
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Vehicle Rollover Avoidance by Parameter-Adaptive
Reference Governor

Berntorp, Karl; Chakrabarty, Ankush; Di Cairano, Stefano

TR2021-151 January 11, 2022

Abstract
This paper describes an approach to the vehicle rollover prevention problem that includes
estimation of parameters affecting the roll dynamics and a controller accounting for uncer-
tainties in such parameters. We develop an adaptive reference governor (ARG) that mod-
ifies the driver steering input based on satisfaction of a rollover avoidance constraint, and
state and input constraints. The vehicle dynamics are highly nonlinear and has parametric
uncertainties, for which the presented approach ensures rollover prevention. We design a
recursive Bayesian estimator that produces confidence estimates of the parameters, including
the center-of-gravity height. The confidence estimates are used to construct online constraint
admissible sets, which are leveraged by the ARG to ensure rollover prevention. Simulation
results on a Fishhook maneuver show that the method robustly avoids rollover prevention,
and that the resulting parameter estimates are contained in the confidence sets.
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Vehicle Rollover Avoidance by Parameter-Adaptive Reference Governor

Karl Berntorp, Ankush Chakrabarty, and Stefano Di Cairano

Abstract— This paper describes an approach to the vehicle
rollover prevention problem that includes estimation of param-
eters affecting the roll dynamics and a controller accounting
for uncertainties in such parameter estimation. We develop a
parameter-adaptive reference governor (PARG) that modifies
the driver steering input to enforce a rollover avoidance
constraint, and state and input constraints. We design a
recursive Bayesian estimator that produces confidence estimates
of the parameters, including the center-of-gravity height. The
confidence estimates inform a supervised learning algorithm,
which constructs online constraint admissible sets that are lever-
aged by the PARG to ensure rollover prevention. Simulation
results on a Fishhook maneuver show that the method robustly
prvents rollover, and that the resulting parameter estimates
are contained in the confidence sets produced by the Bayesian
estimator.

I. INTRODUCTION

Rollover accidents are relatively uncommon but consti-
tute a large portion of severe accidents and fatalities [1].
According to [2], usually automotive manufacturers employ
robust active road-handling control strategies to account for
the unknown and changing center-of-gravity (CoG) location,
by designing for the worst-case scenario. Another common
approach in the case of Sport Utility Vehicles (SUVs) is to
intentionally design the vehicle heavier than usual by adding
ballast in the undercarriage [2]. The aim is to lower the CoG
height and hence reducing the variation of the CoG location.
Such approaches come with drawbacks, such as performance
loss under normal driving conditions and reduced efficiency.

The rollover prevention problem has been researched
extensively over the last decades using different types of ac-
tuation and control architectures. Examples are optimization-
based brake-force allocation [3], [4], model-predictive con-
trol (MPC) using steer by wire and differential braking
[5], robust control of the load-transfer ratio (LTR) through
braking [6] and active steering [7], deployment of anti-roll
bars in heavy duty vehicles [8], combination of different
actuation [9], and joint control of yaw and roll stability [10].
The rollover mitigation system is activated by determination
when rollover is imminent. This needs to be done carefully,
as rollover prevention affects the operation of the vehicle
with respect to other important control objectives, such
as yaw stability. In [11], activation is obtained automati-
cally by using reference governors (RGs). The RG [12] is
a lightweight add-on scheme that modifies commands to
closed-loop control systems to maintain constraint satisfac-
tion despite reference changes. Due to its relatively low com-
putational burden, RGs are well suited for implementation
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in automotive microcontrollers. In [11] the LTR is a key
indicator for the risk of vehicle rollover. Consequently, the
RG adjusts the steering-angle command to ensure constraint
satisfaction, and hence rollover avoidance, based on the LTR.

We propose a constraint-enforcement based rollover pre-
vention method that includes online learning of the CoG
location. The method acts as a supervisory controller and
adjusts the steering-angle command based on satisfaction
of a rollover avoidance constraint, and state and input con-
straints. Our method estimates the CoG location, and spring
stiffness and damping coefficient of a spring-damper model,
and accounts for the uncertainty of such parameters in the
closed-loop control. We rely on a parameter-adaptive RG
(PARG) [13] to avoid rollover. Our PARG includes a support
vector machine (SVM) algorithm that dynamically learns
robust constraint admissible positive invariant (PI) sets by
combining offline data with the online parameter estimates.
The parameter estimates are obtained by a computationally
efficient marginalized adaptive particle filter that estimates
the CoG location, spring stiffness and damping coefficient
[14], as well as confidence bounds of the estimates.

We use an RG for achieving rollover avoidance. However,
unlike [11], we do not assume a known CoG location,
but estimate it online and design a PARG based on the
estimates. Another method for robust rollover prevention was
presented in [15], where the linearized vehicle model was
used to design different proportional-integral controller gains
for predefined bounds on the parameter uncertainties, which
are then activated based on the risk of rollover. In contrast
to [15], we perform online learning of robust PI sets to
achieve constraint satisfaction based on the nonlinear vehicle
model. Also, our method is designed to only intervene
when otherwise rollover would be unavoidable, so that the
activation rule is already embedded into the controller.

Notation: We denote vectors with lowercase bold font as
x and matrices with uppercase bold font as X . The norm
ball of center c and radius ρ is B(c, ρ) = {x : ‖x−c‖ ≤ ρ}.
We denote a discrete time step with k. A set O is PI
for the constrained system xk+1 = f(xk) if x0 ∈ O
implies xk ∈ O for all k > 0. By p(x0:k|y0:k), we denote
the posterior density function of the state trajectory x0:k

from time index 0 to k given the measurement sequence
y0:k := {y0, . . . ,yk}. Throughout x ∼ N (µ,Σ) means that
x is Gaussian distributed with mean µ and covariance Σ.

II. MODELING AND PROBLEM FORMULATION

For control purposes, we model the vehicle using a non-
linear chassis vehicle model describing the motion of the
rigid body due to the forces generated at the tires, and



a nonlinear tire model describing the forces that the tires
generate depending on the chassis and wheels velocities. The
chassis model combines a single-track chassis model with
a torsional spring-damper model of the roll dynamics. The
resulting model is similar to established models for rollover
prevention [5], [11], [15], [16]. With the longitudinal and
lateral velocities, vX , vY , yaw rate ψ̇, roll angle, φ, and roll
rate φ̇ as states, the resulting chassis model is described by

v̇X = vY ψ̇ −mhφ̇ cos (φ) + FX/m, (1a)

v̇Y = −vX ψ̇ + h(φ̈ cos (φ)− φ̇2 sin (φ)) + FY /m, (1b)

ψ̈ = MZ/IZ , (1c)

φ̇ = φ̇, (1d)

φ̈ =
h(FY +m sin (φ))(g + hφ̇2) + τφ

IX +mh2 cos (φ)
, (1e)

where

FX = F xf cos (φ)− F yf sin (φ) + F xr , (2a)

FY = F xf sin (φ) + F yf cos (φ) + F xr , (2b)

MZ = lf (F xf sin (δ) + F yf cos (φ))− lrF yr , (2c)

g is the gravitational acceleration, h is the distance from the
roll axis to the CoG (the CoG distance), m is the vehicle
mass, IX , IZ , are the vehicle inertias about the X- and Z-
axis, respectively, and τφ = −Kφ tan (φ)−Dφφ̇ cos (φ), Kφ

is the spring stiffness and Dφ is the damping coefficient. We
use the Pacejka tire (Magic Formula) model [17]. To model
combined slip we employ similar modeling as in [11], [16],[
F xi F yi

]>
= FPP ŝ,

P =sin(Catan(sc/C(1− E)+Eatan(sc/C)))) ,

sc =
Cα‖s‖
FP

, Cα = c1mg(1− e−c2z
Z
i /(mg)),

c1 =
BCD

4(1− e−c2/4)
, FP =

F zi 1.0527

1 + (
1.5F zi
mg )3

,

s =

[
λi

tanαi

]
, ŝ = s ‖s‖

(3)
where αi are the slip angles, λi are the slip ratios, F zi is
the normal forces resting on wheel i, F zf = mglr/l, F zr =
mglf/l, Cα is the cornering stiffness, and B, C, D, E, and
c2 are tire and road-specific parameters. The slip angles αi
and slip ratios λi in (3) are

αi = − arctan

(
vyi
vxi

)
, λi =

Rwωi − vxi
vxi

, i ∈ {f, r}, (4)

where Rw is the wheel radius, ωi is the wheel angular
velocity for wheel i, and vxi and vyi are the longitudinal and
lateral wheel velocities for wheel i in the coordinate system
of the respective wheel.

A. Problem Formulation

We consider a setup where a reference wheel steering
angle δr, determined either by a human driver or an advanced
driver-assistance system. The control input is the commanded

MPF

PARG

x, θ

Vehicle
u

y

Estimators

Reference generator
δr

x

Fig. 1. The proposed control architecture. PARG uses statistics of θ
estimates from the proposed MPF to ensure that the adaptation u of the
reference δr leads to rollover avoidance. The reference generator can be
either a human driver or an ADAS, and the estimator block can, and typically
will, include multiple estimators.

wheel steering angle. The objective is to design a control
method that makes the vehicle avoid rollover while satisfying
state and input constraints and tracking the desired reference
δr as closely as possible. This can be achieved by controlling
directly the ßsteering angle, for example, by a steer-by-wire
system, or by modifying the current steering angle using
various actuators, such as active front steering and electronic
stability control. Since the CoG distance h is unknown and
varies with the type of vehicle and loading conditions. Fig. 1
shows a schematic of the proposed control strategy. The
estimator may use multiple algorithms to estimate the vehicle
state x used for control, the spring stiffness Kφ, damp-
ing coefficient Dφ, and CoG distance h, from the vehicle
measurements (y) . In this paper we present a marginalized
particle filter (MPF) that estimates θ = (Kφ, Dφ, h), roll
angle φ and roll rate φ̇, but there are readily available
estimation methods for determining the additional states in
x using automotive-grade sensors (e.g., [18]). The estimates
of x and θ are sent to the PARG, which adjusts the steering
reference δr as needed to produce an adjusted δc that avoids
rollover. In the following, we set u = δc to emphasize that
the steering command is the control input.

III. LEARNING-BASED PARG

After discretization of the vehicle dynamics model con-
sisting of (1)–(4) with sampling period Ts, we can write the
resulting model compactly as the nonlinear system

xk+1 = f(xk, uk) + g(xk, uk,θk). (5)

A. State and Input Constraints

We enforce both state and input constraints, as well as a
rollover avoidance constraint. The state and input constraints
are formulated as box constraints,

X = {x : xmin ≤ x ≤ xmax}, (6a)
U = {u : −δlim ≤ u ≤ δlim}. (6b)

The symmetric input constraint is based on the maximum
allowed road wheel steering angle. The state constraints
are determined based on a tradeoff between safety limits
and driving comfort. Following previous work in rollover



avoidance [3], [7], [11], we define the LTR as

LTR =
F zL − F zR
mg

, (7)

where F zL, F zR, is the left and right vertical load, respectively.
The LTR measures the relative load on each side of the
vehicle and wheel liftoff occurs when either LTR > 1 or
LTR < −1.1 The LTR is a function of the roll angle and roll
rate and can be calculated from the lateral load transfer [19].
Consequently, we enforce the symmetric LTR constraint

Y = {LTR : −LTRlim ≤ LTR ≤ LTRlim}, (8)

where −LTRlim < 1 is added as a safety margin. We denote
the set of constraints including (6) and (7) by

H = {(x, u, LTR) : x ∈ X , u ∈ U , LTR ∈ Y} (9)

Remark 1. The LTR does not capture the transient phase of
the rollover, since it is derived without accounting for the roll
dynamics [6]. Still, it is the most commonly used indication
of rollover and for that reason we also employ it here.

B. PARG Objective
The objective of an RG is to select a control command

uk as close as possible to a reference rk while ensuring
that constraints are enforced.The commonly treated cases are
when the parameters θ for the considered system is known or
when the range is known [12]. In this paper, we consider the
case when the parameter vector θ is unknown, but constant
[13]. The PARG we employ in this paper is given by

uk = Ḡ(uk−1,xk, Θ̂k, δr,k)

= uk−1 + G(uk−1,xk, Θ̂k, δr,k)(δr,k − uk−1), (10)

where Θ̂ is a bounded interval of parameter values, computed
by the MPF in the form of confidence intervals such that
θ̂k ∈ Θ̂k with high certainty. The PARG designs G such that
the closed-loop vehicle model (5) and (10) in combination
with the MPF confidence estimate satisfies state and input
constraints and tracks the reference δr as closely as possi-
ble. To enforce constraints under parameter uncertainty, the
PARG estimates parameter-robust PI sets for designing the
control law G in (10).

Definition 1. The set O(Θ̂) ⊂ H is a parameter-robust
PI set for the constrained system (1) if, for every initial
condition (x, u) ∈ O(Θ̂), when x0 = x and δ0 = u for
all k ≥ 0, (xk, uk) ∈ H for every θ ∈ Θ̂ and for all k > 0.

Subsequently, an estimate of a parameter-robust PI set can
be used to evaluate the control law (10) by solving

G(uk−1,xk, Θ̂, δr,k) := arg min
γt

(uk − δr,k)2 (11a)

subject to (uk,xk) ∈ O(Θ̂k), (11b)
uk = uk−1 + γk(δr,k − uk−1),

(11c)
0 ≤ γk ≤ 1, (11d)

uk ∈ Uε(Θ̂) (11e)

1There are some exceptions to this rule, see, e.g., Remark 1 in [11].

at each time step k, where Uε(Θ̂) is the set of references u
such that a ball of radius ε > 0 centered at the corresponding
steady state xss(u,θ) and u lies inside O(Θ̂k),

Uε(Θ̂) ,
{
u ∈ U : Bε(xss(u,θ), u) ⊂ O(Θ̂k),∀ θ ∈ Θ̂

}
.

IV. VEHICLE ROLLOVER AVOIDANCE BY
PARAMETER-ADAPTIVE REFERENCE GOVERNOR

In this section we describe our control strategy for rollover
avoidance, which includes estimating the parameter-robust PI
set O(Θ̂k) at each time step k, and subsequently solving (11)
to generate an adjusted reference uk according to (10). Our
approach consists of three steps.

1) Offline, we simulate the closed-loop system (5) from
different initial states, reference inputs, and parameters,
and we classify the trajectories based on whether or not
they satisfy the constraints.

2) Online, we recursively estimate the confidence interval
Θ̂k.

3) Then, still online, using the estimate Θ̂k we determine
the parameter-robust PI set and solve (11).

Next, we go through these three steps and summarize the
resulting algorithm.

A. Offline Data Generation

We simulate trajectories of the closed-loop system (5)
offline, from different initial states sampled from X, steering
angle references sampled from U, and parameters within
Θ. Note that Θ is a priori determined based on physical
reasoning about the parameters, and the bounds defining Θ
can be large, as the online estimation of Θ̂ ⊂ Θ takes care
of reducing conservativeness. We extract Nx unique samples
from X and construct grids on U and Θ with Nu and Nθ
nodes, respectively. Let xi denote the i-th sampled state,
uj the j-th sampled wheel steering angle command, and
θm the m-th sampled parameter. For each (xi, uj ,θm), we
simulate the closed-loop system (5) forward in time over a
finite horizon Th with a constant reference uj and parameter
θm. The horizon Th is chosen long enough such that the
tracking error is small enough by the end of the simulation.
For each simulation, we check whether LTRk ∈ Y for every
time step of the simulation. We set the corresponding label
of the sample xi as

`i,j,m =

{
+1, if LTRk ∈ Y for every k ∈ {0, 1, . . . , Ts},
−1, otherwise.

(12)
At the end of the offline data generation, we have a fixed
collection of initial {xi0}

Nx
i=1, and each initial condition xi0

has a corresponding Nv ×Nθ matrix of labels

`i =

 `
i,1,1 · · · `i,1,Nθ

...
. . .

...
`i,Nv,1 · · · `i,Nv,Nθ

 , (13)

from which a labeled set is generated online. Note that
from (12), every element in `i is either +1 or −1.



B. Online Determining the Parameter Uncertainty Bounds

For determining the estimates and associated uncertainties
of the suspension stiffness, damping coefficient, and CoG
distance, all contained in θ, we rely on a recently developed
MPF [14]. Next, we briefly outline the estimation model
and the algorithm formulation, and refer to [14] for a more
comprehensive treatment.

1) Estimation Model: The MPF employs the roll dynam-
ics model given by

(IX+mh2)φ̈+Dφφ̇+Kφφ = mh(ay cosφ+g sinφ). (14)

If the vehicle is not close to rollover, sinφ ≈ φ and cosφ ≈
1, and we can write the system in state-space form with state
xe =

[
φ φ̇

]>
ẋe =

[
0 1

−Kφ−mghIx+mh2 − Dφ
Ix+mh2

]
xe +

[
0
mh

Ix+mh2

]
ay. (15)

First, note that (15) is linear in xe but nonlinear in the param-
eters. Second, all parameters are time varying in the sense
that they change depending on the loading conditions, but
when the vehicle is moving, they are unlikely to have large
variations. Thus, it is appropriate to model the parameters as

θk+1 = θk +wθ,k, (16)

where wθ,k is zero-mean Gaussian distributed with co-
variance Qθ according to wθ,k ∼ N (0,Qθ), with prior
distribution θ0 ∼ p0(θ). After zero-order hold sampling of
(15) and combining with (16), the estimation model becomes

θk+1 = θk +wθ,k, (17a)
xek+1 = A(θk)xek +B(θk)ay, (17b)
yk = xek + ek, (17c)

where ek ∼ N (0,R) and the lateral acceleration measure-
ment is modeled as ay ∼ N (ay,m, Qa), where Qa can be
determined using standard sensor calibration methods.

2) Formulation of the CoG Estimation Problem: The state
is measured in (17c) but the observation of θ is implicit
through the roll-dynamics model (17b). Hence, to estimate
θ we also estimate xe. Since (17) is linear in the state and
nonlinear in the parameters, a suitable estimation algorithm
is rooted in the MPF, where we can exploit linearity with
respect to the vehicle state to give a semi-analytic estimator.

To decrease the number of particles and the variance of the
estimates, it is advantageous to exploit model structure. This
is the idea behind marginalization, or Rao-Blackwellization,
where the subset of the state space that allows for analytic
expressions is marginalized out. The sampled state space is
then smaller and it is therefore possible to use fewer particles,
which is key in applications with stringent computational and
timing requirements. The enabler for the MPF in [14] is the
factorization

p(xek,θ0:k|y0:k) = p(xek|θ0:k,y0:k)p(θ0:k|y0:k) (18)

The second distribution in (18) is approximated by the PF.
Conditioned on the nonlinear state trajectory, the first factor

on the right-hand side in (18) is linear Gaussian. Thus, it
can be estimated with conditional KFs, one for each particle
conditioned on the particle trajectory. The main difference
compared with the standard KF consists of performing an
extra measurement update for each KF using the forward
propagated xe,ik+1 as the extra measurement. From the particle
distribution that generates (18), we can construct confidence
bounds by numerical integration. Alternatively, a simplifica-
tion can be made to estimating the confidenece bounds by
using first and second moments.

For the PARG constraint satisfaction property to hold, we
need to ensure that our confidence intervals do not expand
with more available data, that is, Θ̂k+1 ⊆ Θ̂k, which
is not guaranteed for the MPF and needs to be checked
during runtime. Hence, we explicitly enforce nonexpansion
of confidence intervals. Specifically, if the filter computes an
updated confidence interval Θ̃k+1, we set

Θ̂k+1 :=

{
Θ̂k ∩ Θ̃k+1 if Θ̂k+1 ∩ Θ̃k 6= ∅
Θ̂k, otherwise

(19)

to ensure nonexpansion of Θ̂k for all k ≥ 0.

C. Online Determining Parameter-Robust PI Sets

For enabling online learning of the robust PI sets and
subsequent solution of (11), we grid the input constraint set U
and combine with machine learning [13]. Gridding the input
constraint set U in (6b), along with the constraints (11c)
and (11d), implies that the solution to (11) is contained
within the sub-grid of U defined by

Ũk :=
{

min{δr,k, uk−1}, . . . ,max{δr,k, uk−1}
}
, (20)

with |Ũk| = J , where J is the number of grid points of u.
We solve (11) approximately as the grid-search problem

uk := arg min
u∈Ũk

(u− δr,k)2 (21a)

subject to (u,xk) ∈ O(Θ̂k) (21b)

u ∈ Uε(Θ̂k) (21c)

To learn the parameter-robust PI set O(Θ̂k), for each uj ∈
Ũk described in (20), and each xi ∈ {xi}Nxi=1 sampled offline
according to Sec. IV-A, we assign the label

zi,j(Θ̂k) = min
m∈Ii,j(Θ̂k)

`j,mi , (22)

where Ii,j(Θ̂k) :=
{
m : θm ∈ Θ̂k

}
is the index set of

parameters contained in the current confidence interval Θ̂k.
With the training data D := {(xi, uj), zi,j}, we construct
classifiers ϕj , where j = 1, . . . , J . For each uj , a classifier
is trained on features {xi} and their corresponding labels
{zi,j}. These classifiers need to be inner approximations of
the robust PI sets. We achieve this by selecting sublevel
sets of the decision boundary ϕm = 0 of the classifier
until no infeasible sample is contained in the interior of the
sublevel set [21]. Solving (21) is then identical to selecting
the node uj on the grid Ũk that minimizes the cost (21a),



while ensuring that ϕj(xk) > 0; that is, the current state is
predicted by the j-th classifier to belong to the parameter-
robust PI set induced by Θ̂k. In this paper, we use a 2-norm
soft margin SVM classifier (c.f. [13]) trained on D.

The proposed parameter-adaptive rollover avoidance con-
trol strategy is summarized in Algorithm 1.

Algorithm 1 Proposed rollover-avoidance control strategy
Offline: Simulate closed-loop trajectories according to
Sec. IV-A to get labeled data matrix (13).
Online:

1: while true do
2: Estimate the parameter mean θ̂k and distribution

p(θk|y0:k) using the approach in [14].
3: From θ̂k and distribution p(θk|y0:k), determine

confidence interval Θ̂k (i.e., (19)).
4: Determine admissible steering angles Ũk with (20).
5: for each i = 1, . . . , Nx do
6: for each j = 1, . . . , |Ũk| < Nu do
7: Assign label zi,j according to (22).
8: end for
9: end for

10: Construct classifiers ϕj , j ∈ {1, . . . , , |Ũk|}.
11: Solve the grid-search problem (21) and apply uk.
12: k ← k + 1
13: end while

V. SIMULATION RESULTS

In the simulation study we use the Fishhook maneuver,
which is a vehicle maneuver standardized by NHTSA and
commonly used for evaluating roll stability. We keep the
vehicle velocity when entering the maneuver to 80km/h.
Here, the only actuation is the wheel steering angle. The
PARG prediction model is the nonlinear vehicle model
described by (1)–(4) that includes lateral and longitudinal
dynamics, nonlinear tire forces including combined slip,
and suspension dynamics, which includes both sprung and
unsprung mass models. The estimation model, however,
is the relatively simple roll-dynamics model (17), and the
results therefore also indicate the robustness of the method
to modeling errors. The model and the parameters used are
the same as in [11], where according to the authors the
parameters are set to be similar to a North-American SUV.
The estimator tuning parameters are similar as in [14] and the
initial estimates of the parameters {Kφ, Dφ, h} are sampled
from the uncertainty interval

[30000, 80000]× [3000, 10000]× [0.5, 1.2]. (23)

We extract 5000 samples drawn from Halton sequences on
X, and construct equispaced grids on U and Θ with 100 and
150 samples, respectively.

For evaluation, we have executed 100 Monte-Carlo runs
of the Fishhook maneuver with different values of θ for each
run, sampled as a uniform distribution with variation of ±5%
around the mean value. However, in the training, we have
used the mean value of the parameters. This setup therefore
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Fig. 2. Parameter estimation results for one Monte-Carlo execution for the
Fishhook maneuver. True values in red dashed, estimates in black, and 2σ
area in gray.

indicates the robustness of the proposed method to imperfect
training data. The compared controllers are

1) PARG: The proposed control strategy in Algorithm 1.
2) RRG: A robust RG that uses the uncertainty interval

(23) to offline construct the PI set.
3) NOMINAL: A controller that uses the reference com-

mand directly to control the vehicle.
Fig. 2 shows the closed-loop estimation results for one rep-

resentative realization. After the initial transients, the spring
stiffness K, damping coefficient D, and CoG distance h all
converge close to their respective true values. The estimates
are contained within the confidence intervals, which are
tightening with time as more data are gathered.

The corresponding closed-loop constraint satisfaction and
resulting steering angle command for the same realization
as in Fig. 2 are shown in Fig. 3. For the online calculation
of the PI sets, we employ a nonlinear SVM with radial
basis function kernel. The SVM penalizes false positives
more strongly than false negatives through an asymmetric
cost, and constraints on SVM coefficients are removed.
Small coefficients are clipped, and cross-validation yields
best regularization parameters. The proposed PARG satisfies
the constraints, as it adjusts the steering angle. Using the
nominal reference steering angle, there are numerous large
constraint violations, indicating wheel liftoff.

Next, we compare the proposed PARG with the nominal
steering profile (NOMINAL) and the robust RG (RRG). As
performance metric, we use the number of constraint viola-
tions and the quadratic cost in (21a),

Cost =
∑
k

(uk − δr,k)2, (24)

which both PARG and RRG aim to minimize. Note that the
offline simulation in Algorithm 1 to get the labeled matrix
(13) is done for one fixed value of the parameters and is not
aware of the different parameter values.
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Fig. 3. Closed-loop control for the resulting LTR and the adjusted steering
angle for the estimation results in Fig. 2. The PARG satisfies the LTR
constraint, whereas the nominal steering reference violates the constraints.

TABLE I
RESULTS FOR 100 MONTE-CARLO RUNS.

PARG RRG NOMINAL

# runs |LTR| > 1 0/100 0/100 100/100
Mean Cost 0.130 0.135 -
Std Cost 0.010 0.017 -

Table I displays a summary of the results, where we show
the number of Monte-Carlo runs with constraint violation,
the cost (24) averaged over the Monte-Carlo runs (Mean
Cost), and the standard deviation of the cost over the Monte-
Carlo runs (Std Cost). Both the proposed rollover-avoidance
strategy and RRG succeed in providing constraint satisfaction
in all of the Monte-Carlo runs. However, the nominal com-
mand violates multiple times the constraints at every Monte-
Carlo run, as indicated in Fig. 3. PARG produces a slightly
lower cost (3%) than RRG on average. The real benefit is seen
from the variation of the cost over runs, where the proposed
adaptation to the estimated parameters reduce the standard
deviation (Std Cost) of the cost with 60%.

VI. CONCLUSION

We presented a rollover avoidance control strategy based
on a parameter-adaptive reference governor that avoids
rollover, even when having uncertainties in the parame-
ters related to the suspension dynamcis, for example, the
CoG height. The method combines machine learning with
marginalized particle filtering for determining online the
robust positive invariant sets that ensure rollover avoidance.

The simulation results show that the method effectively
avoids wheel liftoff according to the LTR metric and that
while the average cost is a few percent, the reduction in
performance variation is 60% compared to a robust refer-
ence governor implementation. The Monte-Carlo study when
varying the true parameters indicates that the method is ro-
bust not only to uncertain parameters, but also avoids rollover
when the simulation model we use for learning is uncertain.
The next step is to verify the real-time applicability of the
method in high-fidelity hardware-in-the-loop simulations.
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[3] B. Schofield and T. Hägglund, “Optimal control allocation in vehicle
dynamics control for rollover mitigation,” in Amer. Control Conf.,
Seattle, WA, Jun. 2008.
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