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Abstract
Convex Quadratic Programs (QPs) have come to play a central role in the computation of
control action for constrained dynamical systems. Convex QPs arise in Model Predictive
Control (MPC) for linear systems, switched linear systems and in sequential linearization
of nonlinear systems. A number algorithms have been developed in recent years for the
solution of such QPs. However not all algorithms are capable of computing an optimal
solution if feasible or producing a certificate of infeasibility. In this paper, we present a novel
Homogeneous QP (HQP) formulation which is obtained by embedding the original QP in
a larger space. The key properties of the HQP are: (i) is always feasible, (ii) an optimal
solution to QP can be readily obtained from a solution to HQP, and (iii) infeasibility of QP
corresponds to a particular solution of HQP. An immediate consequence is that all the existing
algorithms for QP are now also capable of robustly detecting infeasibility. In particular,
we present an Infeasible Interior Point Method (IIPM) for the HQP and show polynomial
iteration complexity when applied to HQP. A key distinction with prior IPM approaches is
that we do not need to solve second-order cone programs. Numerical experiments on the
formulation are provided using existing codes.
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Abstract— Convex Quadratic Programs (QPs) have come to
play a central role in the computation of control action for
constrained dynamical systems. In this paper, we present a
novel Homogeneous QP (HQP) formulation which is obtained
by embedding the original QP in a larger space. The key
properties of the HQP are: (i) is always feasible, (ii) an optimal
solution to QP can be readily obtained from a solution to HQP,
and (iii) infeasibility of QP corresponds to a particular solution
of HQP. An immediate consequence is that all the existing
algorithms for QP are now also capable of robustly detecting
infeasibility. In particular, we present an Infeasible Interior
Point Method (IIPM) for the HQP and show polynomial
iteration complexity when applied to HQP. A key distinction
with prior IPM approaches is that we do not need to solve
second-order cone programs. Numerical experiments on the
formulation are provided using existing codes.

I. INTRODUCTION

Optimization algorithms are widely used in the control
for constrained dynamic systems. In particular, the solution
of convex Quadratic Programs (QPs) is a key ingredient of
optimization algorithms. Convex QPs arise for example in the
Model Predictive Control of linear systems, switched linear
systems and nonlinear systems [1], [2]. The past two decades
have witnessed the development of a number of algorithms
for the solution of convex QPs arising in the context of
optimization-based control. Initial work on QP algorithms
were based on solving a system of equations representing the
optimality conditions such as Interior Point Method (IPM)
for QP [3], active-set methods [4], [5] and more recently,
IPM for Second Order Cone Programs (SOCPs) [6]. In
the last decade there has been interest in the development
of first-order approaches such as gradient projection [7],
dual gradient projection [8], [9], and splitting methods [10],
[11], [12], [13] and iterative second-order approaches [14].
Recently, there has been work on employing these methods
within Branch & Bound (B&B) algorithms for the solution
of Mixed Integer Quadratic Programs (MIQPs) that arise in
MPC for switched systems [15], [16], [17], [18].

A critical feature required of QP solvers for real-time
applications is the ability to detect infeasibility and provide
a graceful handling of the same. Infeasibility handling in-
creases in importance when solving MIQPs in a B&B setting
as it is expected that QPs resulting from the fixing of a
subset of binary variables will likely be infeasible. Detecting
such infeasible QPs and pruning the search tree in B&B is
essential for computational efficiency of the MIQP solver.
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Infeasibility of a QP is determined by the identification
of a ray that is feasible for the dual and makes the dual
objective unbounded. First-order primal-dual algorithms are
capable of detecting infeasibility. Recent results on detecting
infeasibility using first-order algorithms include [19], [20],
[21]. A dual QP formulation, if it can be constructed ex-
plicitly, will allow the determination of a ray of infeasibility.
However, such an explicit dual construction requires strong
convexity of the QP. Active-set methods typically employ a
feasibility phase to first determine a feasible point and then
proceed to an optimization phase which produces the optimal
solution. Failure of the feasibility phase allows to pronounce
a QP as being infeasible [22]. The work performed in
this phase is identical to that required for the optimization
phase. When employing inexact linear algebra the first-
phase is typically not employed and as a consequence the
ability of such approaches to certify infeasibility is not clear.
IPM algorithms, on the other hand, are not all capable of
producing a certificate of infeasibility [23], [24]. IPMs based
on Homogeneous Self-Dual (HSD) embedding [25], [26] are
known to produce a certificate of infeasibility for Linear
Programs (LPs). This technique has been implemented in
MOSEK [27] and has also been extended to handle SOCPs.
To detect infeasible QPs with IPMs, the QPs must first be
formulated as a SOCP to which the HSD embedding is
then applied. The ECOS solver [6] does exactly this for the
solution of QPs arising in MPC and can detect infeasibility.

We present a novel embedding of the QP into a space
that is one dimension higher. The embedding is produced
by introducing an additional variable that is nonnegative and
multiplies the affine terms in the objective and constraints.
The objective contribution from the introduced variable is
determined so the resulting Homogeneous Quadratic Pro-
gram (HQP) satisfies the following properties: (i) HQP is
always feasible, (ii) an optimal solution to the QP can always
be recovered from the optimal solution to the HQP if the
introduced variable is positive; and (iii) QP can be certified
to be infeasible if the introduced variable is zero. More
importantly, the HQP formulation can be presented to any QP
solver to determine the optimal solution or infer infeasibility
in a robust manner.

In this paper, we focus on applying an Infeasible IPM
(IIPM) to solve the HQP. We are able to derive polynomial
complexity of a standard IIPM when applied to HQP by
adapting the analysis of IIPM for linear programs [23,
Chapter 6]. Thus, we have an IIPM with polynomial iteration
complexity for inferring optimality or infeasibility of QP
without having to solve SOCPs.



The paper is organized as follows. §II presents the QP
and the assumptions. §III presents the embedding of QP
into a HQP and shows the equivalence of the formulations.
An IIPM for solving HQP and the polynomial iteration
complexity are described in §IV. We present results in §V
when using the HQP formulation with IPOPT. Conclusions
and directions for future work are provided in §VI.

Notation. The set of reals is denoted by R and the set of
vectors of dimension n by Rn. The set of n× n symmetric
matrices is denoted by Sn. For a matrix A ∈ Sn, the notation
A < (�)0 denotes that A is positive semidefinite (definite).
Given a vector u ∈ Rn, Diag(u) denotes a diagonal matrix
with the elements of the vector on the diagonal. The notation
In denotes the identity matrix of size n.

II. PROBLEM FORMULATION

Consider the QP in the form

min
y∈Rn

1

2
yTCy + cT y (1a)

s.t. Ey = f (1b)
y ≥ 0 (1c)

where C ∈ Sn, c ∈ Rn, E ∈ Rm×n, and f ∈ Rm. Note
that any QP formulation with finite lower or upper bound on
each of the variables can be put into the form in (1) through
a linear transformation of variables.

We make the following assumptions on QP (1).
Assumption 1: The matrix E has full row rank of m.
Assumption 2: The matrix ZTCZ � 0 where Z ∈

Rn×(n−m) is an orthonormal basis for the null-space of E,
i.e. Z is a basis for {v |Ev = 0}.
Assumption 1 is not restrictive and can be easily satisfied
by removing dependent rows if necessary. Assumption 2 re-
quires that C be positive definite when projected onto Z. This
assumption readily holds for MPC formulations [19] and also
for certain spectral relaxations of nonconvex MIQPs [28],
[29]. Assumption 2 implies that the optimal solution to
QP (1) is unique whenever QP (1) is feasible. Note that the
assumptions do not preclude the infeasibility of QP (1). The
basis Z is typically computed using a QR factorization of
ET [30].

We conclude this section with a statement of the conditions
for optimality and infeasibility of QP (1).

A point y? minimizes QP (1) if there exist multipliers
ν? ∈ Rm, ξ? ≥ 0 ∈ Rn, satisfying the first-order optimality
conditions

Cy? + c+ ET ν? − ξ∗ = 0 (2a)
Ey? = f (2b)

0 ≤ y? ⊥ ξ? ≥ 0. (2c)

The conditions (2) are necessary and sufficient for a mini-
mizer of QP (1) under Assumption 2.

The QP (1) is infeasible if there exist ν◦ ∈ Rm, ξ◦ ∈ Rn
satisfying

ET ν◦ − ξ◦ = 0 (3a)

fT ν◦ = −1 (3b)
ξ◦ ≥ 0. (3c)

The conditions in (3) are obtained from applying a Theorem
of the Alternative [31] to the constraints in (1b)-(1c).

III. HOMOGENEOUS QP FORMULATION

Consider embedding QP (1) into a Homogeneous
Quadratic Program (HQP) as

min
y∈Rn,τ∈R

1

2
yTCy + τcT y +

θ

2
(τ2 − 2τ) (4a)

s.t. Ey = fτ (4b)
y ≥ 0, τ ≥ 0 (4c)

where τ ∈ R is an additional nonnegative variable and θ > 0
is a parameter. Observe that the objective (4a) is obtained by
multiplying the linear term cT y in (1a) with τ and appending
with the term (θ/2)(τ2 − τ). The equality constraints (4b)
is obtained by multiplying the right-hand side of (1b) with
τ . §III-A provides conditions on θ that ensures HQP is
convex. §III-B shows how the parameter θ can be computed
efficiently. Finally, §III-C shows that solving HQP allows to
recover a solution to QP or declare infeasibility.

A. Conditions on θ

The parameter θ is chosen to satisfy two conditions:
1) θ > 2|θ?| where θ? is defined as

θ? = min
y∈Rn

1

2
yTCy + cT y (5)

s.t. Ey = f.

The parameter θ? is well-defined by Assumption 2 and
can be computed as θ∗ = 1

2 ỹ
TCỹ + cT ỹ where ỹ is

obtained by solving a single linear system(
C ET

E 0

)(
ỹ
ν̃

)
=

(
−c
f

)
. (6)

Since the nonnegativity constraints (1c) are ignored in
the definition of θ∗ (5) it follows that

−1

2
θ < θ? ≤1

2
yTCy + cT y (7)

∀ y satisfying (1b)− (1c).

2) θ is chosen large enough so that

ẐT
[
C c
cT θ

]
Ẑ � 0 (8)

where Ẑ is a basis for the null space of (4b). Such a
basis can be obtained as ,

Ẑ =

[
Z d
0 1

]
(9)

where d = ET (EET )−1f .
The satisfaction of (8) implies that:

1) the Hessian of the objective in (4a) is positive definite
on the null space of the equality constraints (4b).

2) HQP (4) is convex and the first-order optimality condi-
tions are necessary and sufficient for a minimizer.



B. Computing θ

We will now address the computation of θ satisfying (8).
Lemma 1: Suppose Assumptions 1 and 2 hold. Then (8)

holds for all θ satisfying

θ >
1

λmin(ZTCZ)
‖ZT (Cd+ c)‖2 − dTCd− 2cT d. (10)

Proof: The claim follows from an application of the
Schur-complement to the left-hand side of the matrix in (8).
Substitute Ẑ from (9) in (8) to obtain

ẐT
[
C c
cT θ

]
Ẑ =

[
ZTCZ ZT (Cd+ c)

(Cd+ c)TZ θ + dTCd+ 2cT d

]
.

(11)
Since ZTCZ � 0 (Assumption 2) the condition in (8)
holds provided the Schur-complement w.r.t. ZTCZ in (11)
is positive, i.e.

0 < θ + dTCd+ 2cT d−
(Cd+ c)TZ(ZTCZ)−1ZT (Cd+ c)

=⇒ θ > (Cd+ c)TZ(ZTCZ)−1ZT (Cd+ c)

− dTCd− 2cT d.

(12)

Using ZTCZ � λmin(ZTCZ)In−m in (12) yields (10).
Remark 1: It is not necessary to compute ZT (Cd + c)

explicitly. Since ‖ZZT ‖ ≤ 1 it is sufficient to choose

θ >
1

λmin(ZTCZ)
‖Cd+ c‖2 − dTCd− 2cT d (13)

in order to satisfy (8).
Remark 2: Further, it is not necessary to compute

λmin(ZTCZ). It is sufficient to have a nontrivial lower
bound estimate of λmin(ZTCZ). For example, if C � 0
(as in MPC applications) then λmin(C) ≤ λmin(ZTCZ).
In the context of MIQPs with binary variables, QPs (1) are
solved at each node of the B&B tree. The QP solved at the
child node is a result of fixing a binary variable to 0 or 1.
Let us suppose that in the child node the first variable index
is fixed to 0 or 1. Then

λmin(ZTCZ) = min
u:Eu=0

uTCu

uTu
≤ min
u:Eu=0,u1∈{0,1}

uTCu

uTu
.

Hence, the lower bound estimate available at the parent
node serves as a valid lower bound estimate for smallest
eigenvalue of the reduced Hessian at the child node. If
0 < α ≤ λmin(ZTCZ) then the choice of

θ >
1

α
‖Cd+ c‖2 − dTCd− 2cT d (14)

ensures satisfaction of (8).

C. Equivalence between QP and HQP

We collect some simple observations on the HQP (4).
(O1) HQP (4) is always feasible. It is easily verified that

(y, τ) = 0 satisfies (4b)-(4c).
(O2) HQP (4) has an optimal solution with optimal value

less than or equal to 0. This follows directly from (O1).
(O3) HQP (4) has a finite optimum. This follows from (8).

We now state the first-order optimality conditions for
HQP (4).

A point (ŷ, τ̂) minimizes HQP (4) if there exist multipliers
(ν̂, ξ̂, ω̂) ∈ Rm+n+1 satisfying the first-order optimality
conditions

Cŷ + τ̂ c+ ET ν̂ − ξ̂ = 0 (15a)

θτ̂ − θ + cT ŷ − fT ν̂ − ω̂ = 0 (15b)
Eŷ = f τ̂ (15c)

0 ≤ ŷ ⊥ ξ̂ ≥ 0 (15d)
0 ≤ τ̂ ⊥ ω̂ ≥ 0. (15e)

Theorem 1: Suppose θ is chosen to satisfy the conditions
in §III-A. The QP (1) has an optimal solution y? iff the
HQP (4) has an optimal solution (ŷ, τ̂) with τ̂ > 0.

Proof: Consider the if part. Let (ŷ, τ̂) be an optimal
solution of HQP (4) and let (ν̂, ξ̂, ω̂) be multipliers such
that (15) holds. Then, it is easily verified that (y?, ν?, ξ?) =
(ŷ/τ̂ , ν̂/τ̂ , ξ̂/τ̂) satisifies the optimality conditions (2) for
QP (1). This proves the if part.

Consider the only if part. Let y? be an optimal solution
of QP (1) and let (ν?, ξ?) be multipliers such that (2) holds.
Define τ̄ = θ/(θ + cT y? − fT ν?). If τ̄ > 0 then it can be
easily verified that ŷ = τ̄ y?, τ̂ = τ̄ , ν̂ = τ̄ ν?, ξ̂ = τ̄ ξ?,
ω̂ = 0 satisfy the optimality conditions for HQP (15). To
show τ̄ > 0 we need to show that θ + cT y? − fT ν? > 0
since θ > 0. Consider

θ + cT y? − fT ν? (16a)

= θ + cT y? − (ET ν?)T y? (16b)

= θ + 2cT y? + (y?)TCy? − (y?)T ξ? (16c)

= θ + 2cT y? + (y?)TCy? (16d)
> 0 (16e)

where the equality in (16b) follows by multiplying (2b) by
(ν?)T and substituting for fT ν? with (ET ν?)T y?. Mul-
tiplying (2a) by (y?)T and substituting for −(ET ν?)T y?

as cT y? + (y?)TCy? − (y?)T ξ? yields (16c). Using the
complementarity constraints (2c) in (16c) yields (16d). The
final inequality follows from (7). This proves the only if part
of the claim. The claim is proven.

We now show that infeasibility of QP (1) is equivalent to
the vanishing of the optimal solution to HQP (4).

Theorem 2: Suppose θ satisfies the conditions in §III-A.
The QP (1) is infeasible iff the HQP (4) has optimal solution
(ŷ, τ̂) = 0.

Proof: Consider the only if part of the claim. Suppose
there exists (ν◦, ξ◦) satisfying (3). It can be verified that
(ŷ, τ̂) = 0, (ν̂, ξ̂, ω̂) = (θν◦, θξ◦, 0) satisfies (15). Hence
(ŷ, τ̂) = 0 is an optimal solution to HQP (4). This proves
the only if part of the claim.

Consider the if part of the claim. Suppose (ŷ, τ̂) = 0 is
the optimal solution to (4) and let (ν̂, ξ̂, ω̂) be the multipliers
in (15). Then (ν◦, ξ◦) = (ν̂/(θ + ω̂), ξ̂/(θ + ω̂)) can be
verified to satisfy (3). This proves the if part of the claim,
completing the proof.



IV. INFEASIBLE INTERIOR POINT METHOD (IIPM)

For the remainder of the paper, we assume that the HQP
has the form

min
x∈Rn+1

1

2
xTQx+ qTx (17a)

s.t. Ax = 0 (17b)
x ≥ 0 (17c)

where x = ( yτ ), Q =
(
C cT

c θ

)
, q =

(
0
−θ
)
, A = (E −f ). We

assume the following for the HQP (17).
Assumption 3: The matrix A has full row rank of m.
Assumption 4: The matrix Q is positive definite on the

null space of A, i.e. xTQx > 0 ∀x ∈ {v |Av = 0}.
The above HQP can be identified with original QP (1)
when f = 0 and the Assumptions 1-2 imply satisfaction
of Assumptions 3-4. If f 6= 0 §III shows how to cast (1)
satisfying Assumptions 1-2 into a HQP of the form in (17)
satisfying Assumptions 3-4.

In the rest of the section, we show how a standard IIPM
for LPs can be extended to HQP (17). The IIPM also enjoys
polynomial iteration complexity.

A. IIPM for HQP

In the rest of the section we employ the functions

rd(x, λ, s) := Qx+ATλ− s (18a)
rp(x, λ, s) := Ax (18b)
rc(x, λ, s) := Xs (18c)

µ(x, s) := xT s/(n+ 1) (18d)

where x ∈ Rn+1, and λ ∈ Rm, s ∈ Rn+1 are the multipliers
for the equality, nonnegativity constraints (17b)-(17c), and
X = Diag(x). The parameter µ(x, s) is called a barrier or
centrality parameter. In the following, we will suppress the
arguments when the dependence is clear from the context.

A point x? ≥ 0 is said to minimize HQP (17) if there exist
λ? and s? ≥ 0 satisfying the first-order stationary conditions

(rd(x, λ, s), rp(x, λ, s), rc(x, λ, s)) = (0, 0, 0). (19)

IPMs aim to compute (x?, λ?, s?) by following the
central path which is defined by {(x, λ, s) | (x, s) >
0, (rd(x, λ, s), rp(x, λ, s), rc(x, λ, s)) = (0, 0, µ(x, s)e)}
where e ∈ Rn+1 is a vector of all ones. In the limit as
µ(x, s) → 0 we recover a point satisfying (19). Feasible
IPMs typically assume that an initial iterate (x, λ, s) satis-
fying (x, s) > 0 and (rd(x, λ, s), rp(x, λ, s)) = (0, 0). Such
a point is not generally guaranteed to exist and can also
be difficult to compute. In the context of HQP (17) such a
point will not exist if the original QP (1) is infeasible (refer
Theorem 2). This is our motivation for considering IIPM.

IIPMs start from an initial iterate (x0, λ0, s0) satisfy-
ing (x0, s0) > 0 but (r0d, r

0
p) 6= 0 where r0d, r

)
p denote

rd(x
0, λ0, s0), rp(x0, λ0, s0). The method generates a se-

quence of iterates {(xk, λk, sk)} where the iterates are

required to lie within a neighborhood N−∞(γ, β) with

N−∞(γ, β) =

(x, λ, s)

∣∣∣∣∣∣
‖(rd, rp)‖

µ
≤ β
‖(r0d, r0p)‖

µ0

(x, s) > 0, Xs ≥ γµ(x, s)e


(20)

where β ≥ 1 is a fixed parameter. At each iteration a search
direction (∆xk,∆λk,∆sk) is generated by solvingQ AT −In+1

A 0 0
Sk 0 Xk

∆xk

∆λk

∆sk

 =

 −rkd
−rkp

−rkc + σkµke

 (21)

where σk > 0 such that σk ∈ [σmin, σmax] and µk =
(xk)T sk/(n + 1). The residual of the complementarity
condition rkc is perturbed by σkµk to ensure that the it-
erates (xk+1, sk+1) can be guaranteed to lie within the
neighborhood N−∞(γ, β). Given such a direction define
(x(α), λ(α), s(α)) = (xk, λk, sk)+α(∆xk,∆λk,∆sk). The
step αk is chosen to be the largest value such that

(x(αk), λ(αk), s(αk)) ∈ N−∞(γ, β) (22a)

µ(αk) ≤ (1− 0.01αk)µk. (22b)

The next iterate is defined as (xk+1, λk+1, sk+1) =
(x(αk), λ(αk), s(αk)). Algorithm 1 describes the IIPM.

Algorithm 1: IIPM for HQP (17)

Data: β, γ, σmin, σmax with β ≥ 1, γ ∈ (0, 1),
0 < σmin < σmax ≤ 1

2 .
1 Choose (x0, λ0, s0) with x0, s0 > 0.
2 for k = 0, 1, . . . do
3 Choose σk ∈ [σmin, σmax] and solve (21) to obtain

(∆xk,∆λk,∆sk).
4 Choose the largest αk > 0 such that (22) holds.
5 Set (xk+1, λk+1, sk+1) =

(xk, λk, sk) + αk(∆xk,∆λk,∆sk).

B. Polynomial Complexity

The analysis of the Algorithm 1 is straightforward adap-
tion of the analysis in [23, Chapter 6]. We will only highlight
the key steps where we differ. The results are specialized to
the case where the initial iterate is chosen as

(x0, λ0, s0) = (ζe, 0, ζe) (23)

where ζ > 0 is scalar for which

‖(x?, s?)‖ ≤ ζ (24)

for some optimal solution (x?, λ?, s?) of HQP (17). Recall
from the discussion in §III that such a solution always exists
under the Assumptions 3-4.

From the linearity of the residuals in (18a)-(18b), the
choice of step direction (21) and the method of updating
the iterate at (k + 1) it is easy to show that

(rk+1
d , rk+1

p ) = (1− αk)(rkd , r
k
c ) = υk+1(r0d, r

0
p)



where υk+1 =
∏k
j=0(1−αj). We first state a key result that

is used in subsequent lemmas.
Lemma 2: Suppose (x, λ, s) be such that rd(x, λ, s) = 0

and rp(x, λ, s) = 0. Then xTQx = xT s. Further, xT s ≥ 0.
Proof: Substitute (x, λ, s) in (18a) and multiplying by

xT obtain

xT rd(x, λ, s) = xTQx+ (Ax)Tλ− xT s = 0.

Using Ax = 0 in the above proves the claim. The second
claim follows from Assumption 4.

The proof on complexity (Theorem 3) relies on 3 key
lemmas. Lemma 3 first bounds υk‖(xk, sk)‖1. Lemma 4 pro-
vides a bound on scaled search directions. Finally, Lemma ??
ensures that there exists an uniform lower bound on αk. We
first provide a bound on νk(xk, sk).

Lemma 3: Suppose the initial iterate satisfies (23). Then
for any iterate (xk, λk, sk)

ζυk‖(xk, sk)‖1 ≤ 4β(n+ 1)µk. (25)
Proof: Define

(x, λ, s) = υk(x0, λ0, s0) + (1− υk)(x?, λ?, s?)

− (xk, λk, sk). (26a)

Then (x, λ, s) satisfy the conditions in Lemma 2 and xT s ≥
0. Hence,

0 ≤ xT s
= (υk)2(x0)T s0 + (1− υk)2(x?)T s? + (xk)T sk

+ υk(1− υk)((x0)T s? + (x?)T s0)

− υk((x0)T sk + (xk)T s0)

− (1− υk)((x?)T sk + (xk)T s?).

Using (x?)T s? = 0 and (x?)T sk+(xk)T s? ≥ 0 in the above
and rearranging obtain

υk((x0)T sk + (xk)T s0)

≤ (υk)2(x0)T s0 + (xk)T sk

+ υk(1− υk)((x0)T s? + (x?)T s0).

The above is identical to [23, eqn. (6.20)] and the arguments
in [23, Lemmas 6.3-6.4] apply to yield the result.

We next provide a bound on the scaled search directions.
Lemma 4: Suppose the initial iterate satisfies (23). Then

there is a constant η > 0 independent of n such that

‖(Dk)−1∆xk‖ ≤ η(n+ 1)µk, ‖Dk∆sk‖ ≤ η(n+ 1)µk

where Dk = (Xk)
1
2 (Sk)−

1
2 .

Proof: Define

(x, λ, s) = (∆xk,∆λk,∆sk) + υk(x0, λ0, s0)

− υk(x?, λ?, s?) (27a)

Then (x, λ, s) satisfy the conditions in Lemma 2 and xT s ≥
0. From the last row in (21)

Sk(∆xk + υk(x0 − x?)) +Xk(∆sk + υk(s0 − s?))
= −Xksk + σkµke+ υkSk(x0 − x?) + υkXk(s0 − s?).

(27b)

Multiplying through by (XkSk)−
1
2 and the definition of Dk

obtain

(Dk)−1(∆xk + υk(x0 − x?)) +Dk(∆sk + υk(s0 − s?))
= − (XkSk)−

1
2 (Xksk − σkµke)

+ υk(Dk)−1(x0 − x?) + υkDk(s0 − s?). (27c)

Taking norms on both sides, squaring and using xT s ≥ 0
obtain

‖(Dk)−1(∆xk + υk(x0 − x?))‖2 (27d)

+ ‖Dk(∆sk + υk(s0 − s?))‖2

≤

{
‖(XkSk)−

1
2 ‖‖(Xksk − σkµke)‖

+υk‖(Dk)−1(x0 − x?)‖+ υk‖Dk(s0 − s?)‖

}2

.

Starting from this inequality the arguments in the proofs of
Lemmas 6.5-6.6 [23] can be followed to show the claim.

Lemma 6.7 [23] provides an uniform bound on αk and
holds without any change in the arguments.

The claim on polynomial complexity of Algorithm 1
follows from the Lemmas 3,4 and Lemma 6.7 [23]. The
arguments are identical to those in [23, Theorem 6.2]. We
state the complexity result without proof.

Theorem 3: Let ε > 0 be given. Suppose that the initial
iterate satisfies (23) and suppose that ζ > 0 satisfies
ζ2 ≤ χ/εκ for some constants χ, κ > 0. Then there is an
index K = O(n2| log ε|) such that the iterates (xk, λk, sk)
generated by Algorithm 1 satisfy µk ≤ ε for all k ≥ K.

V. NUMERICAL EXPERIMENTS

We present preliminary numerical experiments with the
HQP formulation using the IPM solver IPOPT [32]. IPOPT
implements the standard IPM for QPs i.e. the algorithm
cannot determine a certificate of infeasibility. In our exper-
iments, we generated random instances of QP (1) with a
single equality constraint with C = In, c = e, E ∈ R1×n,
f = −1. The coefficients in the single equality are restricted
to be nonnegative and generated at random. It is easy to
deduce that there exists no y ≥ 0 such that Ey < 0 for
E ≥ 0. Hence, the instances are all infeasible. We presented
the QP formulation directly to IPOPT. The HQP formulation
(4) is derived for each such random instance and is also
presented for solution to IPOPT. We generated 10 random
instances of different sizes n ∈ {10, 25, 50}.

In the first set of experiments, we set the IPOPT option
mehrotra algorithm=no. In this case, the predictor-
corrector algorithm of Mehrotra is disabled. When solving
the QP formulation, IPOPT always terminates after 8-
10 iterations with the indication that the problem might
be infeasible. When solving the HQP formulation, IPOPT
always terminates with an optimal solution of 0 as specified
in Theorem 2 in about 16-20 iterations.

In the second set of experiments, we enabled the
predictor-corrector algorithm in IPOPT by setting
mehrotra algorithm=yes. In this setting IPOPT
hits the iteration limit on every single instance when
solving the QP formulation. The dual infeasibility blows



up to infinity in every instance. When solving the HQP
formulation IPOPT always terminates with an optimal
solution of 0 in about 8-10 iterations.

In the third set of experiments, we set f = 1. In this
case the QP instances are always feasible. We verified that
both the QP and HQP formulations solved the problem to
optimality. Further, the solutions to QP can be recovered
from the HQP could be recovered according to Theorem 1.
Thre is no significant difference in the number of iterations
taken for convergence using either formulation. However, the
computational time per iteration for HQP is higher than that
of QP formulation. This is likely due to the matrix in (21)
being dense. This can be rectified using a tailored Schur-
complement-based implementation for the step computation.
We will investigate this in a future work.

VI. CONCLUSIONS & FUTURE WORK

We presented a homogeneous formulation of QP that
allows for robust detection of infeasibility in QPs. We also
presented an infeasible IPM for the solution of the HQP and
showed polynomial iteration complexity. In the context of
IPMs, the paper leaves open a number of future avenues
for exploration. Firstly, the sparsity of the linear systems
in the step computation of IIPM are now affected by the
sparsity of c, f which can be dense. To effectively handle
this a tailored linear algebra solution is required. Secondly,
the linear system E may have structure such as in the case
of MPC. Exploiting this through a decomposition approach
such as in [3] is critical to improving the computational
efficiency. Thirdly, the user of predictor-corrector steps will
be crucial for improving the practial performance. We will
explore these in a future work. The homogeneous formula-
tion can be readily presented to any QP algorithm. We will
also investigate the performance of other QP algorithms on
the proposed formulation.
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