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Abstract—This paper considers extended object tracking

(EOT) using high-resolution automotive radar measurements

with online spatial model adaptation. This is motivated by the

fact that offline learned spatial models may be over-smoothed

due to coarsely labeled training data and can be mismatched to

onboard radar sensors due to different specifications. To refine

the offline learned spatial representation in an online setting, we

first apply the unscented Rauch-Tung-Striebel (RTS) smoother

that explicitly accounts for the predicted and filtered states

based on the offline learned model (i.e., the B-spline chained

ellipses model). The smoothed state estimates are then used to

create an online batch of state-decoupled training data that are

subsequently utilized by an expectation-maximization algorithm

to update the spatial model parameters. Numerical validation

with synthetic automotive radar measurements is provided to

verify the effectiveness of the proposed online model adaptation

scheme.

Index Terms—Automotive radar, extended object tracking,

smoothing, model adaptation.

I. INTRODUCTION

With increasingly higher angular resolution and rapid
advances in automotive radar, more and more detection points
per time scan are obtained for a single object and, as a result,
extended object tracking (EOT) is well suited to summarize
the statistics from the multiple detection points and track the
object. Compared with traditional point object tracking, EOT
can estimate not only the kinematic state but also the extent
state including the length and width of objects [1].

One key issue in EOT is to capture the spatial representation
of multiple detection points given the object state including
the position, orientation, length, and width. Besides the two
main categories, i.e., contour models [2]–[10] and surface
models [11]–[16], a third category, i.e., the surface-volume
models, was recently considered, to balance between the
contour models and the surface models with more realistic
features customized to the automotive radar measurements
[17]–[23]; see Fig. 2 (a) for an illustration of the real-world
accumulated automotive radar measurements [18] in a unit
coordinate, where the origin is located at the middle of the
rear axle.

More recently, we combined the contour and surface models
to introduce a new surface-volume model, i.e., the B-spline
chained ellipses model, for the automotive radar measurements
in [24]. Particularly, the B-spline chained ellipses model
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Fig. 1. The overall workflow of an extended object tracking algorithm using
the B-spline chained ellipses model: 1) offline learning of spatial model, 2)
online state estimation, and 3) online model adaptation. While 1) and 2) were
considered in [24], this paper focuses on 3) online model adaptation that
refines the offline learned spatial model and further improves the online state
estimation performance with a more customized spatial model that may fit
better for onboard automotive radar measurements.

places regularized multiple ellipses around the vehicle contour
to describe the spatial representation of automotive radar
measurements given the object state. Such a regularization is
enforced by the requirement that the center of each ellipsis
component (e.g., a typical surface model) has to be located on
an enclosed B-spline curve that represents the vehicle contour
(e.g., a typical contour model).

As shown in Fig. 1, we build on our previous effort of [24]
for 1) offline model parameter learning and 2) online state
estimation using the probabilistic multi-hypothesis tracking
(PMHT) along with the unscented transform (UT), and focus
on 3) online spatial model adaptation that refines the offline
learned spatial model and further improves the online state
estimation performance with a more customized spatial model
that fits for onboard automotive radar measurements. The
motivations for online model adaptation are two-fold: First,
there might be mismatches on radar sensor specifications
between onboard sensors and those used for offline data
collection. Second, offline training data with coarse vehicle
labels may lead to an over-smoothed offline learned spatial
model that averages over different vehicle models. For
instance, a coarsely labeled dataset may include sedan and
SUV in the same class.

To achieve the online model adaptation, we consider an
online smoothing algorithm that uses online state estimates
based on the offline learned B-spline chained ellipses model,
and performs a backward recursion to smooth the online
state filtering with all observed measurements. Particularly, the
unscented Rauch-Tung-Striebel (RTS) smoother is applied to
compute smoother gain, smoothed mean, and the smoothed
covariance matrix at each time step by recursively computing



Fig. 2. The B-Spline chained ellipses model [24] that fits for accumulated
real-world automotive radar measurements [18].

the posterior of the state conditioned on all observed
measurements backward from the filtered state estimate at the
last time step. Then, the smoothed state estimates are used to
convert all observed measurements in the global coordinate
system to a batch of state-decoupled training data in a unit
coordinate system. As the online batch of training data are
state-decoupled and only depends on the spatial model, we
use the expectation-maximization (EM) algorithm to update
the model parameters within a regularization on the distance
to the offline learned model parameters.

The remainder of this paper is organized as follows.
Section II introduces the B-spline chained ellipses model
designed to resemble the empirical distribution of real-world
automotive radar measurements. The online state estimation
and online model adaptation are introduced in Section III.
Section IV provides numerical evaluation and performance
comparison in terms of state estimation errors with and without
online modal adaptation. It is then followed by conclusions in
Section V.

II. B-SPLINE CHAINED ELLIPSES MODEL

As shown in Fig. 2, the proposed spatial model consists of
L Gaussian components (i.e., ellipses) with their component
means located on a B-spline curve. Given Noffline offline
training data Z̃ = {z̃i}Noffline

i=1 , we can associate each
measurement, e.g., the i-th measurement, to the l-th ellipsis
component (centered at µl with an extent covariance matrix
⌃l) with an association probability ⇢li. Given the measurement-
to-ellipse assignment, the likelihood function becomes

�
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Z̃|N̄l, µl,⌃l, ⇢
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⌘
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PNoffline

i=1 ⇢li,

z̄l =

PNoffline
i=1 ⇢liz̃iPNoffline
i=1 ⇢li

, (1)

Zl =
NofflineX

i=1

⇢li (z̃i � z̄l) (z̃i � z̄l)
T , (2)

are, respectively, the sample mean and spread of the l-
th ellipse, N denotes the Gaussian distribution and W is

the Wishart distribution. With all L ellipses and given the
measurement-to-ellipse association, the L random matrices
model is defined as

p(Z̃|✓, ⇢) =
LX

l=1

⇡l�
⇣
Z̃|N̄l, µl,⌃l, ⇢

l
⌘
, (3)

where ✓ includes µl and ⌃l and the mixture weights ⇡l are
assumed to be equal ⇡l = 1/L.

Moreover, we assume that the ellipse centers are located on
a B-spline curve defined by c(r)2 R2⇥1 of degree d [25]

c(r) =
mX

j=0

pjBj,d(r), 0  r  m� d+ 1, (4)

where pj 2 R2⇥1 is the j-th control point, m+1 is the number
of control points, and Bj,d(r) is the basis function with a
parameter r [25]. By enforcing µl = c(rl) with rl denoting
the corresponding parameter of the l-th ellipse center µl, the
B-spline chained ellipses model is defined as

p(Z̃|✓offline, ⇢) =
LX

l=1

⇡l�
⇣
Z̃|N̄l, c(rl),⌃l, ⇢

l
⌘
, (5)

where ✓offline includes the parameters for the proposed spatial
modal that consist of the number of measurements for each
component N̄l, control points of the B-spline curve {pj}mj=0,
and the covariance matrices of ellipsis components {⌃l}Ll=1.

Given Noffline offline training measurements Z̃, one can
estimate the modal parameters ✓offline associated with the B-
spline chained ellipses model with the offline model learning
algorithm considered in [24, Section 2.2]. The details are
skipped here due to the space limit.

III. ONLINE STATE ESTIMATION AND SPATIAL MODEL
ADAPTATION

In this section, we introduce two main building blocks for
extended object tracking using the B-spline chained ellipses
spatial model for 1) online state estimation and 2) online model
adaptation, corresponding to the upper and lower branches of
Fig. 3, respectively.

The upper branch mainly deals with the prediction and
update of the random state variables in a fast-time scale, i.e.,
at each time step, by using either an offline learned spatial
model or a recently updated one. On the contrary, the lower
branch represents a slow-time update on the deterministic
model parameters associated with the spatial model over all
of the T time steps.

A. Online State Estimation

With the offline learned spatial model and an initial state,
our earlier effort in [24] considered the online state prediction
and update that accounts for the nature of multiple ellipses
in the learned model with fixed relative geometry, as shown
in the upper branch of Fig. 3. Particularly, the unscented
Kalman filter-PMHT (UKF-PMHT) algorithm was considered



Fig. 3. The diagram for 1) extended object state prediction and update at each time step k (the upper branch) and 2) online modal adaptation at time T (the
lower branch). The box in dash line shows the distribution of the updated states xk|k , predicted states xk+1|k , and smoothed states xs

k with corresponding
mean and covariance matrix given in Section III-A and Sections III-B.

to predict and update the vehicle state, given the motion model
and the measurements Z1, · · · ,Zk,

xk = [xm,k, ym,k, vk, k,!k, lk, wk]
T , (6)

where [xm,k, ym,k]T is the center of the vehicle, vk is the polar
velocity of the vehicle [26],  k is the heading orientation, !k

is the turning rate, lk and wk are length and width of the
vehicle, respectively, and Zk = {zi,k}Nk

i=1 with Nk denoting
the number of measurements at time step k.

Since this step was covered in [24, Section 3], we will
only highlight the key steps here. The UKF-PMHT follows
the two-step prediction and update procedure shown in the
upper branch of Fig. 3.

First, for the state prediction (the first block in the upper
branch of Fig. 3), the approximate mean x̄

�
k+1 and covariance

matrix C�
x,k+1 of the predicted state xk+1|k is obtained

with the unscented transform by generating sigma points and
weights according to the mean x̄k and covariance matrix Cx,k

of the recently updated state xk|k and propagating through the
(nonlinear) motion model (e.g., coordinated turn (CT) with
polar velocity [26]).

Second, for the state update (the second block in the
upper branch of Fig. 3), it consists of two parts: one is
to use the predicted state and the offline learned spatial
model to generate predicted measurements (i.e., the block
of learned/refined spatial model); and the other is to generate
synthetic measurements and update the vehicle state using both
the predicted and synthetic measurements (i.e., the block of
(kinematic & extent) state update).

To generate the predicted measurements, each ellipsis
component (indexed by l) of the offline learned B-spline
chained ellipses model p(Z̃|✓offline, ⇢) in the unit coordinate
system is mapped to the global coordinate system by
going through another unscented transform or the Taylor-
series expansion via the following unit-to-global coordinate
transform

fl,k(xk+1|k) = mk+1|k +R( k+1|k)S(lk+1|k, wk+1|k)xl,µ

(7)
where xl,µ ⇠ N (µl,⌃l) with µl and ⌃l determined by the
offline learned model parameters ✓offline. And the predicted
state xk+1|k specifies mk+1|k = [xm, ym] as the predicted
vehicle center position, R( k+1|k)2 R2⇥2 as the rotation
matrix with angle given by the orientation  k+1|k, and a
scaling matrix of S(lk+1|k, wk+1|k) = diag(lk+1|k, wk+1|k)
given by length and width. The sigma points for each
ellipsis component are generated as an augmented vector
that combines the predicted state and the ellipsis component
xl,aug = [xT

k+1|k,x
T
l,µ]

T . As a result, we may form the
predicted measurement z

�
l,k+1, its covariance matrix C�

l,x, and
cross-covariance matrix Cl,xz for each ellipsis component
using the propagated sigma points via (7) plus the noise. It
is noted that all predicted measurements z

�
l,k+1 in the learned

offline spatial model are mapped to the global coordinate
system via the same set of (predicted) vehicle state xk+1|k.

To generate the synthetic measurements using the current
measurements Zk+1 at time k + 1, we use the PMHT to
associate the measurements to each ellipse in the global
coordinate system. By treating each ellipsis in our learned



spatial model as an individual extended object, we can
directly apply the data association step in the PMHT-E
in [27] by probabilistically assigning associate weights of
measurements to each ellipsis component and generating
synthetic measurements, i.e., the synthetic mean and the
synthetic spread, for each ellipsis.

To update the vehicle state xk+1, we proposed an iterative
state update step over the ellipsis l by using the predicted
and synthetic measurements in [24]. Since the predicted
measurements for all ellipsis components are a function of the
same vehicle state xk+1|k (see (7)), this iterative state update
enforces that all (predicted and synthetic) measurements are
inherently used to update the same predicted state xk+1|k to
the newly updated state xk+1|k+1. This iterative state update
step is different from [27] where the predicted measurements
were generated according to multiple independent vehicle
states.

B. Online Model Adaptation

The online model adaptation aims to refine the offline
spatial model (in terms of ✓) after certain time steps, say
T time steps. As shown in the lower branch of Fig. 3, the
online model adaptation accumulates the past and future (w.r.t.
time step k) updated states xk|k, predicted states xk+1|k, and
measurements Zk to improve the state estimates (by Bayesian
state smoothing), create an online batch of training data, and
update the spatial model parameters.

1) Unscented Rauch-Tung-Striebel (RTS) Smoother: To
improve the state estimation performance, all of the
measurements obtained during the T time steps are used to
smooth the estimates. Compared with the random matrix-based
Bayesian smoothing algorithm which has to recursively deal
with the extent covariance matrix [28], the offline learned B-
spline model enables a simple definition of the overall vehicle
state as the concatenation of the conventional kinematic state
elements (i.e., the first 5 elements in (6)) and the extent state
elements in terms of the length and width in (6). Subsequently,
this further leads to a direct application of standard point-target
Bayesian smoothing algorithms on the augmented kinematic-
and-extent state vector. Here, we consider the unscented RTS
smoother [29], [30] to smooth the vehicle states after T time
steps.

Particularly, from the above state update step, the update
state xk|k at time k follows the Gaussian distribution with
mean x̄k and covariance Cx,k. First, the sigma points Xi

and corresponding weights W (m)
i and W (C)

i are generated

Fig. 4. Creating an online batch of smoothed training data in the unit
coordinate system for updating spatial model parameters.

according to the statistics of the update state:

X0 = x̄k

Xi = x̄k +

✓q
(M + �)Cx,k

◆

i

i = 1, . . . ,M

Xi = x̄k �
✓q

(M + �)Cx,k

◆

i

i = M + 1, . . . 2M

W (m)
0 = �/(M + �)

W (C)
0 = �/(M + �) + (1� ↵2 + �)

W (m)
i = W (C)

i = 1/ [2(M + �)] i = 1, . . . , 2M
(8)

where M is the dimension of the overall state vector, � is a
scaling parameter as � = ↵2(M +)�M , ↵ is the parameter
determines the spread of the sigma points around the mean
x̄k,  is the secondary scaling parameter usually set to 0,
and � is used to incorporate the prior knowledge of the state
distribution.

These sigma points propagate through the (nonlinear)
motion model xk+1|k = g(xk|k) (e.g., coordinated turn (CT)
with polar velocity [26]) and we have Yi = g(Xi). Then,
the predicted mean x̄

�
k+1 and its covariance C�

x,k+1 of the
predicted state xk+1|k can be computed using the propagated
sigma points:

x̄
�
k+1 =

2MX

i=0

W (m)
i Yi (9)

C�
x,k+1 =

2MX

i=0

W (C)
i

⇥
Yi � x̄

�
k+1

⇤ ⇥
Yi � x̄

�
k+1

⇤T (10)

In addition, one can compute the cross-covariance matrix
between the predicted states xk+1|k (via unscented



propagation) and the updated state xk|k (via the UKF-
PMHT of the above online state estimation section) as

Dk+1 =
2MX

i=0

W (C)
i [Xi � x̄k]

⇥
Yi � x̄

�
k+1

⇤T
. (11)

Finally, the smoothed states xs
k is Gaussian distributed with

the smoothed mean x̄
s
k and smoothed covariance matrix Cs

x,k
as [29], [30]:

x̄
s
k = x̄k +Gk

�
x̄
s
k+1 � x̄

�
k+1

�
(12)

Cs
x,k = Cx,k +Gk

⇣
Cs

x,k+1 � C�
x,k+1

⌘
GT

k , (13)

where Gk = Dk+1[C
�
x,k+1]

�1 is the smoother gain. To start
with, one can set x̄s

T,k = x̄T and Cs
x,T = Cx,T at time step T

and iteratively compute (12) and (13) backwards in time step
k = T � 1, · · · , 1.

2) Smoothed Measurements: A Batch of Online Training

Data: To create an online batch of training data that
may fit better for onboard radar sensors, we make use of
all measurements Z = {Z1, . . .ZT } up to time step T
and corresponding smoothed states {xs

1, · · · ,xs
T } as x

s
k ⇠

N (x̄s
k, C

s
x,k) with x̄

s
k and Cs

x,k given by (12) and, respectively,
(13).

Since our goal is to create state-decoupled online training
data for the spatial model update, we remove the underlying
unknown states {x1, · · · ,xT } from the measurements Z

in the global coordinate system using the smoothed mean
{x̄s

1, · · · , x̄s
T }

z
s
i,k = [S(l̄sk, w̄

s
k)]

�1[R( ̄s
k)]

�1(zi,k � m̄
s
k), (14)

where {m̄s
k,  ̄

s
k, l̄

s
k, w̄

s
k)} denote the same state variables as

defined in (7) except that they now correspond to the smoothed
state mean x̄

s
k of (12). For each time step k, the online training

dataset is grouped as Z
s
k = {zsi,k}

Nk
i=1, k = 1, · · · ,K.

The above state-decoupling process can be illustratively
represented by Fig. 4. First, the measurements in the global
coordinate system are transformed into a coordinate system
that is positioned in the center of the vehicle and oriented
such that the x-axis of the new coordinate system points to
the vehicle front using the orientation angle  ̄s

k and object
center m̄

s
k. Then, these measurements are further normalized

by the extent states, i.e., length l̄sk and width w̄s
k via the scaling

matrix S. The length and width used in (14) can also be chosen
as the average values of smoothed length and width over all
time steps, i.e., S = 1/Tdiag(

P
k l̄

s
k,
P

k w̄
s
k).

3) Online Update of Spatial Model Parameters: For the
annotation simplicity, we group all smoothed measurements
Z

s = {Zs
1, · · · ,Zs

T } as the online batch of training data
and re-assign the measurement index in Z

s as Z
s =

{zs1, · · · , zsNonline
} with Nonline =

P
k Nk denoting the total

number of measurements over T steps. Given these Nonline
online training data, the model adaptation is conducted by the
EM algorithm as follows:

Expectation step is to probabilistically assign the n-th
online measurement z

s
n from the online training batch Z

s

to the l-th ellipsis component via the posterior association
probability wl

n [27]

wl
n =

1
L ⇥N (zsn;µl, 4⌃l)

1
L ⇥

PL
l=1 N (zsn;µl, 4⌃l) + ✏

(15)

where µl and 4⌃l is the mean and the covariance matrix
of each component. The scaling factor 4 is introduced by
assuming the measurement in each component is uniformly
distributed [12] and ✏ is the probability of the uniformly
distributed outliers. Then, the synthetic measurements z̄l,
synthetic measurement spread Zl, and the sum of weights for
the l-th component are calculated, respectively, as

z̄l =

PNonline
n=1 wl

nz
s
nPNonline

n=1 wl
n

(16)

Zl =
NonlineX

n=1

wl
n (z

s
n � z̄l) (z

s
n � z̄l)

T (17)

M̄l =
NonlineX

n=1

wl
n. (18)

Maximization step is to update the model parameters ✓ =
{p,⌃l} around the offline learned modal parameters ✓offline
based on a regularized log-likelihood function that enforces
the maximal allowable change on the control points p of the
B-spline curve in (4):

L(✓) /
LX

l=1

⇢
�M̄l

2
(µl � zl)

T ⌃�1
l (µl � zl)�

M̄l + 1

2
log |⌃l|

�1

2
tr

✓
�1

2
Zl⌃

�1
l

◆�
+ � kp� pofflinek22 , (19)

where poffline 2 R2(m+1)⇥1 are the control points
corresponding to the offline learned model, � is regularization
parameter that controls the spatial model adaptation rate, and
k·k2 denotes the l2 norm.

In a more compact form, the B-spline curve can be
represented in a matrix-vector form as µl = Blp, , Bl =
blkdiag

�
n
T
l ,n

T
l

�
, nl = [B0,d (rl) , · · ·Bm,d (rl)]

T, and p =⇥
p
T
x ,p

T
y

⇤T with p
T
x and p

T
y denoting the control points in

the x- and y- coordinates, respectively. Taking the gradients
of L(✓) with respect to the parameters ✓ and set them to 0
results in

p = H
+
M, (20)

where M =
PL

l=1

�
M̄lB

T
l ⌃

�1
l zl

�
+ 2�poffline and H

+ is the
Moore-Penrose inverse of H =

PL
l=1

�
M̄lB

T
l ⌃

�1
l Bl

�
+ 2�I

with I denoting the identity matrix, and

⌃l =
1

M̄l + 1

h
M̄l (z̄l � µl) (z̄l � µl)

T + Z
T
l

i
. (21)

The iteration between the expectation and maximization steps
is carried out until the relative changes of the modal parameters
is smaller than predefined values, or if the optimization reaches
the empirical maximum iteration number.

Finally, given the updated modal parameters ✓online =
{p,⌃l} from the above iterations, the updated spatial modal



(a) an over-smoothed offline learned model (b) online updated model for the case of truck (c) online updated model for the case of tractor

Fig. 5. Vehicle model adaptation with one exemplar run: (a) an over-smoothed offline learned model possibly due to a coarsely labeled offline training dataset,
and the updated B-spline chained ellipses models using online radar measurements (blue dots) reflected from (b) the truck (b) and (c) the tractor. In (b) and
(c), true vehicle contours are shown in solid black curves, while the online updated contours (B-spline) are shown in bold red curves.

Fig. 6. The simulated trajectory of the vehicle (truck or tractor). It starts with
a coordinated turn motion (left turn) for a duration of 101 s, then turns right
with a constant velocity for another duration of 121 s, and finally reaches a
straight motion for the last 20 s.

p(Z̃,Zs|✓online, ⇢) replaces the offline learned spatial model
p(Z̃|✓offline, ⇢) in the update block of Fig. 3.

IV. PERFORMANCE EVALUATION

To evaluate the state estimation performance with and
without online modal adaptation, we ran 100 Monte-Carlo
simulations for each scenario to obtain the root mean square
errors (RMSE) for both kinematic and extent state vectors.

A. Simulation Configuration

Truck and tractor vehicles are simulated with different
contours (black solid lines) as shown in Fig. 5 (b) and
(c). The length and width of the vehicles are 5 and
2 meters, respectively. For either case, the measurements
are uniformly distributed 0.2 m inside its contour. The
number of measurements in each scan is generated based on
max(0,Pois(20)), where Pois(20) is the Poisson distribution
with mean 20. The variance of the sensor noise is
diag

�
0.052, 0.052

�
in the unit of m2.

Fig. 6 shows the simulated trajectory that consists of several
types of motions. Specifically, the vehicle starts with a CT
motion model (left turn) for a duration of 101 s, then turns
right with a constant velocity for another duration of 121 s,
and finally reaches a straight motion for 20 s. The velocity
of the vehicle is always kept at 11.2 m/s or, equivalently, 25

mph. The sampling interval is 1 s which gives in total 242
time steps.

The states are initialized as random variables
with mean x = [xm, ym, v, ,!, l, w]T =
[0, 0, 11.2, 0, 0.01, 5, 2]T and covariance
diag

�
0.52, 0.52, 0.05, 0.12, 0.0352, 0.0052, 0.0052

�
(with

position in meters and orientation in radians). The CT motion
model with polar velocity [26] is used as the dynamic
motion model for the kinematic states with �2

V̇
= 0.12 and

�2
!̇ = 0.0352. The process noise variances for the extent state,

i.e., the length and width, are set to be �2
l = �2

w = 1e�10,
considering the changes in the vehicle size are small over
time.

B. Qualitative Evaluation of Online Model Adaptation

We first illustrate the performance of online model
adaptation from one exemplar run for both cases of truck
and tractor in Fig. 5. To mimic an over-smoothed learned B-
spline chained ellipses model due to a coarsely labeled offline
training dataset, we use the B-spline chained ellipses model in
Fig. 5 (a) as the offline learned spatial model. It is clear that
this over-smoothed offline learned model does not reflect the
contour feature of either the truck or the tractor.

For the first 101 s, i.e., the left-turn motion, the UKF-
PMHT-based state estimation uses the offline learned modal
to update the state. At time step T = 101, the online modal
adaptation is performed using the measurements collected
between time step 1 and 101, following Section III-B. Fig. 5
(b) and (c) show, respectively, the online updated B-spline
chained spatial models for the truck and tractor at time
step T = 101 using corresponding online automotive radar
measurements (blue dots). It is seen that updated B-spline
curves (in bold red curves) follow the trend of the underlying
true vehicle contours (in solid black curves), particularly
around the front portion of the truck and the middle portion
of the tractor. Besides the refined contours, the ellipsis
components (centers and covariance matrices) are also updated
to better capture the underlying distribution of the online
radar measurements. This can be seen from the horizontally
stretched ellipses around the back portion of the truck.



(a) RMSE of position (b) RMSE of velocity (c) RMSE of orientation

(d) RMSE of position (e) RMSE of velocity (f) RMSE of orientation

Fig. 7. Performance comparison in terms of RMSE for the UKF-PMHT of [24] 1) without modal adaptation (red solid curves) and 2) with modal adaptation
(green dotted curves) for the kinematic (i.e., position, velocity, orientation) states over 100 Monte-Carlo runs. In each plot, we also include the state smoothing
performance (blue dash curves) from the unscented RTS smoother before the time step T = 101 when the modal adaptation takes place. Top row shows the
results for the case of truck, while the bottom is for tractor.

(a) Truck (b) Tractor

Fig. 8. Performance comparison in terms of RMSE for the UKF-PMHT of [24] 1) without modal adaptation (red solid curves) and 2) with modal adaptation
(dotted curves) for the extent (i.e., length and width) states.

C. Quantitative Evaluation of Online Model Adaptation

To further evaluate the quantitative performance, we
compute the RMSE from the 100 Monte-Carlo runs on the
state estimates over all 242 time steps. Similar to the above,
the online modal adaptation takes place at T = 101. Once the
spatial model is updated, it is then used by the UKF-PMHT-
based state estimation to update the vehicle state from time
step 102 until the end of the trajectory. Before T = 101,
we also include the RMSE of the smoothed state from the
unscented RTS smoother.

The RMSE results for the kinematic (i.e., position, velocity,
orientation) and extent (length and width) states are shown
in Fig. 7 and, respectively, Fig. 8. The top row shows the
results for the case of the truck, while the bottom is for
the tractor. Several observations can be made here: First,
the unscented RTS smoother (blue dash curves) often leads
to improved state estimates than the UKF-PMHT-based state
estimation before the online modal adaptation T = 101.
This confirms the use of smoothed states, rather than updated

states, to decouple the state from the online measurements and
create an online batch of state-decoupled training data. Second,
the UKF-PMHT-based state estimation gives much improved
RMSE results after the online modal adaptation. Finally, the
performance improvement between the truck and tractor cases
is comparable as both updated spatial models appear to capture
the true vehicle contours.

V. CONCLUSIONS

In this paper, we continued our previous effort on using
a new surface-volume model to represent automotive radar
measurements. Instead of the fast-time state update, we focus
on the slow-time spatial model adaptation to refine the offline
learned spatial model. This was achieved by performing online
smoothing over the UKF-PHMT-based predicted and updated
states, creating an online batch of smoothed training data, and
updating the spatial modal parameters within a regularized
distance to the offline learned ones. The slow-time spatial
model adaptation has been numerically verified to improve the



online state estimation performance when the offline learned
B-spline chained ellipses model is over-smoothed.
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