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Abstract
This chapter discusses how we can apply deep learning to photonic device design problems,
by focusing on three types of modeling approaches. In forward modeling, the trained deep
neural network (DNN) is integrated in the optimization loops of classical optimizers. In
inverse modeling, the trained DNN directly constructs a structure with the desired target
performance given as input. Generative modeling produces a series of optimized designs for
a target performance. We take an example of designing compact silicon-on-insulator (SOI)-
based 1 x 2 power splitters with various target splitting ratios, which can be a building block
for various integrated photonic circuits. We also give an overview of their applications to
metasurfaces/plasmonics, other types of photonic devices in these three categories. These
approaches are expected to be applicable to a broad range of design for various types of
photonic devices.
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ABSTRACT
This chapter discusses how we can apply deep learning to photonic device design prob-
lems, by focusing on three types of modeling approaches. In forward modeling, the
trained deep neural network (DNN) is integrated in the optimization loops of classical
optimizers. In inverse modeling, the trained DNN directly constructs a structure with
the desired target performance given as input. Generative modeling produces a series of
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optimized designs for a target performance. We take an example of designing compact
silicon-on-insulator (SOI)-based 1 × 2 power splitters with various target splitting ratios,
which can be a building block for various integrated photonic circuits. We also give
an overview of their applications to metasurfaces/plasmonics, other types of photonic
devices in these three categories. These approaches are expected to be applicable to a
broad range of design for various types of photonic devices.
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1.1 INTRODUCTION

Subwavelength nanostructured materials can be used to control incident electro-
magnetic (EM) fields into specific transmitted and reflected wavefronts. Recent
nanophotonic devices have used such complex structures to enable novel applica-
tions in optics, integrated photonics, sensing, and computational metamaterials
in a compact and energy-efficient form. These include waveguide-type nanopho-
tonic devices [1–9] and metasurfaces including plasmonics [10–17]. Optimizing
nanostructures with a large number of possible combinations of parameters is a
challenging task in practice.

EM simulations, including finite-difference time-domain (FDTD) methods
and finite element methods (FEM), often require long simulation time, several
minutes to hours depending on the size and the mesh of the photonic device,
in order to estimate the optical transmission and/or reflection response. For
designing nanostructures to achieve a target transmission/reflection profile, a
large number of EM simulations needs to be performed, e.g., in a meta-heuristic
manner. To resolve the issue, some optimization methods such as direct binary
search (DBS) [4] and adjoint method [1,3,18,19] have been implemented. More
recently, artificial intelligence using neural networks (NN) has been integrated in
an optimization process that can accelerate optimization by reducing the required
number of numerical simulations. For example, in [20], we demonstrated how
NNs can help to streamline the design process, although the prediction accuracy
was limited, due to the shallow network structure.

Deep learning methods are representation-learning techniques obtained by
composition of non-linear models that transform the representation at the pre-
vious level into a higher and slightly more abstract level in a hierarchical man-
ner [21]. The main idea is that by cascading a large number of such transforma-
tions, nearly arbitrary complex functions can be learned in a data-driven fashion
using deep neural networks (DNN) [22]. The huge success of deep learning in
modeling complex input-output relationship has attracted attention from several
scientific communities such as material discovery and design [23–26], high en-
ergy physics [27], single molecule imaging [28], medical diagnosis [29], and
particle physics [30]. The optical community also started working on signal
processing and network automation of optical fiber communications [31–36],
and inverse modeling for design of nanostructured optical components using
DNN [37–42] Also, there have been reports on optical implementation of artifi-
cial neural networks [43–48] as well as characterization of optical pulses [49].

More recently, Liu et al. used a tandem NN architecture to learn non-unique
EM scattering of alternating dielectric thin films with varying thickness [37].
Peurifoy et al. demonstrated DNNs to approximate light scattering of multilayer
shell nanoparticles of SiO2 and TiO2 using a fully connected DNNs [40]. Asano
and Noda provided an NN for prediction of the quality factor in two dimensional
photonic crystals [42]. Hammond et al. used DNNs for forward and inverse
modeling of strip waveguides and Bragg gratings [50]. Hedge paired DNN with
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evolutionary algorithms to accelerate antireflection coating designs [51]. Banerji
et al. used reinforcement learning to design nanophotonic power splitters [52].
The design space for integrated photonic devices is considerably larger than
previously demonstrated optical scattering applications, and calls for robust
deeper networks such as Convolutional Neural Networks (CNN) [22].

Integrated photonic beam splitters have been widely used to equally divide
the power into the output ports. Although an arbitrary split ratio can be applied
in various applications such as signal monitoring, feedback circuits, or optical
quantization [53], the design space is hardly explored due to design complex-
ity. To design photonic power splitters with an arbitrary splitting ratio, the
designer often begins with an overall structure based on analytical models and
fine tunes the structure using parameter sweeps in numerical simulations. DNN
can dramatically change the design process.

Metasurfaces and plasmonics are expected to play a major role in ultra-
compact and multi-functional lenses and various other applications. Possible
applications for fiber-optics include quarter-wave plates, vortex plates to create
orbital angular momentum (OAM), and plasmonic collimators [54]. However,
designing metasurfaces and plasmonic devices also has the same issue of vast
design space and time consuming EM simulations. Including DNNs in the
design process will significantly advance the field.

DNNs can be used to predict an optical response of a topology (Forward
Modeling) as well as to design a topology given a desired optical response (In-
verseModeling). Another class of DNNs for designing devices andmaterials is a
generative DNN model (Generative Modeling). This paper first overviews these
three categories of DNNs applied to designing/optimizing nanophotonic power
splitters. We demonstrate that by using deep learning methods, we could effi-
ciently learn the design space of a broadband integrated photonic power splitter
to realize a compact device. We also review parallel activities for metasurfaces
and plasmomics. The general concept of using DNNs for designing/optimizing
photonic devices will be readily applicable to a broader area of photonics.

1.2 DEEP NEURAL NETWORK (DNN) MODELS

Fig. 1.1 shows the three categories or methodologies of the DNN models for
designing photonic devices; i.e., forward, inverse, and generative modeling.

The first category is forward modeling, where the DNN takes the device
topology as an input and the optical response is the output, as shown in Fig. 1.1
(a). In this case, for inverse design, we would use the trained DNN in surrogate
optimization, e.g., optimization metric calculation in meta-heuristic optimizers
such as DBS and evolutionary strategies (ES). The forward-modeling DNN can
skip time-consuming EM simulations to predict the optical response. Let x ∈ R=
and y ∈ R< be the topology parameters to design and the corresponding optical
response, respectively. Given a device parameter x, the corresponding response
y can be analyzed through the EM simulation. Let 5 : R= → R< be such a
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nonlinear function, transforming the geometry parameter x to the response y
as y = 5 (x). The forward-modeling DNN approximates the function 5 with a
parameterized function 5\ such that ŷ = 5\ (x) is close to the true y. Because
of the universal approximation theorem of DNN [55], the forward modeling can
predict the response arbitrarily well as the size of DNN and training samples
increases. Nevertheless, this forward-modeling DNN does not directly provide
an optimized topology and, thus, it is less convenient for inverse design in
general.

The second category is inverse modeling, where the optical response is the
input and the device topology is the output, as shown in Fig. 1.1 (b). Letting
5 −1 : R< → R= be the inverse function of 5 , the inverse-modeling DNN tries to
approximate 5 −1 such that its parameterized function 6q : R< → R= produces
the output of x̂ = 6q (y) close enough to the original geometry parameter x given
the optical response y. In this case, using the trained network, when the target
optical response is given, the desired device topology is directly generated. This
inverse modeling can be more useful for inverse design than forward modeling
as we can directly obtain device topology given a target profile. However, it
typically requires more diverse training data as the design space is usually much
larger than the diversity of the optical profile (specifically, H(x) � H(y), where
H denotes entropy, i.e., amount of information) and there is no guarantee that
target profile is feasible. In addition, the inverse-modelingDNNusually provides
only one topology candidate per target response, which limits the capability to
explore better geometries. In fact, the 5 -function through EM simulations is
not always bĳective (even non-injective and non-surjective) and, hence, inverse
modeling for any target profile y to obtain a single x is challenging (potentially
infeasible in a strict sense).

The third category is generative modeling such as conditional autoencoders
(CAE) and generative adversarial networks (GAN), wherein the network is
trained using the device topology and optical response. Once the network is
trained, we give a target optical response as well as random numbers, and the
network generates a series of improved topologies. Fig. 1.1 (c) illustrates con-
ditional variational autoencoder framework, where the encoder summarizes the
geometry x into a latent representation and the decoder takes as input the ran-
domized variables of the latent representation along with the target profile y as a
condition to generate the geometry x̂. Omitting the encoder to produce the latent
variables, the decoder can be used alone with random latent variable inputs in
a manner similar to sample generation with the generator block of a conditional
GAN. When we further simplify it by excluding randomness and adversarial
training, this model reduces to the inverse modeling. The generative modeling
methods can resolve the issues of the forward and inverse modeling approaches
as it can directly generate a series of inversely designed geometries.
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FIGURE 1.1 Three distinct categories of network models: (a) forward modeling, where the device
topology is the input and the optical response is the output, (b) inverse modeling, where the optical
response is the input and the device topology is the output, and (c) generative modeling, where the
network is first trained with pairs of the device topology and the optical response, and later a new
device topology is generated with the optical response and random numbers.

1.3 NANOPHOTONIC POWER SPLITTER

1.3.1 Device Structure

Integrated photonic beam splitters have been widely used to equally divide the
power into the output ports. Although an arbitrary split ratio can be applied
in various applications, the design space is hardly explored due to design com-
plexity. Tian et al. [56] demonstrated a silicon-on-insulator (SOI)-based 1 × 3
coupler with variable splitting ratio in a 15×15 `m2 device footprint with 60 nm
wavelength range and 80% transmission efficiency. Xu et al. [57] optimized
positioning of squared etched pixels to achieve 80% efficiency for arbitrary ra-
tio power dividers in a 3.6 × 3.6 `m2 device footprint. To design photonic
power splitters with an arbitrary splitting ratio, the designer often begins with
an overall structure based on analytical models and fine tunes the structure us-
ing parameter sweeps in numerical simulations. In this section, we consider a
nanostructured power splitter with an arbitrary and fixed splitting ratio towards
two output ports, targeting flat response with low insertion loss. Such a power
splitter can be a building block of many types of photonic integrated circuits for
optical communications and various other applications.
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We use an SOI-based structure with one input and two output ports having
0.5`m wide waveguides connected using a taper to the 2.25`m wide square
power splitter design as shown in Fig. 1.2. Each hole is a circle with a maximum
diameter of 72 nm that is easily fabricable using well-established lithography
methods [19,58]. In order to comply with the fabrication limit, we also put a
constraint that the minimum hole diameter is 40 nm, when continous variables
are used for the design process as in Section 1.3.5.

1.3.2 Simulation and DNN Modeling Procedures

Lumerical FDTD simulations are used to generate labeled data for training,
where Lumerical script language is used to modify the device topology when
training data is generated on a cluster. On the other hand, Python or Matlab
automation is used to modify the device topology for FDTD simulation, when
the DNN is included in the optimization loop or active learning. This is only
because it is difficult to run Python orMatlab script to automate FDTD simulation
on a cluster in our environment. The fundamental transverse electric (TE) mode
is used at input source and TE mode output power is recorded for transmission
and reflection. It is verified that mode conversion from TE mode to transverse
magnetic (TM) mode is negligible (< 10−5).

The data for each structure consists of a hole vector (HV) of size 20× 20 and
labels of its spectral response (SPEC) at the two output ports and reflection at
the input port whose size is 63 (3 data sets × 21 frequency points). In the HV,
each hole can be represented by a binary state of 1 for etched (=Silicon) and 0 for
not etched (=Silica) for the experiments described in Section 1.3.3 and 1.3.4, or
continuous variables associated with hole area relative to the maximum size of
72 nm for the experiments described in Section 1.3.5. In order to comply with
the fabrication limit, we also put a constraint that the minimum hole diameter
is 40 nm, corresponding to the HV value of 402/722 = 0.31. Hence, if the HV
value is below 0.31, there is no hole. We use random patterned initial HVs and
optimize them using heuristic optimization approaches for various optimization
metrics to collect a diverse set of labeled training data for supervised learning.
Even though each DBS optimization process itself is sequential, multiple DBS
processes are run in parallel in a computer cluster, to accelerate the training data
collection.

We use the open source machine learning framework of Keras using Tensor-
flow as a backend in Section 1.3.3, and PyTorch in Sections 1.3.4 and 1.3.5 in
the Python language to build and test our DNNs. For the forward modeling case,
the DNN needs to be invoked for training and mutiple design outputs prior to
each FDTD run (> 1,000 times for one optimization run), and Tensorflow/Keras
has the advantage of shorter start-up time. On the other hand, for inverse and
generative modeling, only a few start-ups are needed for the whole design pro-
cess, and the choice of the framework is more like a historical or personal choice.
The training data are generated by FDTD simulations using a high-performance
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FIGURE 1.2 Schematic of the SOI-based power splitter. a) Top view, where )1 and )2 denote
the modal transmissions of output ports 1 and 2, and ' denotes the reflection at input port. b)
Cross-section of the input/output waveguide [59]. By optimizing the binary sequence of positions of
etch hole it is possible to adjust light propagation into either of the ports. In Section 1.3.5, continuous
variables are used to represent the variable hole sizes.

computing cluster with more than 100 processors. The DNN training, testing,
and subsequent FDTD simulations are conducted on a computer with a graphics
processing unit (GPU) board Nvidia GeForce GTX Titan Z (12GB memory).

1.3.3 Deep Learning for Forward Modeling to Predict Optical Re-
sponse

We first describe the forward regression model, using a DNN to predict the
transmission and reflection spectra. Given the two-dimensional array (20 × 20),
which is the binary image for the hole locations, we train a DNN using the cor-
responding transmission and reflection spectra vector which is 63-dimensional,
consisting of spectral data for transmission at both port 1, port 2, and reflection
at the input port each at 21 discrete wavelengths from 1300 to 1800 nm. Once
the DNN is trained, it is used as the predicted (also called “surrogate”) spectra
within a DBS optimization loop.

We initially used a fully-connected DNN with multiple layers where each
layer has 100 neurons. The number of layers was considered as a hyperparameter
which was optimized during the numerical experiments. However, we found
that increasing the depth of the fully-connected DNNs did not improve the
performance of the network. To achieve better results for deeper networks, we
used a residual network (ResNet) to train both the forward and inverse problems
as a next step [60].

Since the nanophotonic and photonic crystal designs are analogous to image
processing and recognition problems, CNNs [22] are proposed to improve the
forward prediction accuracy [42,61]. The 2D CNN architecture is shown in
Fig. 1.3, where we treat the input HV data as two-dimentional images.

In our earlier work, we compared the generalization capability of CNN and
fully-connected deep neural network (FCDNN) [61]. Fig. 1.4 (a) shows the
target and predicted total transmittance of CNN and FCDNN, when the tested
total transmission is lower than 0.4, i.e., training data and the testing data are
generally very far. It is shown that the predicted total transmittance using CNN
is much better correlated with the target values. Fig. 1.4 (b) shows that the
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FIGURE 1.3 Convolutional neural network (CNN) architecture [61].

FIGURE 1.4 (a) Target and predicted total transmittance of CNN and FCDNN, and (b) RMS
prediction error vs. hamming distance of CNN and FCDNN [61].

root mean square (RMS) error of predicted total transmittance as a function of
Hamming distance (number of holes with different binary values), and CNN
shows much smaller RMS error compared to FCDNN. These indicate that 2D
CNN achieves superior performance when the input data possess image-like
properties.

Our forward modeling network consists of three 2D convolutional layers
followed by one fully connected layer. The three convolutional layers have 64,
128, and 256 filters each with kernel sizes of 10×10, 5×5, and 4×4, and strides
of 1 × 1, 2 × 2, and 2 × 2, respectively, with the Rectified Linear Unit (ReLU)
activation function. The fully connected layer has 256 neurons with the sigmoid
activation function [62].

In the network training process, we minimized the mean-square error (MSE)
as follows:

MSE =
1
#

_max∑
_=_min

[��)1 (_) − )★1 (_)
��2 + ��)2 (_) − )★2 (_)

��2 + ��'(_) − '★(_)��2] ,
(1.1)

where )1 (_), )2 (_) and '(_) denote the transmission at the output ports 1 and
2 and reflection at the input port at a wavelegth of _, respectively, and # = 21
is the total number of spectral points. We let [·]★ denote the corresponding
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target values. Here, we take a sum across uniformly sampled wavelengths _
from a minimum wavelength _min to a maximum _max. In the DBS optimization
process, we minimized the following loss function:

Metric =
��)1 − )★1

��2 + ��)2 − )★2
��2 + U��' − '★��2, (1.2)

where )1 and )2 are the lowest transmitted power within the spectral range of
1300 nm and 1800 nm, while ' is the largest reflection power. We chose U = 10
as a weighting factor. We start with random patterns of 20 × 20 binary HVs,
and generated about 11,000 training data by using the standard DBS, with target
splitting ratios of 0 (0 : 10), 0.2 (2 : 8), 0.35 (3.5 : 6.5), and 0.5 (5 : 5). Blue
points in Fig. 1.5 show the training data, where the total transmission ()1 +)2) is
plotted against the splitting ratio )1/()1 + )2). Due to the symmetry, the actual
number of distinct data used in the training is about 22,000. We then try to
design a power splitter with )★1 = 0.27 and )★2 = 0.73, starting from the three
initial conditions indicated by the red circles in Fig. 1.5.

In the conventional DBS process, starting with the lower left corner hole, we
flip the binary value to evaluate the metric using the FDTD simulation. When
the new metric is lower, we choose the new binary value, or if the metric is
higher, we revert back to the original binary value. Then, we continue with a
sequential application of the same procedure to the other holes.

We use the forward DNN modeling to accelerate the DBS process. In the
DNN-assisted DBS, we first train the DNN with 300 epochs using the initial
training data, which takes about an hour on the computer with the GPU board.
Next we virtually flip each of the 400 holes, using the output of the DNN
as a predicted SPEC value. We then select the a new pattern with a flipped
hole corresponding to the lowest metric and verify the spectra via an FDTD
simulation. When the actual FDTD result is better as expected, the flipped
pattern is retained, unless otherwise, we try another hole corresponding to the
next best metric and verify with an FDTD simulation. We train with one epoch
of the original training data and 15 epochs of the accumulated newly acquired
data. This is essentially an accelerated DBS using metric values predicted by
the DNN.

Fig. 1.6 shows a comparison between a conventional DBS and a DNN-
assisted DBS (denoted as DL-DBS), plotting the metric as a function of the
number of FDTD runs. It is confirmed that the DNN-assisted DBS optimizes
the device structure faster than the conventional DBS and leads to better device
designs overall. Note that each FDTD run takes about two minutes, while the
additional training (active learning) for each FDTD run takes 20 seconds. Hence,
there is an overhead of about 20% per FDTD. Fig. 1.7 shows an example of the
optimized device via the DNN-assisted DBS, where the spectral response is very
flat across a wide range of wavelengths at least from 1300 to 1800 nm. The total
transmittance greater than 87.5% is achieved with a low reflection below 0.5%.

In this section, we verified that the forward modeling is effective to accelerate
the optimization process to design high-performance devices. The key is to take
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advantage of the very fast forward model computation to predict performance of
numerous candidates, which can save time-consuming EM simulations.

FIGURE 1.5 Total transmittance of 22,000 training data as a function of the splitting ratio. The
red circles indicate the three initial conditions used for training the forward regression model, and
the line shows the target splitting.

FIGURE 1.6 Metric as a function of the number of 3D FDTD runs, for the conventional DBS and
the DNN-assisted DBS methods. Three different initial conditions are used [62].

1.3.4 Deep Learning for Inverse Modeling to Construct Device Topol-
ogy

The forwardmodeling described in the previous section is generally good enough
to predict the performance given the device topology. However, it needs to be
combined with an external optimization method such as DBS or other meta-
heuristic algorithms to explore different device topologies. In contrast, the
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FIGURE 1.7 Example of a 1 : 3 power splitter designed by the forward regression model. For the
range of 1300 nm and 1800 nm, the sum of the worst case )1 and )2 was 87.5%, while the worst
case reflection was less than 0.5%.

inverse modeling takes the spectral response as the input and directly generates
the device topology as the output, as shown in Fig. 1.1 (b).

We here consider an inverse modeling DNN consisting of three fully con-
nected layers and two 2D deconvolution layers. The deconvolutional layers, not
included in our original inverse modeling paper [60], improves the performance.
Note that if we use very small number of performance metrics such as only trans-
mitted power at a single wavelength, we will face a severe issue of non-bĳectivity
for the 5 -function, where multiple geometries x may end up having the identical
performance y, making the inverse design challenging as we discussed. There-
fore, it is desirable to have a relatively large number of performance metrics (in
our case < = 63) to increase the entropy of H(y) in comparison to H(x) for the
HV dimension of = = 400.

The DNN is trained to predict HV in favor of minimizing the binary cross-
entropy (BCE) loss as follows:

BCE = −
=∑
8=1

[
G8 log Ĝ8 + (1 − G8) log(1 − Ĝ8)

]
, (1.3)

where = is the maximum number of holes, G8 denotes the 8th HV value of the
training data, and Ĝ8 is the output of DNN as the corresponding estimate of G8 .
The predicted HVs Ĝ8 can take any value from 0 to 1 from a Bernoulli distribution
classifier. The classification tends to converge to either 0 or 1 as the loss reduces
by increasing the number of training epochs. We train the network using the
same data as used in Section 1.3.3.

To test the generalization capabilities of the network, we investigate the design
performance on arbitrary and unseen target cases. We try to optimize the device
at around a target splitting ratio of 0.27 as an example, where there are no good
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samples in the training dataset, as shown in Fig. 1.8. In the design stage, the target
splitting ratios are chosen to be 0.23, 0.24, . . . , 0.32, and the total transmittances
are 0.80, 0.82, 0.84, and 0.86, and hence we obtain 40 combinations of input
spectrum to feed in the inverse-modeling DNN. The DNN output are quantized
with a threshold of 0.5, and the binary sequence is then fed back into the FDTD
solver. The results are shown as the red circles in Fig. 1.8. In this first round,
some data points fill the gap, while many are overlapping with the original
training data clouds.

In the second run, we add these 40 new data points to the training data,
retrain the network, and repeat this active learning process. The results are
shown as the dark blue triangles, and those from the third round are indicated by
the green squares in Fig. 1.8. These results show that the inverse modeling has
the capability of generating the unseen results out of the training data, and the
results further improve with active learning.

In this process, the training takes about half an hour at each round on a
high-performance computer with a GPU board. Once trained, the inverse design
process is instantaneous (less than 1 s) for 40 devices.

FIGURE 1.8 Demonstration of inverse design for a power splitter to fill gap around a splitting ratio
of 0.27. The light blue asterisks, red circles, dark blue triangles, and green squares the training data,
the first, the second, and the third round results, where the total transmittance is plotted against the
splitting ratio. The red line denotes the target splitting ratio of 0.27 [62].

1.3.5 Deep Learning for Generative Modeling to Produce Device
Topology Candidates

The inverse modeling has a potential to generate an unseen good device structure
achieving near the target SPEC. However, the generated topology is usually
deterministic given the desired SPEC input. Although we can still employ a
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stochastic variational sampling at the output nodes according to the Bernoulli
distribution, the variation of the topology candidates tends to be limited. This can
significantly constrain the capability to explore different candidates of topology
to achieve improved devices. Besides the forward and inverse modeling, another
methodology based on generative modeling has been proposed for photonic
devices [37,38,59,63–66]. The generative network can produce a series of
improved designs from the training data, based on random number sampling, in
a more explicit and systematic way. We have applied generative deep learning
models based on an improved version of CVAE to generate integrated photonics
devices [66], and later added a concept of active learning to further improve the
performance [59].

The CVAE network models the distribution of the device topologies associ-
ated with target spectrum characteristics. In our power splitter application, we
define the topology pattern using variable-size holes (rather than binary holes).
Such pattern has high probability to perform better at light guiding and more sta-
ble spectrum response. Our device footprints are 2.25 × 2.25`m2 as previously
described in Fig. 1.2.
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FIGURE 1.9 a) The CVAE model structure, wherein the input is the 20 × 20 hole vector. The first
convolutional layer has 16 channels with a kernel size of 3. The second convolutional layer has
32 channels with a kernel of 3. The condition B is the transmission and reflection spectra obtained
from the FDTD simulation to form a 3 × 21 matrix, and is fed to the latent variable through a fully
connected (FC) layer. b) The A-CVAE model structure, wherein the input right now becomes the
two channels of 20 × 20 hole vector, where the first channel is the hole vector of the device and
the second channel is the decoded spectra data. The main difference from a) is that one adversarial
block is added, which is composed by two FC layers. c) The active learning method added for the
A-CVAE method, where 1000 newly generated continuous variable data are added to the original
15,000 binary training data. d) One sample training data, wherein the left figure is the pattern (hole
vector) and the right figure shows the three spectra of the training device (the transmission for the
two ports and the reflection). Each spectra response has 21 data points, which will be fed into the
network as the optical response.

We first constructed a conventional CVAE [67] as shown in Fig. 1.9 (a).
The original HVs (20 × 20) are passed to two convolutional layers [61] and
reduced to two sets of intermediate parameters of a probability density function
(PDF), representing the means ` := (`1, . . . , `� ) and standard deviations f :=
(f1, . . . , f� ). In order to have a complete back propagation flow for the network,
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the reparameterization trick is applied, described by the following equation:

I8 = `8 + f8Y8 , (1.4)

where Y8 are independent and identical distributed samples drawn from the
standard Gaussian distribution. After reparameterization, the latent variable
I := (I1, . . . , I� ) is concatenated with the encoded condition parameter B (the
dimension reduced from the original 60 to 9 through one fully connected layer)
to deconvolute back to the HV. The loss function for this conventional CVAE
is constructed by two parts: a) a cross-entropy loss between the original HV
G := (G1, . . . , G=) and the decoded HV H := (H1, . . . , H=), and the Kullback–
Leibler (KL) divergence between the latent variables and the Gaussian prior.
The first term is to reconstruct the original structure as accurate as possible.
The second term is to make the latent variable as close to the standard normal
distribution(N(0, �)) as possible. The equation of loss function is shown as
follows:

Loss = −
=∑
8=1

[
H8 log G8 + (1 − H8) log(1 − G8)

]
+ 1

2

�∑
9=1

[
`2
9 + f2

9 − log(f2
9 ) − 1

]
. (1.5)

For device generation, the trained decoder of the CVAE model is used with
the desired condition along with a latent variable sampled from the normal
distributionN(0, �), by which a series of HV topology candidates are generated.
The HV will be expressed as hole structure on the MMI with different radius.
However, the power splitters generated by CVAE have a total transmission of
∼ 80%, which still has quite some room for improvement. We believe the reason
is that the latent variable in CVAE tends to be correlated with the condition
SPEC B, which will result in degradation of the device performance for the
pattern generation because random latent space sampling can adversely impact
the target spectra.

To address such a problem of the conventional CVAE model, an Adversarial
CVAE (A-CVAE) is introduced as shown in Fig. 1.9 (c), where a separate
branch to the adversary block is used for isolating the latent variable I from the
nuisance variations B (the target SPEC) [68–70]. Our A-CVAE model also has
two convolutional layers both for the encoder and the decoder networks(similar
to the CVAE model). The encoder is followed by one fully connected layer to
obtain the latent variable. The number of channels for the two layers are 16
and 32, and the max pooling stride is 2, after that there is one fully connected
layer to reduce the number of the latent variable to 63. The latent variables are
then concatenated with the SPEC performance data and is fed into the decoder
to generate the output HV. The validations are calculated by using the FDTD
simulation to verify a figure of merit (FOM) of generated patterns, where the
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FOM is calculated by:

FOM = 1 − 10
_max∑
_=_min

[��)1 (_) − )★1 (_)
��2 + ��)2 (_) − )★2 (_)

��2 + U��'(_) − '★(_)��2] ,
(1.6)

where U = 4 is used as a weighting factor to balance between the contributions
from transmission and the reflection. We take the average of FOM over the FDTD
simulation spectral range. As the SPEC performance approaches the target, the
FOM increases towards 1, in which case we obtain an ideal power splitter without
excess loss for '★(_) = 0 and )★1 (_) + )

★
2 (_) = 1.

We use an encoder structure feeding the performance SPEC B projected on a
20× 20 matrix which is combine with the original 20× 20 hole vector to form a
2-channel input, then process it through two convolution layers. In A-CVAE, the
latent I variable will also be fed into an adversarial block to estimate the SPEC
B̄ := ( B̄1, . . . , B̄=). The loss function for the A-CVAE model is shown as follows:

Loss = −
=∑
8=1

[
H8 log G8 + (1 − H8) log(1 − G8)

]
+ 1

2

�∑
9=1

[
`2
I 9 + f2

I 9 − log(f2
I 9 ) − 1

]
− V
=

=∑
8=1
(B8 − B̄8)2. (1.7)

The loss function has three parts. The first loss function term is the VAE
reconstruction loss in the BCE criterion and the second term is the Kullback–
Leibler (KL) divergence. These two terms are the same as in Eq. 1.5. The
last term is a regularization term which is the MSE loss of the adversarial
block. Since the condition information contained in the latent variable I shall be
minimized, the MSE loss between B and B̄ needs to be maximized. A complete
update of the network generally requires alternating updates in two iteration
cycles. The first iteration updates the CVAE model based on the loss function
in (1.7). The second iteration updates the adversarial block solely based on the
MSE loss between B and B̄. The total training time using a computer with a GPU
board is around 5 minutes.

Figure 1.10 shows the training loss and the validation result as a function of
the training iterations. The solid black line represents the training loss and the
solid blue line represents the trend for validations for the CVAE model. The
plot shows that the training result approaches its optimal point when the epoch
number is between 10 to 15. The validation results further decreased beyond the
epoch number of 30. Here, we used about 15,000 binary training data, including
power splitters semi-optimized by DBS with the target splitting ratios of 5 : 5,
6.5 : 3.5, and 1 : 0. The validation result is an FOM calculated over 20 devices
of each type. This result clearly indicates that A-CVAE outperforms CVAE with
a large margin.
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FIGURE 1.10 The general model performance (training loss and validation result) with different
epoch number, for both CVAE and A-CVAEmodel. Regarding the validation, the FOM is calculated
after running FDTD simulation for different generated HV patterns. It shows that the model has
generally good performance when the epoch number is between 5 and 15.

Figure 1.11(a) shows the latent variable distribution of the CVAE model for
groups of devices with four different splitting ratios. The original latent variables
are in dimension of 63 and the t-distributed Stochastic Neighbor Embedding (t-
SNE) method is used to reduce the dimension to 2 for better visualization. This
clearly shows that the four groups are clustered, and their centroids are widely
distributed. Figure 1.11(b) shows the similar plot for the A-CVAE model. The
figure clearly shows that with adversarial censoring, all the latent variables are
distributed similarly, with centroids almost overlapping. They obey the normal
distribution # (0, 1), which is expected. It implies that A-CVAE offers more
degrees of freedom to generate different potential devices achieving the target
performance by sampling normal latent variables concatenated with desired
spectra in the conditional decoder.

The initial training data do not contain any data close to the splitting ratios
of 6 : 4, 7 : 3, and 8 : 2, and it is difficult to generate very good designs
around these splitting ratios. So we employ an active learning as shown in
Fig. 1.9 (c). Here, for the second round of training, we uses the new data
generated from the first trained model. When we train the second model, the
original BCE is replaced with the MSE loss since the training data now contains
non-binary data. After training the proposedmachine learningmodel, we test the
decoder output of the final A-CVAE model by sampling random latent variable
I combined with different splitting conditions to generate nanopatterned power
splitter devices according to the generated HVs. Fig. 1.12 shows the comparison
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FIGURE 1.11 t-SNE output of the latent variables. The latent variables are obtained from 4
different group of devices with different splitting ratios. We use the t-SNE to reduce the dimension
from 63 to 2 for better visualization. The filled triangle markers are the centroid for each device
group. a) Latent variables for the CVAE model, which shows clear clustering. b) Latent variables
for the A-CVAE model, where the centroid of the four groups overlap with each other.

of the performance among the devices generated by the CVAE model, by the
A-CVAE model without active learning, and by the A-CVAE model with active
learning, for four different splitting ratios (5 : 5, 6 : 4, 7 : 3, 8 : 2). The
FOM is calculated for 20 randomly generated devices from the trained CVAE,
A-CVAE models, and A-CVAE models with active learning. This figure shows
that the adversarial censoring and active learning generates devices with much
better performance across a very broad bandwidth (from 1250`m to 1800`m),
compared to the conventional CVAE model. The devices generated by our final
A-CVAE model with active learning can fit the target splitting ratio better with
excellent total transmission. The average FOMs for the CVAE model, A-CVAE
model, and A-CVAE model with active learning are 0.771, 0.888, and 0.9009,
respectively.

As the above results show, generative deep learning models can generate a
series of improved results based on the statistical characteristics of the training
data. In particular, it is that the adversarial censoring and especially with active
learning further improves the performance of the model with high stability. Note
that part of the good performances of CVAE and A-CVAE come from the fact
that variable hole sizes are adopted, which could not be done in the case of DBS.

1.3.6 Nanophotonic Power Splitter Experiment

In order to verify the validity of the simulations our DNN-based design method,
power splitters are prototyped using a commercial multip project wafer (MPW)
service by Applied Nanotools Inc. The wafer is processed through a standard
220 nmSOI process with SiO2 cladding. Direct electron beamwriting is used for
lithography. In this particular design, the size of the square region is 2.6×2.6`m2
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FIGURE 1.12 FOM comparison for different CVAE models: conventional CVAE (star marker),
A-CVAE (roundmarker) and A-CVAEwith active learning (triangle marker). Four different splitting
ratios are used as a target value to test the model performance (marked with dashed lines). The
devices generated by the active learning assisted CVAE model can fit the target splitting ratio better
with excellent total transmission. The average FOM for the three models are: 0.771, 0.888, 0.901,
respectively.

and the binary hole size is 90 nm in diameter, from a historical reason.
The scanning electron microscope (SEM) image of a 1 : 3 beam splitter is

shown in Fig. 1.13. The device is designed by the inverse model as described in
Section 1.3.4 using binary variables, and the holes are clearly defined.

The measurement is conducted with grating couplers, using amplified spon-
taneous emission (ASE) from an Erbium-doped fiber amplifier as a light source.
The transmittance is defined by the ratio of the transmitted power of the device
under test and a reference device having the same designs of grating couplers.
The measurement wavelength range is limited by the grating couplers and the
ASE source. Solid lines in Fig. 1.14 show the measured transmittance, and the
dashed lines show the transmittance obtained from simulations. The measured
values agree well with the simulated values, validating our simulation and opti-
mization results. The cause of the small ripples in the measured transmittance
is not clear at this moment.

1.3.7 Comparison with other optimization methods

The adjoint method is widely used in the inverse design of nanophotonic de-
vices [1,3,71]. Given an ideal initial condition for parameters, the optimization
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FIGURE 1.13 An SEM image of a prototyped 1 : 3 power splitter.

FIGURE 1.14 Solid and dashed lines show the measured and the simulated transmittance, respec-
tively, of a 1 : 3 power splitter. The red and blue lines show transmittance to output ports 1 and 2,
respectively.

process can be done in a small number of iterations (tens of EM simulations in
some cases). However, the initial condition needs to be carefully chosen in order
to obtain the optimal result. A DNN method is very different, in that it is trained
from a library (training data) of EM simulation results. The training data may
come from previous imperfect optimization results with multiple target condi-
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TABLE 1.1 Comparison of simulation results for photonics power splitters using
different optimization methods

Split ratio Insertion loss Bandwidth Footprint Method Reference Setup
time

Computational
time

1 : 1 0.09 dB 100 nm 2 × 2 `m2 Adjoint Lalau-Keraly et. al.[1] NA
1 : 1 0.32 dB 40 nm 2.6 × 2.6 `m2 Adjoint Wang et. al.[71] 1.2 hr
1 : 1 0.13 dB 80 nm 1.2 × 2 `m2 PSO Zhang et. al.[72] NA
4 : 6 1 dB (measured) 30 nm 3.6 × 3.6 `m2 FSM Xu et. al.[57] 120 hr
4 : 6 0.65 dB 550 nm 2.25 × 2.25 `m2 A-CVAE Our work [59] ∼ 89 hr ∼ 5 min
3 : 7 0.51 dB 550 nm 2.25 × 2.25 `m2 A-CVAE Our work [59] ∼ 89 hr ∼ 5 min

* Here the time is mostly for the data collection. The data collection is ∼ 20 s × 16000 = 89 hr.
** The training time is ∼ 5 min and the new design generation time is ∼ 5 s.

tions (splitting ratio in the case of Section 1.3). Then the generative model will
try to learn/generalize from the library, and generate a series of improved results
for a given condition. Once the model is trained, inverse designs for multiple
conditions can be generated in almost no time. Further FDTD simulations are
not required, and can be used only for verification purposes.

Table 1.1 provides a comparison of power splitters using different optimiza-
tion methods, including a more conventional y-junction device optimized by
classical particle swarm optimization (PSO) [72], and nanophotonic splitters
designed by the adjoint method [1,71] and the fast search method (FDM) [57].
Our work has the most broad bandwidth with very small device footprint and low
insertion loss. Although, the set-up time is long, it is a one-time process, and
the actual computational time is much shorter for each new condition, compared
to other optimization methods.

1.4 METASURFACES AND PLASMONICS

Metasurfaces including plasmonics are in principle ultrathin layer of metama-
terials which control the wavefront of optical beams [54,73]. There is so much
freedom in the design of the nanostructures, and the wavefront can be made to be
dependent on thewavelength, polarization, or the combination of both. These are
expected to create ultra-thin, high-performance, and multi-functionality lenses.
However, there are so many design parameters, so it can be very challenging to
design metasurfaces. In this section, we overview the application of DNNs for
the design of metasurfaces [38,63–65,74–79]. Just like we discussed three dis-
tinct types of DNNmodels for the inverse design of nanophotonic power splitters,
inverse design on metasurfaces has attracted many research groups working on
various types of DNNs. One difference is that in the former group as discussed
in Section 1.3, the device structure is represented by = = 400 (20 × 20) vectors,
while the latter group uses either very small number (3 − 8) of parameters to
represent nanodisks or nanopillars, or very large number (as much as 64 × 64 or
45× 45× 10) of pixels. Also, in cases where electric field components are used,
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DNNs typically treat the real and imaginary part of the electric field separately.
Nonetheless, the overall concept of connecting the structure parameters to opti-
cal responses using DNNs for the inverse design is very similar as we will see in
this section.

1.4.1 Deep Learning for Forward Modeling

An et al. [75] and Nadell et al. [74] used DNNs for forward modeling of the
all-dielectric metasurfaces in the terahertz region. They used four cylinders
within a unit cell, wherein each cylider radius is denoted as A1, A2, A3, and A4, and
each cylinder height is denoted as ℎ1, ℎ2, ℎ3, and ℎ4. In addition to these eight
geometrical parameters, the ratio of these parameters, like A1/ℎ1, A1/ℎ2,... and
A4/ℎ4 are used as the inputs of theDNN.These ratios, motivated by the knowledge
of the underlining physics, minimize the need for network parameters. This is
analogous to the "tensor layer" [38], which essentially pre-computes products of
input variables. The DNN comprises of nine fully connected layers, essentially
upsampling the length 25 input vector to a length 165 output vector, followed by
three transposed-convolution layers and. a convolution layer, further upsamling
to a spectrum of 300 points. The first hidden layer is called “neural tensor
network (NTN)”, which takes a tensor of input parameters as well as linear
inputs. THis layer can related the two inputs multiplicatively instead of only
implicitly through nonlinearity. This layer significantly accelerates the training
process. An illustration of the DNN is shown in Fig. 1.15. Using 18,000
pairs of structural parameters and spectra data, this forward network is trained
and the typical mean square error (MSE) is less than 3.4 × 1003. The inverse
design problem is performed using this trained forward DNN and a full search
algorithm, where 814 million (138) forward modeling can be done very quickly
(9,400 spectra/s) using a GPU board.

Wiecha andMuskens used a so-called U-Net to model the electric field in the
3D space [76]. U-Net, a variant of encoder-decoder network comprising ofCNNs
and shortcut connections, is known to be especially efficient in reconstructing
spatial images [80]. As shown in Fig. 1.16, the 3D geometric data (0 for no
silicon, 1 for silicon) are used as inputs, and six channels of electric fields (real
and imaginary parts of the G, H, and I components of the electric field at 3D grid
points) are used as outputs. The direct connection between the corresponding
CNN layers in the input side and the output side, called "short cut connection",
help to accurately reconstruct spatial information from the strongly compressed
center layers of the DNN. After the training, given the input geometry, the
electric fields are reconstructed, which can be used for calculating the near-
field and far-field of scattering (reflection and transmission) and various other
properties.
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FIGURE 1.15 Forward DNN architecture for predicting the metasurface optical spectra. Nine fully
connected layers feed a set of 24 geometric inputs (four radii, four heights, and 16 ratios of these
parameters). Data is then smoothed and upsampled in a learnable manner via transpose convolution
layers (top row). The final layer (bottom row) is a convolutional layer, which produces a predicted
spectra of 300 points, shown as the blue curve, compared to the ground truth (red curve) [74].

1.4.2 Deep Learning for Inverse Modeling

An et al. [75] proposed to use an inverse modeling network called “a meta-filter
model generator”. It has four hidden layers with 500, 500, 500, and 50 neurons,
respectively, and takes target spectra of 31 spectral points as inputs, and four
device structure parameters, index, gap, thickness, and radius of nanoclylinders,
as outputs as shown in Fig. 1.17 [75]. Then it is connected to a pretrained forward
modeling network, called “predicting neural network” (PNN), consisting of four
hidden layers with 50, 500, 500, and 200 neurons, respectively. The PNN
predicts the real and imaginary parts of the actual reflection spectra. For the
training of the inverse network, the difference between the target spectra and
the output spectra of the PNN are minimized, while the weights of the PNN
is fixed. This cascaded network solves the nonconvergence problem resulting
from non-bĳective solutions. Once the network is trained, inverse designs can
be generated in 22 seconds.

Gao et al. [77] proposed to use a tandem (forward and inverse) DNN for
modeling silicon metasurfaces for color filter applications. The metasurface
involves a unit cell of four equally-spaced silicon nanodisks represented by four
parameters, i.e., the diameter (D) and height (H) of the nanodisks, the gap (G)
between the two nanodisks within a unit cell, and the period (P) of repeating
units, as shown in Fig. 1.18. The reflectance spectrum of the metasurface can
be represented by the three values G, H, and . . For the forward design, they
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FIGURE 1.16 U-Net for the example of the silicon nanostructure model. The volume discretization
of the three-dimensional geometry is fed into the neural network. The 3D convolutional network
follows an encoder-decoder architecture and is organized in a sequence of residual blocks. The six
output channels of the network contain the real and imaginary parts of the G, H, and I components
of the complex electric field inside the nanostructure [76].

FIGURE 1.17 Architecture of the meta-filter design network and design examples. (a) Target
spectra designated as input. (b) The model generator of the meta-filter design network, which is
constructed using DNNs. (c) Output of the model generator, which is a combination of design
parameters such as permittivity and meta-atom dimensions. (d) These parameters are then fed into
the DNN to yield the complex transmission coefficient. (e) The refined amplitude response of the
generated design as derived from the complex transmission coefficient [75].

use a DNN with four hidden layers with 320 neurons in each layer, with the
four structural parameters as inputs, and the three color values as outputs. For
the inverse design, they use three color parameters as inputs and four structural
parameters as outputs. The optimal structure consists of four hidden layers each
with 300 neurons. If the inverse network is used alone, the validation error is
fairly large. In a tandem DNN as shown in Fig. 1.19, a pretrained network is
added at the output of the inverse network. The inverse network is trained such
that the differences between the input values G, H, and . , and the output values
of the pretaiend forward network G ′, H ′, and . ′ are minimized. In the tandem
DNN case, the validation error is significantly lower than the inverse network is
used alone, indicating that the non-bĳective issue between color and structure is
overcome.
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FIGURE 1.18 Schematic illustration of the silicon nanostructure and the generated colors. a) The
studied geometry parameters include the diameter (D) and height (H) of nanodisks, the gap (G)
between nanodisks in a unit and the period (P) of repeating units. b) The coverage of training data
generated colors on the CIE 1931 chromatic diagram [77].

FIGURE 1.19 Tandem DNNs architecture with an input layer of color values G, H, and . , hidden
layers, and a connected pretrained forward modeling network. The tandem network is trained such
that the differences between the input values G, H, and . , and the output values of the pretaiend
forward network G ′, H ′, and . ′ are minimized [77].

1.4.3 Deep Learning for Generative Modeling

There are two mainstreams of generative modeling, i.e., CVAE and GAN. Gen-
erative adversarial networks (GANs) are algorithmic architectures that use two
neural networks, pitting one against the other (thus the “adversarial”) in order to
generate new, synthetic instances of data that can pass for real data, and are used
widely in image, video, and voice generation. For photonic device designs, both
CVAE and GAN are similar in that they generate new device topology candidates
based on random numbers and input conditions.

Ma et al. proposed a variant of CVAE for the inverse design of plasmonic
metamaterials [64]. The design data consists of 64 × 64 binary image for
the metal patterns, while the optical response consists of three polarization
dependent reflection spectra each with 31 frequencty points. Fig. 1.20 shows the
CVAE model for the inverse design of plasmonic metamaterials, comprising of
three submodels, the recognitionmodel, the predictionmodel, and the generation
model. The recognition model encodes the metamaterial pattern with its optical
response into a low-dimensional latent space. The prediction model outputs a
deterministic prediction of the optical response given the metamaterial design.
The generationmodel accepts the optical response and the sampled latent variable
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FIGURE 1.20 CVAE model for inverse design of metamaterials. Three submodels, the recogni-
tion model, the prediction model, and the generation model, constitute the complete architecture,
which is implemented by four neural networks with deliberately designed structures for different
purposes [64].

to produce feasiblemetamaterial designs according to specific requirements. The
trained network can predict optical responses when a plasmonic metamaterial
structure is given. Also, given target optical responses, a series of metamaterial
designs can be generated with sampling of latent variables.

Liu et al. propsed using GAN for the inverse design of metasurfaces [63].
As shown in Fig.1.21, the proposed network consists of three networks, the gen-
erator (G), the simulator (S), and the critic (D, also called a discriminator). The
generator (an inverse network) accepts the spectra T (four transmission polar-
ization components comprising of 32 elements) and noise z (50 element vector)
and produces possible patterns. The simulator is a pretrained forward network
that approximates the transmittance spectrum )̂ for a given pattern (64 × 64 bi-
nary image) at its input, and the critic evaluates the distance of the distributions
between the geometric data and the patterns from the generator. While training
the generator, the produced patterns vary according to the feedback obtained
from S and D. Valid patterns are documented during the training process, and
are smoothed to qualify as candidate structures.

There are also propsals of hybrid approaches to combine the generativemodel
with other optimization technologies. Liu et al., the same group as above, first
trained a variational autoencoders (VAE) network as shown in Fig. 1.22 (a).
The geometric data are 64 × 64 binary vectors, and the spectral data are )GG ,
)GH , )HG , and )HH , each with 32 spectral points between 170 THz and 600 THz.
Random variables `, f, and h have the same size of 10. The trained decoder
works as an inverse network, with randomly sampled vectors as inputs, and
randomly generated nanostructures as outputs (Fig. 1.23). It takes an input vector
of length 10, and outputs 64 × 64 images, with four transposed convolutional
layers. Fig. 1.23 shows the flowchart of framework combining both VAE and an
evolutional strategy (ES) [78]. Here, the generator (G) is the trained decoder,
and the Simulation (S) can be carried out by either a forward DNN, or a real EM
simulation.

Wen et al. used progressive growth of GANs (PGGANs) to learn spatially
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FIGURE 1.21 Architecture of the proposed GAN. Three networks, the generator (G), the simulator
(S), and the critic (D) constitute the complete architecture. The generator accepts the spectra T and
noise z and produces possible patterns [63].

fine features from high-resolution training data. PGGANs are often used in the
computer vision community and they support improved training stability and
the ability to capture spatially fine features from a high-resolution training set.
Here, the generative model, the discriminative model, and network resolution
progressively grow over the course of training.

Fig. 1.24 (a) shows the overview of a PGGAN training protocol. The initial
training set consists of high-performing devices sampling the coarse grid of
the device parameter space as shown in the left box. The training process
includes multiple training cycles, each of which PGGAN is trained from scratch,
evaluating/validating the generated devices once the training is complete, and
augmenting the training set with the best generated devices (active learning).
More specifically, in each training cycle, the training starts with a training set
comprising of 8×16 pixels, downsampled from the 64×128 pixels. The training
data sets having 16×32, 32×64, and 64×128 are used as the training progresses,
and layer structures of the generator and the discriminator grow accordingly. The
final trained PGGAN can output device layouts that continuously span the full
device parameter space. The PGGAN is shown to significantly outperform the
conventional GAN.

1.5 OTHER TYPES OF OPTICAL DEVICES

In this section, we review activities of using DNN for designing optical devices
other than nanophotonic power splitters and metasurfaces. The examples below
are forward modeling methods and generative modeling methods for waveguide
type devices, dielectric films, and photonic crystals.
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FIGURE 1.22 Basic architecture of a VAE implemented in the framework. (a) The illustration of
the vanilla VAE. The encoder accepts the geometric data and produces two parametric vectors ` and
f . Random vectors h are samples from the normal distribution with the mean and the standard
deviation defined by ` and f. The decoder then reconstructs vectors h to images of photonic
structures. The VAE encodes the geometric data into a compact latent space where the optimization
algorithms can be applied efficiently. (b) After the training, the decoder encircled in (a) can be
separated and treated as a generator of geometric data. It transforms randomly sampled vectors v to
their correspondent structures [78].

1.5.1 Deep Learning for Forward Modeling

Hammond and Camacho used DNNs for forward and inverse modeling of strip
waveguides and Bragg gratings [50]. In the case of silicon photonic sidewall-
corrugated linearly-chirped Bragg gratings, the structural parameters are the
width of the first part of the waveguide F0, thickness (C), waveguide corrugation
with difference (F = F1 −F0), the length of the first grating period (00), and the
last grating period (01). The output properties are the reflection spectrum and
group delay response. They generated 104, 000 training grating structures with
250 wavelength points, using a layered dielectric media transfer matrix method
(LDMTMM). The DNN consists of 10hidden layers and 128 neurons for each
layer. Inverse design is performed using a gradient-based methods by directly
evaluating the Jabocbian and Hessian tensors from the DNN without any extra
sampling or discretization.

In order to accelerate design antireflection coating, Hedge paired DNN with
evolutionary algorithms [51]. The structure is an air-clad 16-layered thin-film
made of alternating layers of silica and titania on a semi-infinite substrate of
refractive index 1.52. The input parameters are the thicknesses of each layer.
The output parameters are refletion spectra with 64 points betwen 400 nm and
800 nm. The DNN comprises of fully connected 3 hidden layers each with
128 neurons. Once the DNN is trained with > 50,000 training data, differential
evolution (DE) algorithm, which is one of the evolutionary strategy variant,
uses the output of the DNN, instead of the actual calculated reflection spectra by
“oracle”, which is an actual optical simulator based on the transfer matrixmethod
(TMM) [82]. This DNN-assisted DE significantly accelerates the optimization
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FIGURE 1.23 Flowchart of the VAE-ES framework. The generator (G) is utilized to reconstruct the
structure of each h. Simulation process (S) is then followed to produce the simulation results. The
simulation can be carried out by either a neural network approximation or a real physical simulation
such as FEM. The yellow boxes show the functionalities of a traditional ES algorithm [78].

process.
Asano and Noda used a DNN as a forward regression model to predict the

& factor, to optimize the microcavity structure [42,83]. Fig. 1.25 shows the
schematic of the photonic crystal structure with a three-missing-air-holes (L3)
cavity as the base structure. The displacement of the 50 air holes are the structural
parameters to be optimized to maximize &. The network structure is shown in
Fig. 1.26, where the input nodes are two-channel 2D tables with each channel
corresponds to the G and H components of the displacement vector with a length
of 50. The CNN layer consists of 50 filters with a size of 3 holes × 5 rows ×
2 channels. After training a CNN using 1,000 initial training data calculated
from 3D FDTD, a gradient method is used to obtain semi-optimal nanocavity
structures. 70 new candidates are selected and 3D FDTD verifies the Q factor.
The new data are added to the training data to update the CNN (active learning),
and repeat the process. A record & factor of 1.1 × 107 is obtained. They found
that exploring structure not only near the present highest& factor, but also those
distant from it, accelerate the optimization process. Effects of fabrication errors
on the & factor are also analyzed using the CNN model.

1.5.2 Deep Learning for Generative Modeling

Christensen et al. used DNNs for predicting and generating photonic crys-
tals [84]. They first used a CNN-based encoder and a deconder network to
predict the band gap of photonic crystals as shown in Fig. 1.28. The encoder
consists of three CNN layers and two fully connected layers, mapping 32 × 32
input space into a linear 64-dimensional feature space (latent variable). The de-
coder was implemented with six feed-forward networks, each consisting of five
fully-connected lyaers that were separately optimized for each band. The rela-
tive error for the predicted bandgap is typically very small (< 2%). As for data
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FIGURE 1.24 Overview of progressively growing GAN (PGGAN) network architectures and train-
ing sets. (a) Schematic of the training protocol. The initial training set consists of high-performing
devices sampling the coarse grid of the device parameter space. The training process consists of mul-
tiple training cycles, each of which involves training the PGGAN from scratch, evaluating/validating
the generated devices, and augmenting the training set with the best generated devices. The fi-
nal trained PGGAN can generate device structures that span the full device parameter space. (b)
Freeform silicon metagratings deflect normally incident light to the angle \ [81].

generation, they adapted a standard off-the-shelf implementation of GAN [85].
The input data are 64 unit cell permittivity profile, in which TM band gap is
greater than 5%. The discriminator network outputs real when the bandgap is
greater than 5% as shown in Fig. 1.29. With enough training, the GAN generates
new data satisfying the bandgap greater than 5%. They compared a conventional
GAN, a least squares GAN (LSGAN), and Deep Regret Analytic GAN (DRA-
GAN), and the fidelity (fraction of the unit cells hosting a band gap greater than
5% is slightly higher with the LSGAN than the conventional GAN, while it was
lowest with the DRAGAN in this particular problem.

1.6 DISCUSSION

DNNs can be used to take device structure data (shape, depth, and permittivity)
to predict the optical response of the nanostructure in the forward modeling
framework. In this case DNNs can be used as a viable counterpart for fast
approximation of the optical response, in comparison to the use of computa-
tionally heavy FDTD or FEM simulations. In contrast, inverse-modeling DNNs
take an optical response to provide the user with an approximate solution of
nanostructure in the inverse modeling framework, which does not rely on exter-
nal meta-heuristic optimizers unlike forward modeling. The generative model,
on the other hand, implicitly integrates forward and inverse models. Once the
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FIGURE 1.25 A three-missing-air-holes (L3) cavity is used as the base structure for structural
optimization. The lattice constant 0 is 410 nm. The distribution of the y component of the electric
field (�H) of the fundamental resonant mode is plotted in color. The theoretical& factor of the base
structure determined by FDTD is 7160. The displacements of the 50 air holes inside the red square
are the structural parameters that are used to optimize the cavity design with respect to & [83].

FIGURE 1.26 Configuration of the neural network prepared to learn the relationship between
displacements of air holes and & factors [83].

network is trained, the generation of new designs takes practically little time. In
the case of CVAE, the use of adversarial censoring further improves the design
capability. Overall, DNNs have the capability of learning the training data with
a high generalizability.
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FIGURE 1.27 Several representative unit cells and the Brillouine grid-sampling used in the calcu-
lation of band structures. [84].

FIGURE 1.28 Predictive network architecture showing the convolutional encoder and fully-
connected decoder [84].

Although the DNN initially needs a sufficient amount of data for the training
purpose, it is possible to process several heuristic optimizationmetrics in parallel
on a computing cluster to speed up generating the training data. We can design
the nanostructured geometry in a fraction of a second once the network is
trained to represent the topology as optical response and vice versa. There is an
overhead of generating large amount of training data upfront, however, the data
can be accumulated from multiple optimization runs, such as DBS, which did
not necessarily generate optimal results, or targeting different splitting ratios or
other optical performances.

We have seen that there are multiple ways to generate new device structures,
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FIGURE 1.29 GANconsists of a generative (G) and a discriminative (D) network, and new synthetic
examples (fake) of 2D unit cells with a TM band gap can be generated from a genuine data set
(real) [84].

and also some of them use hybrid optimization algorithms. At thismoment, there
is no comprehensive study to compare all the variants of networks architectures
using a common data set. Therefore, we do not know if one network architecture
works best for most of the device categories, or different device categories call
for different network architectures. This will be the task for the future.

1.7 CONCLUSION

We gave an overview of how photonic devices can be designed using deep
learning, and how they are different from conventional optimization processes.
Especially, to design complicated nanophotonic devices and metasurfaces with
hundreds or thousands of parameters, a sophisticated design algorithm is nec-
essary, and deep learning offers a promising solution. Most of the problems
are characterized as structural parameters as inputs and transmission/reflection
spectral characteristics as outputs.

We demonstrated three different types of DNN methodologies, i.e., forward
modeling, inverse modeling, and generative modeling, to design nanophotonic
power splitters.

The forwardmodeling uses a DNN to predict the spectral performances given
the device topology. The DNN is integrated with an optimization method, to
reduce the requirement of computationally intensive FDTD simulations. As
more data are accumulated for online training, the prediction accuracy further
improves. The inverse modeling uses a DNN to directly generate the device
topology given a target performance. By supplying a series of modified SPEC
performance, a series of good device structure candidates is generated. This
can avoid the use of external optimizer methods. For the generative model,
we reviewed a CVAE with adversarial censoring. Once trained, the CVAE can
generate a series of improved device structures given spectral performance data
as a condition alongwith randomvariables sampled from the normal distribution.
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We confirmed that the adversarial censoring significantly improves the design
capability.

We also gave an overview of parallel activities of these DNN modeling
approaches for metasurfaces and plasmonics and other photonic devices.

Among all the efforts and activities for the design of photonic devices, we
can find some common themes and techniques. 1) The current general trend
is moving towards generative modeling. 2) When the structure is represented
in periodic parameters such as grids, 2D/3D CNN is a very powerful tool. 3)
Use large number of output values (such as fine spectrums) instead of a few
numbers, to minimize non-bĳectivity issue. 4) If complex numbers are used,
such as electric fields, real and imaginary part are handled separately. 5) When
small number of input structural parameters are used, if the physics allows,
using multiplications or ratios of these parameters in addition to linear terms,
can accelerate training or improve performance. 6) Active learning usually helps
to improve the DNN for iterative design/optimization processes.

The area of deep learning-assisted photonic device design is quickly expand-
ing, and these modeling methods will play important roles in the advancement
of photonic device design activities. The future task will involve determing if
there is a single network architecture or framework which work for almost all the
device types, or each device category has one specific framework which work
best for it.
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