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Abstract
In this paper, a graph-based filtering technique is proposed to identify fault signature of
broken rotor bar in inverter-fed induction motor under varying-speed operation. Simulation
results verified the effectiveness of the proposed method.

International Conference on Electrical Machines and Systems (ICEMS) 2021

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





A Graph-based Method to Extract Broken-Rotor-Bar
Fault Signature in Varying Speed Operation

Zhe Zhang 1,2 and Dehong Liu 1,∗
1 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

2 University of Connecticut, USA
Email: zhe.4.zhang@uconn.edu, liudh@merl.com

Abstract—Motor current signature analysis (MCSA) has been
a mature technique for fault detection in line-fed induction
motors for decades. Since nowadays most induction motors are
driven by inverters, it is challenging to detect faults in inverter-
fed induction motors due to the operation of varying speed and
varying load. In this paper, we study broken-bar fault detection
in inverter-fed induction motors under varying speed conditions.
By representing the stator current using a complex space vector,
we define a new fault signature of continuous varying frequency.
To effectively extract the newly defined broken-bar fault signa-
ture, we propose a graph-based method in which we solve an
optimization problem of graph model with constraints imposing
smoothness and sparsity of the spectrum. Simulation results
demonstrate the effectiveness of the proposed method.

Index Terms—Induction machine, Broken rotor bar, Fault
signature, Complex space vector, Graph model.

NOMENCLATURE

rs Stator resistance,
rr Rotor resistance,
Ls Stator inductance,
Lr Rotor inductance,
Lm Mutual inductance,
λs Stator flux linkage,
λr Rotor flux linkage,
p Differential operation,
J Moment of inertia,
Te Electromagnetic torque,
TL Load torque.

I. INTRODUCTION

Three-phase induction motors (IMs) have been the major
workforce in the industry due to their excellent performance,
high robustness, and simplicity of construction [1]. However,
IMs are subjected to different types of faults, including broken
rotor bar fault. Once a broken bar fault occurs, excessive
vibration, poor starting performance, and torque fluctuation
will be induced during operation. Even worse, it may cause
catastrophic failure of the whole motor drive system. There-
fore, it is of great importance to monitor machine condition
and to detect motor faults in motor drive systems.
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The cause-effect chain for rotor faults has been well inves-
tigated and demonstrated in [2]. In healthy conditions, three-
phase stator winding impedances are identical and induced
rotor-bar currents are well balanced. Frequency components
at f and sf exist in the stator current and the rotor current,
respectively, where f is the supply frequency and s is the
slip. Once a rotor bar is broken, the corresponding circuit
branch is open. A reverse rotating magnetic field is produced
due to the loss of rotor circuit’s symmetry and a negative
frequency component at (−sf) appears in the rotor currents.
Such negative frequency component produces the first fault
frequency component at (1−2s)f in the stator current, causing
a pulsating torque and a speed oscillation at the frequency
of 2sf . Consequently, a set of new frequency components at
frequencies of (1±2ks)f , where k = 0, 1, 2, . . ., appear in the
spectrum of stator currents as well as a new set of frequency
components at frequencies of ±(1+2k)sf in rotor currents [3].
In general, broken-bar fault diagnostic techniques are focused
on detecting the fault dominant component at frequency of
(1− 2s)f in the stator current.

Motor current signature analysis (MCSA) has been widely
used in IM fault detection for decades because of its ef-
fectiveness and noninvasive property. Based on the stator
current frequency spectrum, MCSA methods aim to extract
characteristic frequency components for different types of
faults [4]. However, the most common practice of MCSA
in rotor fault detection is dealing with line-fed IMs under
stationary conditions. Since nowadays voltage source inverters
(VSI) driven IMs are becoming popular in industrial envi-
ronments for the sake of efficiency and carbon neutrality,
where stationary operations are quite unusual, conventional
fast Fourier transform (FFT) based MCSA methods are either
no longer applicable or with poor detection performance.

In recent years, researchers have developed rotor fault
detection methods under non-stationary conditions. For exam-
ple, CusidÓCusido et al. [5] proposed the short-time Fourier
transform (STFT) in combination with a Wavelet analysis to
detect rotor fault with improved results. In [6], an adaptive
transform utilizes a function called the time-frequency atom
that allows for precise observation of fault components in
transient regimes. An application of multi-rate digital signal
processing for rotor fault detection can be found in [7].



These methods allow tracking the fault-related frequency
by performing relevant time-frequency (t-f) transform. The
drawback is that the energy of the fault-related frequency
component is much lower than the fundamental one, which
makes it difficult to differentiate due to spectral leakage [8]. To
improve the frequency spectrum resolution, Liu [9] proposed
an off-the-grid compressive sensing method to achieve a super
spectral resolution such that the fault characteristic frequency
component can be well resolved even with a short-time current
measurement, assuming the motor speed and the load are
constant in the short measurement period. However, the com-
pressive sensing based spectrum analysis method may suffer
from noisy measurements. Some researchers have proposed
the use of demodulation techniques aiming to eliminate the
fundamental supply frequency and extract a reliable fault
indicator based on stator current measurement [8], [10], [11].
The demodulation process essentially shifts the stator current
spectrum along the frequency domain so that the fundamental
component becomes DC (zero frequency). The masking effect
of spectral leakage then can be largely eliminated by filtering
the DC component in the demodulated signal. However, the
noise issue is still not well addressed in these methods.

In this paper, we study the broken-bar fault signature
under varying speed and varying load conditions. A new
fault signature pattern can be observed by applying complex
vector transformation to the stator currents. Such manipulation
similarly transforms the overwhelming fundamental compo-
nent to DC value and makes it easier to identify the fault-
related component in the stator current spectrum. In order
to effectively extract broken-bar fault signature of induction
motors under varying operation conditions, we model the fault
signature as a graph signal with a continuously changing and
sparse frequency component. Following the idea of graph
model, we propose a graph-based method to extract the fault
signature by solving an optimization problem with constraints
imposing sparsity and smoothness of the fault signature in the
stator current spectrogram computed using STFT.

The rest of this paper is organized as follows. The dynamic
model of induction machine under the complex space vector
framework is introduced in Section II. In Section III, a graph-
based method is proposed to effectively extract the fault
signature. Simulation results are presented in Section IV to
demonstrate the effectiveness of our proposed method. Section
V concludes the paper.

II. COMPLEX VECTOR MODEL OF INDUCTION
MACHINE WITH BROKEN ROTOR BARS

In this section, a detailed mathematical derivation of the
induction machine with broken rotor bars will be discussed
based on the complex space-vector notation and coupled
magnetic circuit theory.

A. Complex Space Vectors for Stator/Rotor State variables

We consider a three phase squirrel-cage induction motor
with n rotor bars (phases) on the rotor side. An equivalent
circuit model of the squirrel-cage induction motor is shown in

Fig. 1. Each rotor bar is represented by an equivalent resistance
Rb and an equivalent inductance Lb, and each segment of end
ring is presented by a resistance Re and an inductance Le.
This model is based on magnetic circuit theory considering
the actual non-sinusoidal rotor bar distribution [12].
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Fig. 1. Equivalent circuit of (a) stator windings and (b) rotor bars in the
squirrel-cage induction motor

For any three phase variable {xa, xb, xc}, which can be
voltage, current, or flux, etc., we define a corresponding
complex state variable Xs on the stator side as

Xs =
2

3

[
1 a a2

] xaxb
xc

 =
2

3
(xa + axb + a2xc), (1)

where a = ej(2π/3).
Similarly, for any rotor variable {y1, y2, ..., yn}, we define

a corresponding complex state variable Y r on the rotor side
as

Y r =
2

n

[
1 b ... bn−1

]

y1
y2
...
yn


=

2

n
(y1 + by2 + ...+ bn−1yn), (2)

where b = ej(2π/n).

B. Modeling the Effect of Broken Rotor Bars

The electrical behavior of an induction machine in complex
space-vector notation for stator and rotor can be summarized
respectively as [13]

V s = rsis + pλs

= rsis + Lspis +
n

2
Lme

j(θr+
αr
2 )(p+ jωr)ir, (3)

and

0r = rrir + pλr

= rrir + Lrpir +
3

2
Lme

j(θr+
αr
2 )(p− jωr)is, (4)

where θr is the rotor angle; ωr = pθr is the rotor angular
frequency; αr is the angle between two adjacent rotor bars;
0r represents the zero voltage vector due to the squirrel cage;
and rr is the equivalent rotor resistance in the subspace defined
by the space-vector transformation which can be expressed as
rr = 2Re + 2Rb(1− cosαr).



The mechanical behavior of an induction machine can be
summarized as

Te = iTs
∂Lsr
∂θr

ir = −(
3

2
)(
n

2
)LmIm{ej(θr+

αr
2 )i∗sir}, (5)

Te − Tl = J
dωr
dt

. (6)

Assuming the i-th rotor bar begins to degrade, one can
define an increased rotor resistance Rb so that the induced
rotor bar voltage in complex space-vector notation can be
expressed as

vbrbi =
2

n
bi−1vbrbi . (7)

To account for any degraded rotor bars into the induced
rotor voltage, the following equation holds

vbrbr =
∑
i

vbrbi . (8)

Note that there are sinusoidal couplings between the stator
and rotor circuits which can be eliminated by referring all
the equations to a common reference frame. Apply the vector
transformation referenced to stationary frame

Xqds =
2

3
e−jθXs, (9)

Y qdr =
2

3

√
n

3
ej(θr+

αr
2 −θ)Y r. (10)

The equations for voltage and electromagnetic torque under
faulty condition can be revised as

V qds = rsiqds + pλqds, (11)

0r = vbrbqdr + rriqdr + pλqdr − jωrλqdr, (12)

Te = −(
27
√

3n

16
)LmIm{i∗qdsiqdr}. (13)

Eqs. (11)-(13) summarize the complex vector model of in-
duction machine with broken rotor bars. With the model, it is
convenient to simulate stator current under a number of broken
rotor bars or even at different levels of severity by increasing
the corresponding resistance value of Rb.

III. GRAPH-BASED FAULT SIGNATURE
DETECTION

A. Fault Signature in Complex Space Vector Representation

For a healthy induction machine, its stator current contains
a fundamental frequency component and harmonics of the
fundamental frequency in inverter-fed applications. When a
rotor bar is broken, an additional dominant frequency of
(1 − 2)sf is produced in the stator current. Therefore, the
three-phase stator current for a faulty induction machine can
be expressed as

ia(t) =I1 cos(ωst) + Ibrb cos(ωbrbt+ φbrb), (14)
ib(t) =I1 cos(ωst− 2π/3)

+ Ibrb cos(ωbrbt+ φbrb − 2π/3), (15)
ic(t) =I1 cos(ωst+ 2π/3)

+ Ibrb cos(ωbrbt+ φbrb + 2π/3), (16)

where I1 and Ibrb represents the amplitude of the fundamental
component and the fault component, respectively; ωs and
ωbrb = (1 − 2s)ωs is the angular frequency of the power
supply and of the fault component, respectively; and φbrb is
the phase angle of the fault component. In inverter-fed drive
applications where the motor operation speed is variable, both
ωs and ωbrb are changing along with time.

According to complex space vector definition in (1), the
stator current in complex space vector representation is

is =
2

3
(ia(t) + aib(t) + a2ic(t))

= I1e
jωst + Ibrbe

j(1−2s)ωst. (17)

The complex space vector defined in (17) can be referenced
to a synchronous reference frame by applying the vector
transformation

iss = ise
−jωst = I1 + Ibrbe

−j(2sωs)t. (18)

Note that the fundamental component I1 is DC quantity.
Since the DC component can be easily removed, the fault-
related component at frequency of 2sωs comes into play. We
therefore define Ibrbe−j(2sωs)t as the signature of broken bar
fault. It is clear that under variable speed operations, this fault
signature is no longer a constant-frequency component, but
a varying-frequency one. Therefore, due to the spreading out
spectrum energy of the fault frequency, it is challenging for
traditional MCSA methods to extract the fault signature as
a single frequency component. In order to extract this fault
signature of time-varying frequency, we propose to model the
fault signature as a graph signal, with details introduced in the
following subsection.

B. Graph Model of Fault Signature

A commonly used approach to processing a non-stationary
signal is to represent it in the time-frequency domain using
the short-time Fourier transform (STFT). The non-stationary
signal is partitioned into short-time pieces using overlapped
sliding-time windows. Each windowed piece of signal is
analyzed using the FFT, providing frequency spectrum infor-
mation within the local time duration.

By performing STFT on the transformed stator current iss,
a matrix of signal spectrogram Y = [Y1, ...,Ym, ...,YM ] is
obtained, in which column vector Ym represents the frequency
spectrum of the mth windowed signal of the transformed stator
current iss. Each row of Y corresponds to a fixed frequency
value. To avoid redundancy, we only consider frequency range
[0, Fs/2], where Fs is the frequency sampling rate of stator
current measurements. Since the operating speed and load
is changing, the fault signature frequency is not a constant,
meaning that the fault signature component in the spectrogram
matrix does not lie in any single row vector of a certain
frequency. Motivated by recent progress in graph signal pro-
cessing, we treat the spectrogram of transformed stator current
as a graph signal observed from graph G = (V,A), where
V = {v1, ..., vm, ..., vM} is the set of nodes, represented by
sequential moving time windows, and A ∈ RM×M is the



graph shift, or a weighted adjacency matrix that represents
the pairwise proximity between nodes, frequency spectrum
Yi ∈ Ck is then associated with the ith node of the graph. We
can estimate the graph shift A through the STFT frequency
spectra as

Ai,j =
|YH

i Yj |√
YH
i Yi

√
YH
j Yj

, for |i− j| < d, (19)

where the superscript H indicates the matrix Hermitian trans-
pose, d is the maximal distance of connected neighborhood
nodes in the graph. Therefore, the spectrogram matrix of the
stator current at varying speed and varying load can then be
treated as a noisy graph signal with an unknown frequency
shift due to the varying operation, i.e.,

Ym = Xm ~ δ(ωm) + W, for m = 1, ...,M, (20)

where ~ stands for convolutional operation; δ is the
Dirac delta function; and W is signal noise. X =
[X1, ...,Xm, ...,XM ] represents the denoised spectrogram of
constant frequency and constant load operation.

C. Graph-based Fault Signature Extraction

Inspired by recent research work on graph-model based
signal denoising [14], [15], we extract the fault signature by
solving an optimization problem as

min
X,{ωm}

M∑
m=1

1

2
‖Xm ~ δ(ωm)−Ym‖22 + λR1(X) + βR2(X),

(21)

where λ and β are hyper-parameters, R1(X) and R2(X) are
regularizing terms. R1(X) imposes sparsity of the graph signal
using L1 norm as

R1(X) = |X|1 =

M∑
m=1

|Xm|. (22)

R2(X) promotes smoothness of graph signals, i.e., neigh-
boring nodes should share a similar fault signature in the
frequency domain. R2(X) can be expressed as

R2(X) =
1

2
‖X− ĀX‖2F , (23)

where Ā is a normalized graph shift matrix whose entries are
computed as Āi,j =

Ai,j∑
j Ai,j

to ensure that the sum of each
row of Ā equals to 1.

The goal is to recover X and ωm from Y. The intuition
behind the proposed graph-based denoising approach can be
explained in two aspects: 1) the fault signature in each time
window is a sparse (non-zero) component in the frequency
spectrum and 2) the rotor fault frequency components in
consecutive time windows are smoothly changing and have
strong pairwise correlation. Once we obtain continuously
changing sparse frequency components forming a curve in the
spectrogram, we declare that we extract the fault signature.

The whole fault signature extraction problem can be sum-
marized as the following stages.

1) Record the stator currents ia, ib, ic and transform them
into the complex vector iss.

2) Apply STFT on iss and remove the DC component to
get the spectrogram matrix Y

3) Solve optimization problem (21) [15]:
• Estimate Ā;
• Iteratively update ωm and X until convergence:

ωm = argmaxω
1

2
‖Xm ~ δ(ω)−Ym‖22, (24)

X̂ = (I + β(I− Ā)T (I− Ā))−1([Ym ~ δ(−ωm)]),
(25)

X = sign(X̂) max(|X̂| − λ, 0), (26)

where I is an identity matrix.
4) Output fault signature Ŷm = Xm ~ δ(ωm).

IV. SIMULATION

A MATLAB/Simulink model of inverter-fed induction ma-
chine with broken rotor bar is shown in Fig. 2, where each
block function represents one or more corresponding model
equations shown in Section II. A simple Volt-per-Hertz (V/f)
control scheme is used to control the induction motor [16]–
[18]. The stator current in the complex space vector repre-
sentation is stored to the workplace for further analysis. The
complex vector model of induction machine with broken rotor
bar in Section II is successfully realized in three simulations.

First, we check the operation of a healthy machine with a
constant load. The motor speed is accelerated by increasing
the supply frequency from 0 Hz to 60 Hz. When the motor
is operating in a healthy condition, the STFT power spectrum
of the stator current iss is shown in Fig. 3 (a), where we only
observe a dominant DC component in the transformed space.
Fig. 3 (b) shows the denoised signal using our graph-based
method on Fig. 3 (a), where no continuous changing but twos
isolated frequency segments are observed. Fig. 3 (c) depicts
the theoretical frequency component of operation.

Second, we examine the operation of a faulty machine at a
varying speed with a constant load, where two rotor bars are
broken in the model. The corresponding STFT power spectrum
of the stator current iss is shown in Fig. 4 (a) for comparison,
where we can observe a time-varying fault signature frequency
component. Fig. 4 (b) shows the extracted fault signature
using our proposed graph-based method, which agrees with
the theoretical result as depicted in Fig. 4 (c).

Third, we examine the operation of the same faulty machine
at a varying speed with a varying load. The machine is starting
from 0 Hz and accelerating to 60 Hz with an extra load applied
at 8s. The corresponding simulation result is shown in Fig.
5. Similar to Fig. 4, we can extract the fault signature using
our proposed graph-based method, which is also well matched
with the theoretical one as depicted and Fig. 5 (c).

From all above simulations, it is clear that the proposed
graph-based method is capable of detecting rotor fault under
varying speeds and varying load conditions.
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Fig. 2. Simulation model of inverter-fed induction machine with/without broken-rotor-bar fault.

(a) (b) (c)
Fig. 3. Simulation results of healthy induction motor at varying speed and constant load (a) STFT spectrum, (b) denoised signal without continuously changing
fault signature, and (c) theoretical operational frequency component trajectory in the original space (green) and the complex vector space(red).

V. CONCLUSION

We studied broken-rotor-bar fault detection for the inverter-
fed squirrel-cage induction motor under varying speed and
varying load conditions, and defined a fault signature using
complex space vector notation. To extract the fault signature,
we proposed a graph-based method by solving an optimization
problem with constraints imposing smoothness and sparsity
of the fault signature. Simulation results demonstrate that our
proposed method can effectively extract fault signature under
varying speed and varying load operations. The newly revealed
fault signature detection method is applicable for both line-fed
and inverter-fed induction motor drives.
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