF, and Cubature 

Kalman filter) are utilized for vehicle state estimation including 

lateral velocity [10] and slip angle estimation [11], [12] based 

on the Pacejka model. In all of these state estimation papers, the 

tire characteristics such as the tire model parameters and tire 

properties are assumed to be known.  

For tire model identification, tire parameter estimation 

methods have been proposed [13] – [17]. Many researchers 

have focused on estimation of cornering stiffness for the linear 

tire model [13] - [16]. However, the linear tire model is 

applicable only under nominal driving conditions. Parameter 

estimation methods for nonlinear tire model structures have 
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also been proposed based on the least squares method, but 

assume a known model structure [17], [18].  

As computer vision evolved, vision-based vehicle control 

systems have been actively studied for autonomous driving 

cars. For example, lane keeping control system have been 

developed [19], [20] and lane lateral distance measurement 

methods have been also proposed [21], [22]. Vehicle body slip 

angle estimation based on vision systems have also been 

proposed [23]. Recently, vision-based lateral position and 

heading angle estimation with uneven time delay measurement 

has been studied [24]. 

In this paper, we aim to develop simultaneous vehicle lateral 

state and nonlinear tire force model estimation algorithms for 

autonomous driving cars. Since autonomous driving cars 

typically have on-board camera sensors, we first rewrite vehicle 

lateral dynamics in terms of lateral error variables with respect 

to the road which can be measured from the vision system. 

Neural network-based observers that can estimate system states 

and learn unknown system dynamics simultaneously have been 

previously proposed for certain mathematical class of nonlinear 

systems [25] - [27]. Stability of the observers is guaranteed in 

the formulation. Recently, a new neural observer has been 

proposed based on a Lyapunov based nonlinear design 

technique in the conference paper [28]. Instead of the 

backpropagation approach, both the observer gains for state 

estimation and for weight adaptation are computed by solving 

a set of Linear inequality Matrix (LMI) conditions. In this 

paper, we utilize a neural network-based observer modified 

from the conference paper [28] to estimate both vehicle lateral 

states and the nonlinear tire model. We first show the 

performance of the proposed algorithm via MATLAB 

simulations with a low-order vehicle model and then validate 

the algorithm using an unknown high-order model from the 

commercial CarSim software.  

II. VEHICLE DYNAMIC MODEL 

A bicycle model of the vehicle with two degrees of freedom 

(2-DOF) is considered to describe vehicle lateral dynamics, as 

shown in Fig. 1. The vehicle lateral translation 𝑦  is defined 

along the body fixed lateral axis of the vehicle to the point O 

which is the instantaneous center of rotation of the vehicle. The 

vehicle yaw angle 𝜓 is defined with respect to the global X axis. 

Using Newton’s second law, the vehicle lateral dynamics are 

modeled in the following equations:  

 𝑚(�̈� + �̇�𝑣𝑥) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝐼𝑧�̈� = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟

  (1) 

where 𝑚 is the total mass of the vehicle, 𝐼𝑧 is the yaw moment 

of inertia of the vehicle, 𝑣𝑥 is the longitudinal velocity of the 

vehicle at the center of gravity (c.g)., 𝑙𝑓 and 𝑙𝑟  are the distances 

from the c.g. to front and rear wheelbases, and 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are 

the lateral tire forces on front and rear tires.  

Experimental results show that the lateral tire force of a tire 

is a nonlinear function of slip angle and is linearly proportional 

to the slip angle for small slip angles [29]. Based on this result, 

we write the each of the front and rear tire forces as combination 

of a linear tire force model and an unknown nonlinear tire force 

model: 

 𝐹𝑦𝑓 = 2𝐶𝑓𝛼𝑓 + 𝑓𝑦𝑓(𝛼𝑓)

𝐹𝑦𝑟 = 2𝐶𝑟𝛼𝑟 + 𝑓𝑦𝑟(𝛼𝑟)
  (2) 

where 𝐶𝑓 and 𝐶𝑟 are the cornering stiffnesses of each front and 

rear tire, 𝛼𝑓 and 𝛼𝑟 are the slip angles of front and rear wheels, 

and 𝑓𝑦𝑓(𝛼𝑓) and 𝑓𝑦𝑟(𝛼𝑟) are the unknown nonlinear front and 

rear tire force models, respectively. 

Slip angles can be obtained from the following relations: 

 
𝛼𝑓 = 𝛿 −

�̇� + 𝑙𝑓�̇�

𝑣𝑥

𝛼𝑟 = −
�̇� − 𝑙𝑟�̇�

𝑣𝑥

  (3) 

where 𝛿 is the steering angle of the front wheel of the vehicle. 

Since we aim to develop algorithms to estimate both vehicle 

states and tire force model for autonomous driving cars, we 

rewrite the vehicle lateral dynamic model in terms of position 

and orientation error with respect to the road: lateral position 

error from center of lane 𝑒1 and orientation error of vehicle with 

respect to the road 𝑒2 . Consider a vehicle traveling with 

constant longitudinal velocity 𝑣𝑥 on a road with instantaneous 

radius 𝑅 . Then, the desired yaw rate of the vehicle can be 

defined as  

 �̇�𝑑𝑒𝑠 =
𝑣𝑥

𝑅
. (4) 

The following relations can be obtained for the position and 

orientation error variables [1]: 

 �̇�1 = �̇� + 𝑣𝑥(𝜓 − 𝜓𝑑𝑒𝑠)

�̇�2 = �̇� − �̇�𝑑𝑒𝑠

. (5) 

Using (2) and (5), we rewrite the lateral dynamic model (1) as 

 �̈�1 = (
−2𝐶𝑓 − 2𝐶𝑟

𝑚𝑣𝑥

) �̇�1 + (
2𝐶𝑓 + 2𝐶𝑟

𝑚
)𝑒2 + (

−2𝐶𝑓𝑙𝑓 + 2𝐶𝑟𝑙𝑟

𝑚𝑣𝑥

) �̇�2 

+
2𝐶𝑓

𝑚
𝛿 + (

−2𝐶𝑓𝑙𝑓 + 2𝐶𝑟𝑙𝑟

𝑚𝑣𝑥

− 𝑣𝑥) �̇�𝑑𝑒𝑠 +
𝑓𝑦𝑓(𝛼𝑓) + 𝑓𝑦𝑟(𝛼𝑟)

𝑚
 

�̈�2 = (
−2𝐶𝑓𝑙𝑓 + 2𝐶𝑟𝑙𝑟

𝐼𝑧𝑣𝑥

) �̇�1 + (
2𝐶𝑓𝑙𝑓 − 2𝐶𝑟𝑙𝑟

𝐼𝑧
) 𝑒2 

+(
−2𝐶𝑓𝑙𝑓

2 − 2𝐶𝑟𝑙𝑟
2

𝐼𝑧𝑣𝑥

) �̇�2 + (
−2𝐶𝑓𝑙𝑓

2 − 2𝐶𝑟𝑙𝑟
2

𝐼𝑧𝑣𝑥

) �̇�𝑑𝑒𝑠 − �̈�𝑑𝑒𝑠

+
𝑙𝑓𝑓𝑦𝑓(𝛼𝑓) − 𝑙𝑟𝑓𝑦𝑟(𝛼𝑟)

𝐼𝑍
. 

(6) 

 
Fig. 1.  2-DOF bicycle model of the vehicle.   
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Assume that the lateral position error from center of lane and 

orientation error of vehicle with respect to the road can be 

measured by vision system. Then, the state space model of the 

system with a state vector 𝜉 = [𝑒1 �̇�1 𝑒2 �̇�2]
𝑇 is given by 

 𝜉̇ = 𝐴𝜉 + 𝐵1𝛿 + 𝐵2�̇�𝑑𝑒𝑠 + 𝐵3�̈�𝑑𝑒𝑠 + 𝐹𝑓
𝑧 = 𝐶𝜉

 (7) 

where 

 

𝐴 =

[
 
 
 
 
0 1 0 0

0
−2𝐶𝑓−2𝐶𝑟

𝑚𝑣𝑥

2𝐶𝑓+2𝐶𝑟

𝑚

−2𝐶𝑓𝑙𝑓+2𝐶𝑟𝑙𝑟

𝑚𝑣𝑥

0 0 0 1

0
−2𝐶𝑓𝑙𝑓+2𝐶𝑟𝑙𝑟

𝐼𝑧𝑣𝑥

2𝐶𝑓𝑙𝑓−2𝐶𝑟𝑙𝑟

𝐼𝑧

−2𝐶𝑓𝑙𝑓
2−2𝐶𝑟𝑙𝑟

2

𝐼𝑧𝑣𝑥 ]
 
 
 
 

,     

𝐵1 =

[
 
 
 
 

0
2𝐶𝑓

𝑚

0
2𝐶𝑓𝑙𝑓

𝐼𝑧 ]
 
 
 
 

,   𝐵2 =

[
 
 
 
 

0
−2𝐶𝑓𝑙𝑓+2𝐶𝑟𝑙𝑟

𝑚𝑣𝑥
− 𝑣𝑥

0
−2𝐶𝑓𝑙𝑓

2−2𝐶𝑟𝑙𝑟
2

𝐼𝑧𝑣𝑥 ]
 
 
 
 

,   𝐵3 = [

0
0
0

−1

],     

𝐹 =

[
 
 
 
 
0 0
1

𝑚

1

𝑚

0 0
𝑙𝑓

𝐼𝑧
−

𝑙𝑟

𝐼𝑧]
 
 
 
 

,   𝑓 = [
𝑓𝑦𝑓(𝛼𝑓)

𝑓𝑦𝑟(𝛼𝑟)
] ,   𝐶 = [

1 0 0 0
0 0 1 0

]. 

(8) 

Therefore, we develop an algorithm to estimate the state 

variables and the unknown nonlinear tire force using the above 

nonlinear vehicle model. Note that the above model derivation 

differs from standard textbook representations [1] where the 

road radius and hence �̇�𝑑𝑒𝑠 are assumed constant. 

III. VEHICLE LATERAL STATES AND NONLINEAR TIRE MODEL 

ESTIMATION 

A data-driven approach is proposed to estimate the nonlinear 

tire force model and vehicle states. First, we consider a neural 

approximator to deal with the unknown nonlinear tire force 

term. Then, a neural network-based observer with the neural 

approximator is utilized to estimate vehicle states and to learn 

the weights of the neural approximator..   

A. Neural Approximator 

Based on the capability of the neural network to approximate 

nonlinear functions [25], [30], the following approximator can 

be used to represent the nonlinear tire force term 𝑓: 

 

𝑓 = {

𝑓1
𝑓2

⋮
𝑓𝑟

} = 𝛾 {
⋮

∑ 𝑊𝑖𝑗𝜎𝑖𝑗(𝜉, 𝑢) + 𝜀𝑖(𝜉, 𝑢)𝑁
𝑗=1

⋮

}  (9) 

for 𝑖 = 1,2,⋯ , 𝑟 where 𝑟 is the number of nonlinear functions 

(𝑟 = 2 since there are two unknown nonlinear functions 𝑓𝑦𝑓 and 

𝑓𝑦𝑟 ), 𝛾 = diag(𝛾1, 𝛾2, ⋯ , 𝛾𝑟)  is a matrix to scale the neural 

approximator, 𝑁 is the number of neurons utilized, 𝑊𝑖𝑗 is the 

adaptive weight in the output layer of the neural network which 

is unknown and is assumed to be constant, 𝜎𝑖𝑗(𝜉, 𝑢)  is the 

activation function and is chosen by the designer, 𝑢 is the input 

vector, and 𝜀𝑖(𝜉, 𝑢)  is the approximation error, which is 

bounded [30]. We assume the following conditions on the 

neural approximator:  

1) The weights are bounded as 

 ‖𝑊𝑖𝑗‖∞
≤ 𝑊𝑚𝑎𝑥 (10) 

for all 𝑖 = 1,2,⋯ , 𝑟 and 𝑗 = 1,2,⋯ ,𝑁.  

2) The activation functions are uniformly bounded as 

 −∞ < 𝜎𝑖𝑗 ≤ 𝜎𝑖𝑗(𝜉, 𝑢) ≤ 𝜎𝑖𝑗 < ∞ (11) 

and are differentiable Lipschitz continuous functions with a 

bounded Jacobian: 

 
−∞ < 𝑎𝑝𝑞 ≤

𝜕𝜎𝑖𝑗

𝜕𝜉𝑞

(𝜉, 𝑢) ≤ 𝑏𝑝𝑞 < ∞ (12) 

for every 𝜉 ∈ ℝ𝑛 , 𝑖 = 1,2,⋯ , 𝑟  and 𝑗 = 1,2,⋯ ,𝑁  where 𝑝 =
𝑗 + 𝑁(𝑖 − 1). 

Front and rear slip angles can be computed from the 

estimated states and inputs as 

 
�̂�𝑓 = 𝛿 +

−�̇̂�1 + 𝑣𝑥�̂�2 − 𝑙𝑓 �̇̂�2

𝑣𝑥

−
𝑙𝑓�̇�𝑑𝑒𝑠

𝑣𝑥

�̂�𝑟 =
−�̇̂�1 + 𝑣𝑥�̂�2 + 𝑙𝑟 �̇̂�2

𝑣𝑥

+
𝑙𝑟�̇�𝑑𝑒𝑠

𝑣𝑥

. (13) 

Then, the estimated nonlinear tire force term can be written 

using the activation functions of slip angles as: 

 
𝑓 = 𝛾 {

∑ �̂�1𝑗𝜎1𝑗(�̂�𝑓)
𝑁
𝑗=1

∑ �̂�2𝑗𝜎2𝑗(�̂�𝑟)
𝑁
𝑗=1

}.  (14) 

B. Neuro-Adaptive Observer 

Using the neural approximator (14), a neural network-based 

observer is utilized to estimate vehicle states and to learn the 

weights of the neural approximator: 

 𝜉̇ = 𝐴𝜉 + 𝐿(𝑧 − 𝐶𝜉) + 𝐵1𝛿 + 𝐵2�̇�𝑑𝑒𝑠 + 𝐵3�̈�𝑑𝑒𝑠 +

                                          𝐹𝛾 {

⋮
∑ �̂�𝑖𝑗𝜎𝑖𝑗(�̂�𝑓, �̂�𝑟)

𝑁
𝑗=1

⋮

}  

�̇̂�𝑖𝑗 = K𝑖𝑗(𝑧 − 𝐶𝜉) 

(15) 

for 𝑖 = 1,2,⋯ , 𝑟 where 𝐿 and K𝑖𝑗  are observer gain matrices to 

be computed.  

Let the state estimation error be 𝜉 = 𝜉 − 𝜉, and suppose the 

neural approximator can model the unknown nonlinear 

functions with ideal weights, i.e., 𝜀𝑖(𝜉, 𝑢) ≅ 0. Then, using (7), 

(9) and (15), the state estimation error dynamics are derived as 

 
𝜉̇ = (𝐴 − 𝐿𝐶)𝜉 + 𝐹𝛾 {

⋮
∑ �̃�𝑖𝑗𝜎𝑖𝑗

𝑁
𝑗=1

⋮

} + 𝐹𝛾 {
⋮

∑ �̂�𝑖𝑗�̃�𝑖𝑗
𝑁
𝑗=1

⋮

}  (16) 

for 𝑖 = 1,2,⋯ , 𝑟  where �̃�𝑖𝑗 = 𝑊𝑖𝑗 − �̂�𝑖𝑗 , 𝜎𝑖𝑗 = 𝜎𝑖𝑗(𝛼𝑓 , 𝛼𝑟) , 

�̂�𝑖𝑗 = 𝜎𝑖𝑗(�̂�𝑓 , �̂�𝑟)  and �̃�𝑖𝑗 = 𝜎𝑖𝑗 − �̂�𝑖𝑗 . We define 𝑤  as the 

column-wise vectorization of 𝑊𝑖𝑗: 

 𝑤 = [𝑊11,𝑊12, ⋯ ,𝑊1𝑁 , ⋯ ,𝑊𝑟1,𝑊𝑟2, ⋯ ,𝑊𝑟𝑁]𝑇   (17) 

Let the parameter estimation error be �̃� = 𝑤 − �̂�. As a result, 

the parameter estimation error dynamics can be written as  

 �̇̃� = −𝐾𝐶𝜉 (18) 

where 𝐾 = [K11, K12, ⋯ , K1𝑁 , ⋯ , K𝑟1, K𝑟2, ⋯ , K𝑟𝑁]𝑇 . Using 

the following notations 

 Φ(𝜎) = diag(𝜎11, 𝜎12, ⋯ , 𝜎1𝑁, ⋯ , 𝜎𝑟1, 𝜎𝑟2, ⋯ , 𝜎𝑟𝑁) 

Ω̂ = diag(�̂�11, �̂�12, ⋯ , �̂�1𝑁, ⋯ , �̂�𝑟1, �̂�𝑟2, ⋯ , �̂�𝑟𝑁) 

𝜍̃ = [�̃�11, �̃�12, ⋯ , �̃�1𝑁 , ⋯ , �̃�𝑟1, �̃�𝑟2, ⋯ , �̃�𝑟𝑁]𝑇  

(19) 
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and Γ = 𝛾⨂1𝑁
𝑇  (1𝑁 is a column vector of 𝑁 elements all set to 

one, and ⨂ denotes the Kronecker product), the state estimation 

error dynamics (16) can be represented in the compact form as 

 𝜉̇ = (𝐴 − 𝐿𝐶)𝜉 + 𝐺Φ(𝜎)�̃� + 𝐺Ω̂𝜍̃ (20) 

where 𝐺 = 𝐹Γ. By introducing an augmented state vector 

 �̃� = [𝜉 �̃�]𝑇 (21) 

the estimation error dynamics become 

 �̇̃� = (𝐴𝑒(𝜎) − 𝐿𝑒𝐶𝑒)�̃� + 𝐺𝑒Ω̂𝜍̃ (22) 

where 

 𝐴𝑒(𝜎) = [
𝐴 𝐺Φ(𝜎)
0 0

],   𝐿𝑒 = [
𝐿
𝐾

],   𝐺𝑒 = [
𝐺
0
], 

𝐶𝑒 = [𝐶 0] 
(23) 

We can compute the observer gains by solving the following 

set of LMIs that is constructed to ensure stability of the 

estimation error dynamics (22). 

Theorem 1. If there exist matrices 𝑃 = 𝑃𝑇 > 0 , and 𝑅  of 

appropriate dimensions, and fixed scalars 𝛼 > 0  and 𝜅 > 0 

such that 

 
[

Ξ 𝑃𝐺𝑒(𝑊𝑚𝑎𝑥𝐼)

(𝑊𝑚𝑎𝑥𝐼)
𝑇𝐺𝑒

𝑇𝑃 −
𝜅

𝜅 + 1
𝐼

] ≤ 0,   ∀𝜎 ∈ ∆0 (24) 

where 

 Ξ = 𝐴𝑒(𝜎)𝑇𝑃 + 𝑃𝐴𝑒(𝜎) − 𝐶𝑒
𝑇𝑅𝑇 − 𝑅𝐶𝑒

+ (1 + 𝜅)𝒩𝒩𝑇 − ℳ + 2𝛼𝑃 

ℳ = [
1

2
(ℋ1

𝑇ℋ2 + ℋ2
𝑇ℋ1) 0

0 0

]

𝒩 = [−
1

2
(ℋ1

𝑇 + ℋ2
𝑇)

0

]

ℋ1 = [

𝑎11, 𝑎12, ⋯ , 𝑎1𝑛

𝑎21, 𝑎22, ⋯ , 𝑎2𝑛

⋮
𝑎(𝑟𝑁)1, 𝑎(𝑟𝑁)2,⋯ , 𝑎(𝑟𝑁)𝑛

]

ℋ2 = [

𝑏11, 𝑏12, ⋯ , 𝑏1𝑛

𝑏21, 𝑏22,⋯ , 𝑏2𝑛

⋮
𝑏(𝑟𝑁)1, 𝑏(𝑟𝑁)2, ⋯ , 𝑏(𝑟𝑁)𝑛

]

 

(25) 

and  

 ∆0= {𝜎 = (𝜎11, ⋯ , 𝜎𝑟𝑁)|𝜎𝑖𝑗 ∈ {𝜎𝑖𝑗 , 𝜎𝑖𝑗},

𝑖 = 1,⋯ , 𝑟 𝑎𝑛𝑑 𝑗 = 1,⋯ ,𝑁} 
(26) 

Then the estimation error dynamics (22) with observer gain 

 𝐿𝑒 = 𝑃−1𝑅 (27) 

is exponentially stable with a minimum convergence rate of 𝛼. 

Proof. Theorem 1 is constructed by modification of the results 

in our previous conference paper [28]. The plant model used in 

this journal paper is slightly different from the conference paper 

and more applicable to real world systems (It does not require 

the explicit presence of the neural weights in the dynamic 

equations). But the philosophy used in the derivation of the 

proof remains the same. The Lyapunov function candidate 𝑉 =
�̃�𝑇𝑃�̃�  is considered to analyze the stability and then the 

condition �̇� + 2𝛼𝑉 ≤ 0 is applied for exponential stability to 

obtain the LMI (24). Due to the strict 8-page limit of this paper, 

we omit the proof and instead cite our conference paper [28]. 

C. Lateral Tire Model Estimation 

In this section, a practical problem associated with 

convergence of the neural network weights will be discussed, 

and a least squares-based algorithm proposed to deal with 

obtaining better initial conditions for convergence.  

First, the developed lateral dynamic model (7) is from a 2-

DOF bicycle model and assumes that the tire force depends on 

only lateral slip angle variable in (2). However, the actual lateral 

tire force in CarSim can be quite different from the tire force 

computed from only the simple lateral tire model. Fig. 2 shows 

a result from CarSim simulation during a vehicle lane change 

maneuver. As shown in Fig. 2, the generated lateral tire force 

versus its slip angle includes hysteresis and does not match the 

simple lateral tire model. The mismatch is especially large 

when the car just starts its lateral motion due to tire lag.  

Second, it turns out that the force estimates can converge to 

actual forces with different possible values of neural weights. 

The converged value depends on the choice of initial conditions 

for the neural weights. 

In order to obtain appropriate initial conditions for the neural 

weights, a simple algorithm based on a least squares method is 

proposed. The proposed least squares-based algorithm with 4 

seconds of data from either a cornering maneuver or a lane 

change maneuver is seen to provide globally appropriate initial 

values for the neural weights. The procedure is as follows: 

Step 1: Store the data set of estimated values of �̂�  and 𝑓 

obtained from the neuro-adaptive observer for every sample. 

Step 2: Set 𝑓 to zero when the slip angle is very small. 

Step 3: Once a data set using a vehicle lateral maneuver is 

obtained, compute weights using a least squares method with 

regularization: 

 

�̂�0 =

(

 
 

[

ΓΦ1(�̂�)

ΓΦ2(�̂�)
⋮

ΓΦ𝑠(�̂�)

]

𝑇

[

ΓΦ1(�̂�)

ΓΦ2(�̂�)
⋮

ΓΦ𝑠(�̂�)

] + 𝜌𝐼

)

 
 

−1

[

ΓΦ1(�̂�)

ΓΦ2(�̂�)
⋮

ΓΦ𝑠(�̂�)

]

𝑇

[
 
 
 
𝑓1

𝑓2

⋮
𝑓𝑠]

 
 
 

  (28) 

where 𝜌  is a positive scalar, the superscript denotes each 

sample, and 𝑠 is the number of samples. 

Step 4: Update the weights using �̂�0 as initial conditions to the 

observer. 

 
Fig. 2.  Comparison between the generated lateral tire force from a lane change 
maneuver and the lateral tire force model in CarSim simulation.  
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We set upper bounds of both front and rear slip angles to be 

0.5 degrees for this initialization so as to avoid tire force regions 

involving significant mismatch. 

Finally, front and rear tire forces are calculated using the real-

time value of the estimated weights �̂�𝑖𝑗
∗ : 

 

𝐹𝑦𝑓 = 2𝐶𝑓𝛼𝑓 + 𝛾1 ∑�̂�1𝑗
∗ 𝜎1𝑗(𝛼𝑓)

𝑁

𝑗=1

𝐹𝑦𝑟 = 2𝐶𝑟𝛼𝑟 + 𝛾2 ∑ �̂�2𝑗
∗ 𝜎2𝑗(𝛼𝑟)

𝑁

𝑗=1

 (29) 

It is found that no matter what the initial conditions of the 

weights are, the estimated tire forces do always match the actual 

forces well. However, using the least squares approach for 

initialization ensures convergence of weights to global rather 

than locally optimum values. 

IV. SIMULATION RESULTS 

In order to validate the proposed algorithm for vehicle state 

and lateral tire model estimation, we conduct simulation studies 

using MATLAB/Simulink and CarSim. The CARSIM software 

incorporates a high-order vehicle model that includes both 

lateral and longitudinal forces and further many other details of 

other vehicle motions, as well as coupled lateral and 

longitudinal tire forces. The vehicle model from CarSim chosen 

for the simulation studies is a D-Class sedan with default 

parameters ( 𝑚 = 1529.95  kg, 𝐼𝑧 = 4607.47  kg-m2, 𝑙𝑓 =

1.13906 m, and 𝑙𝑟 = 1.63716 m). A sampling time of 1 milli-

second is utilized for all the CarSim simulations. Intricate 

details of the high-order CarSim model are unknown and are 

not utilized by the neuro-adaptive observer. The speed of the 

vehicle is controlled to a desired value using a PI controller and 

the desired speed is set to 30 m/s. Cornering and lane change 

maneuvers are considered in the simulation studies. 

For the neuro-adaptive observer, 8 soft clipping functions are 

considered (4 activation functions are utilized for each front and 

rear tire force estimation). The activation functions for the front 

nonlinear tire model estimation are 

 

𝜎1𝑗(�̂�𝑓) = �̂�𝑓 +
1

𝜆
log

1 + 𝑒−𝜆(�̂�𝑓−𝛽1𝑗)

1 + 𝑒𝜆(�̂�𝑓−�̅�1𝑗)
 (30) 

for 𝑗 = 1,2,3,4  where 𝛽11 = 𝛽12 = 𝛽13 = 0.005 , 𝛽14 = 0.1 , 

�̅�11 = 0.02, �̅�12 = 0.05, �̅�13 = 0.08, �̅�14 = 0.1, and 𝜆 = 300. 

The activation functions for the rear nonlinear tire model 

estimation are 

 

𝜎2𝑗(�̂�𝑟) = �̂�𝑟 +
1

𝜆
log

1 + 𝑒−𝜆(�̂�𝑟−𝛽2𝑗)

1 + 𝑒𝜆(�̂�𝑟−�̅�2𝑗)
 (31) 

for 𝑗 = 1,2,3,4  where 𝛽21 = 𝛽22 = 𝛽23 = 0.005 , 𝛽24 = 0.1 , 

�̅�21 = 0.01, �̅�22 = 0.03, �̅�23 = 0.08, �̅�24 = 0.1, and 𝜆 = 300.  

The values of 𝛽 and �̅� were selected to allow the activation 

functions to cover the operating range sufficiently well. One of 

the activation functions is set to be constant with equal lower 

and upper bounds, i.e., 𝛽 = �̅� which helps the approximator to 

learn the obtained data by also allowing for a bias term. The 

parameter 𝜆 adjusts the corner sharpness of the function. 

Observer gains are obtained by solving Theorem 1 with 𝛼 =
2, 𝛾 = diag(5000, 5000), 𝑊𝑚𝑎𝑥 = 50, and 𝜅 = 1: 

 
𝐿 = [

7.4476 0.2230
35496.2923 −1403.4068

0.2687 4.3756
−1549.7253 15585.8620

] × 103 

𝐾 =

[
 
 
 
 
 
 
 
22907.6171 17507.4461
50297.2733 38508.3831
76176.5389 58477.9673
183230.2756 140010.5853
12668.9462 −12684.5717
29281.1094 −29328.7527
67379.8128 −67667.3821
169016.7685 −169223.4162]

 
 
 
 
 
 
 

× 104 

(32) 

The initial conditions of the system and observer are set to zero.  

In each simulation study, the initial values of the weights of the 

neural approximator are obtained by using the least squares-

based algorithm described earlier. 

In this paper, 3 simulation studies will be presented: 

• Study 1: MATLAB simulation with a low order vehicle 

model based on known cornering stiffness 

• Study 2: CarSim simulation with a high order vehicle model 

based on unknown cornering stiffness 

• Study 3: CarSim simulation with a high order vehicle model 

in the present of sensor measurement noise 

A. MATLAB Simulation with Low Order Vehicle Model 

Using MATLAB simulations with the low order vehicle 

model described in section II, we first validate the proposed 

algorithm with no higher order model uncertainty. A cornering 

maneuver is considered - The vehicle is traveling on a road that 

is initially straight and then becomes circular with a radius first 

 
Fig. 3.  Low order vehicle model simulation results: desired vehicle path for 

cornering maneuver, and steering input.  

 
 Fig. 4.  Low order vehicle model simulation results: estimation of vehicle state 

variables.  
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of 300 meters and then 250 meters. The desired path for the road 

is shown in Fig. 3. Also, we assume that the vehicle is 

controlled by a feedback steering controller and Fig. 3 shows 

the steering input to follow the desired vehicle path. The value 

of both front and rear tire cornering stiffness is 102466.1678 

N/rad and is assumed to be known. 

As shown in Fig. 4, the observer provides very good 

performance on the vehicle state estimation. As a result, the slip 

angles are accurately estimated by using (13), as shown in Fig. 

5. Also, Fig. 6 shows the results of the nonlinear tire force 

estimation and the error is seen to be very small. Fig. 7(a) and 

7(b) show the weight estimation. Weight adaptation can be seen 

in the zoomed-in plots of Fig. 7(b). Finally, Fig. 8 shows the 

tire model estimation result. The estimated lateral tire model is 

seen to match the real values accurately.  

B. CarSim Simulation under Unknown Cornering Stiffness  

The proposed algorithm is also validated via simulations 

using the CarSim software containing a high order vehicle 

model. Significant model mismatch exists since the observer is 

based on just a simple bicycle model. So far, we have assumed 

that the cornering stiffness for the linear portion of the tire 

model is known. Next, we show that the proposed method can 

estimate both vehicle states and the lateral tire model without 

knowing the actual cornering stiffness. We assume that the 

value of both front and rear tire cornering stiffnesses is 

102466.1678 N/rad. However, the actual cornering stiffness of 

the front and rear tires are set to be 90211.1436 N/rad and 

87945.9970 N/rad, respectively. Lane change maneuvers are 

considered to learn the CarSim tire model over an adequately 

large range of slip angle. Fig. 9 shows the desired vehicle path 

and the steering input to conduct the lane change maneuvers.  

Since the unknown nonlinear function estimation 

compensates for the linear term error due to the incorrect 

cornering stiffness, the vehicle states and slip angles can be 

correctly estimated, as shown in Fig. 10 and 11. Due to the 

linear term compensation, the nonlinear tire force terms do not 

match, as shown in Fig. 12. However, the total lateral tire model 

can be obtained successfully by using (29) as shown as Fig. 14 

because the tire model is defined as the combination of the 

linear tire model and the unknown nonlinear tire model in (2). 

Furthermore, we can correctly find the cornering stiffness from 

the estimated tire model: �̂�𝑓 = 89770.6981  N/rad and �̂�𝑟 =

86991.2596 N/rad.  

C. CarSim Simulation under Sensor Noise 

We validate the performance of the proposed algorithm in the 

presence of sensor noise on measurements. Random noise 

(uniformly distributed random signals with the interval 

[−1𝑐𝑚, 1𝑐𝑚] and [−1°, 1°]) are added to both measurement 

channels. The value of both front and rear tire cornering 

stiffness is 102466.1678 N/rad and is assumed to be known. 

Lane change maneuvers are considered, as shown in Fig 15. 

As seen in Fig. 16 and 17, both vehicle states and slip angles 

are estimated successfully in the presence of sensor noise. Also, 

 
Fig. 5.  Low order vehicle model simulation results: front and rear slip angle 

estimation. 

 
Fig. 6.  Low order vehicle model simulation results: tire force estimation 

(nonlinear portion of tire force model). 

 

 
(a) 

 
(b) 

 Fig. 7.  Low order vehicle model simulation results: estimation of neural 

weights. (a) All neural weights. (b) Enlarged view of �̂�14, �̂�22, �̂�23, and �̂�24. 

 
Fig. 8.  Low order vehicle model simulation results: tire force model 

estimation (dotted blue box presents the range of slip angle excited).  
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Fig. 18 shows the results of the nonlinear tire force estimation. 

We can see that the neuro-adaptive observer provides good 

estimation results in spite of the measurement noise. 

V. CONCLUSION 

This paper developed a neuro-adaptive observer that can 

estimate both the real-time tire model as well as the states of an 

autonomously steered vehicle. The paper included formulation 

of the dynamic model in terms of lateral error variables with 

respect to the road and of the estimation problem, and design of 

the observer gains using LMIs. Simulations using both a low-

order vehicle model and a high-order unknown model from the 

commercial software CarSim were conducted with lateral 

maneuvers including cornering and lane change maneuvers. 

Simulation studies demonstrated that the developed observer 

works very well and estimates both states and tire forces 

accurately. The importance of the developed neuro-adaptive 

method is that it can enable a new approach to obtaining tire 

models that are otherwise very difficult to identify in practice. 
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Fig. 15.  CarSim simulation results (with sensor noise): desired vehicle path 

for lane change maneuvers, and steering input.  

 
 Fig. 16.  CarSim simulation results (with sensor noise): estimation of vehicle 

state variables.  

 
Fig. 17.  CarSim simulation results (with sensor noise): front and rear slip 
angle estimation.  

 
Fig. 18.  CarSim simulation results (with sensor noise): tire force estimation 

(nonlinear portion of tire force model).  
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