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Abstract: We propose a centralized multi-robot motion planning approach that leverages
machine learning and mixed-integer programming (MIP). We train a neural network to imitate
optimal MIP solutions and, during execution, the trajectories predicted by the network are used
to fix most of the integer variables, resulting in a significantly reduced MIP or even a convex
program. If the obtained trajectories are feasible, i.e., collision-free and reaching the goal, they
can be used as-are or further refined towards optimality. Since maximizing the likelihood of
feasibility is not the standard goal of imitation learning, we propose several techniques aimed at
increasing such likelihood. Simulation results show the reduced computational burden associated
with the proposed framework and the similarity with the optimal MIP solutions.
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1. INTRODUCTION

Real-time computation of centralized motion planning for
multi-robot systems (Yan et al., 2013) becomes compu-
tationally challenging as the number of robots increases.
An example is motion planning by mixed-integer program-
ming (MIP) that allows one to tackle obstacle avoidance,
inter-robot collision avoidance, and goal-reaching speci-
fications, and as such has been proposed for a number
of applications such as multi-vehicle routing (Schouwe-
naars et al., 2001), unmanned aerial vehicles trajectory
planning (Albert et al., 2017), multi-robot task schedul-
ing (Gombolay et al., 2013) However, mixed-integer linear
programming (MILP) is NP-hard, and this limits its ap-
plicability for real-time implementation.

Recently, there have been significant efforts in leveraging
machine learning techniques to speed-up the solution of
combinatorial problems, such as MILP; a detailed discus-
sion and overview is available in (Bengio et al., 2020). For
instance, in (Karg and Lucia, 2018), deep neural networks
are used to approximate mixed-integer model predictive
controllers, and supervised learning methods to warm start
branch-and-bound (B&B) solvers are proposed in (Masti
and Bemporad, 2019). Here, we follow the philosophy
in (Bengio et al., 2020) that suggests not to solely rely
on machine learning to solve combinatorial problems, but
rather to learn offline predictors for certain components of
the problem, and to use them to significantly reduce the
online (real-time) computational burden. Specifically, here
we learn a predictor, offline, for trajectories of an MILP-
based centralized multi-robot motion planning, and we

use the predicted trajectories online to determine most/all
integer variables of the MILP. Thus, online, we solve a
problem where the integer variables, which largely deter-
mine the computational burden, are significantly reduced
or even completely eliminated, but the final motion plan
results from an exact optimization algorithm. The motion
plan could be further refined using the original MILP, for
which the B&B algorithm (Floudas, 1995) may converge
significantly faster because an integer feasible initial solu-
tion is provided.

Learning-based motion planners have been investigated
using both reinforcement learning (RL) and imitation
learning (IL). RL-based planners (Zhang et al., 2017; Faust
et al., 2018) are particularly effective in uncertain environ-
ments where learning is achieved through interactions with
the environment, while requiring careful handcrafting of
reward functions and large amounts of data and computing
resources (Johnson et al., 2020). On the other hand, IL
exploits an available expert that can generate optimal
plans, to “learn from demonstrations”, that is, by repro-
ducing the expert policy. Neural motion planners (NMPs)
use deep neural networks to emulate an optimal plan-
ning algorithm (Qureshi and Yip, 2018) achieving near-
optimal solutions with higher computational speeds, see,
for example, MPNet (Qureshi et al., 2020) While based on
similar rationale, our approach differs from NMPs as we
use the learned policy to reduce the online computations
of the expert rather than to fully replace it, thus achieving
significantly faster computations, yet still generating the
final trajectories from an exact optimization algorithm.



For our proposed approach to be effective, the trajectory
from the predictor must be feasible. Concretely, it must
avoid collisions and reach the goal, so that the online
optimizer also computes a feasible trajectory that can be
used directly or refined using the MILP in an anytime
fashion. For feasibility, the approximation errors due to
learning have a desirable direction: an error that steers
away from the constraints is preferable to one that steers
towards them. This preferred direction is not considered
in standard learning approaches that aim at simply repli-
cating the behavior of the data. In this paper, we modify
conventional learning methods to increase the likelihood
of obtaining feasible trajectories To this end, we cus-
tomize the loss function to favor learning errors that steer
the trajectory away from the constraints, and propose
a “receding horizon” implementation to further recover
feasibility. Supported by our numerical results, we posit
that the proposed method can generalize to scenarios for
which it has not been explicitly trained. For instance,
we demonstrate the potential to generalize the IL-based
approach to cases that are a subset of the training scenario,
i.e., if we train for N robots and M obstacles, we show that
the same neural network can handle an environment with
< N robots and < M obstacles.

The rest of the paper is organized as follows. Section 2
provides background and describes the problem, and Sec-
tion 3 presents the architecture of the proposed motion
planning approach. Sections 4, 5, 6, and 7 describe the
offline motion planning MILP, the training and operation
of the predictor, and the online reduced motion planning
problem, respectively. Simulation results are shown in Sec-
tion 8 and conclusions are summarized in Section 9.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

We define R and Z to be the sets of reals and integers,
respectively. The cardinality of a set S is denoted by
|S|. For a, b ∈ Z, we denote an interval of integers by
Z[a,b) = {z ∈ Z : a ≤ z < b}. For a vector a ∈ Rn, [a]i
denotes the ith component of a, i ∈ Z[1,n]. Inequalities
between vectors a ≤ b, are intended component-wise.

2.1 Mixed-Integer Linear Programming

A binary mixed-integer linear program (MILP) is a linear
program where some variables are restricted to be 0 or 1,

min
ξ

c>ξ

subject to: Hξ ≤ K,
[ξ]h ∈ R, ∀h ∈ Hr,

[ξ]h ∈ {0, 1}, ∀h ∈ Hb,

(1)

where ξ is a vector of decision variables and Hr, Hb are
the set of indices of real and binary variables, respectively.

The discrete variables in MILPs allow modeling disjunctive
and assignment constraints, e.g., this enables collision
avoidance (stay outside of a region), alternative decisions
(go left or right), assignments (allocate an agent to a task)
and timing minimization (step counting) (Richards, 2002).
Despite being non-convex, the MILP feasible domain, that
is, the set ΞF where (1) admits a finite solution, is the
union of convex sets, so that the global optimum can be

found in finite time, albeit combinatorial with respect to
the number of discrete variables |Hb|.

2.2 Motion Planning Problem Description

We considerN robots, where the dynamics of the ith robot,
i ∈ I = Z[1,N ], is described by the discrete-time model

xik+1 = Aixik +Biuik, (2a)

zik = Cixik +Diuik, (2b)

sampled with period Ts, where xi ∈ X i ⊆ Rni is the state
vector, ui ∈ U i ⊆ Rmi is the input vector, zi ∈ D ⊆ Rp is
the output vector that describes the robot configuration,
where p = 2, 3 for position-only configurations in 2D,
3D, respectively, X i, U i are the sets of admissible states
and inputs, and D is the environment, or workspace. The
model (2) can represent heterogeneous and homogeneous
multi-robot systems. In this paper, for simplicity, we
consider a position-only 2D configuration space, p = 2,
where D = {z ∈ R2 : pmin ≤ z ≤ pmax}. In this case, the

state vector can be defined as xi =
[
zi

>
vi

>
]>
∈ R4 and

vi ∈ R2 is the velocity vector.

The workspace contains obstacles oj , j ∈ O = Z[1,No], and
the robots must avoid colliding with obstacles as well as
with each other. A collision between robot i and obstacle j
occurs if and only if Hj

oz
i ≤ Kj

o : that is, if its configuration
vector zi is inside a polytope. Similarly, robot i collides
with robot j if Hj

r (zi − zj) ≤ Kj
r : that is, if zi is in

a polytope centered around zj . Each robot i ∈ I must
reach its corresponding goal state xigoal ∈ X i in minimum
time, within a maximum time horizon T , while avoiding
the obstacles and other robots active in the environment.

As the goals and obstacles may change position, fast
re-planning during robot operation may be needed. To
this end, we propose an imitation learning framework to
speedup the motion planning based on MILP for achieving
these objectives, so that we can avoid solving an MILP
with many binary variables online, during robot operation.

3. PROPOSED ARCHITECTURE FOR FAST
REAL-TIME MOTION PLANNING

Our motion planning architecture is shown in Fig. 1, with
an offline training and an online planning component.

The offline component includes a module that generates a
dataset of optimal trajectories obtained by solving the full
MILP for multi-robot motion planning for different initial
conditions of the robots, target goals and obstacle posi-
tions. The obtained trajectories reach the goal optimally
and are collision-free, thus they are referred to as expert
trajectories and the module generating them is referred to
as Expert 1. The dataset is used by the training module to
train a neural network for predicting the robot trajectories.

In the online planning component, the robot states, the ob-
stacle locations, and the target goal coordinates are given
as input to the predictor module that uses the trained imi-
tation learning network to return predictions for the robot
trajectories. Since the predictions are approximations of
the expert trajectories, we do not provide them directly to
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Fig. 1. The proposed IL-based motion planning framework
that addresses the objectives in Section 2.2.

the robots. Instead, we extract information from the pre-
dictions to simplify the online motion planning problem.
More specifically, based on the predicted trajectories, we
fix the values of most (or even all) integer variables, which
are the main source of complexity in MILPs. Then, the
resulting simpler MILP is solved in the Expert 2 module,
yielding the actual planning trajectories for the robots
to follow. These can be further improved by solving the
full MILP initialized at the solution of Expert 2, with a
timeout for real-time feasibility.

For the proposed approach to be effective, the feasibil-
ity of the predicted trajectories is paramount, to en-
sure feasibility of Expert 2 so that its solution can be
safely provided to the robots or refined based on the full
MILP in an anytime fashion with an available backup for
timeouts. However, since optimal trajectories often “ride”
the constraints (Dantzig, 1998), it is likely that even a
small perturbation to the imitation network predictions
causes constraint violations. In addition, the trajectories
for collision avoidance are not everywhere continuous with
respect to the initial conditions (Panagou, 2014; Zhang
et al., 2009). The continuous interpolating nature of stan-
dard activation functions may, therefore, result in planned
trajectories that collide with an obstacle from some ini-
tial conditions. One possibility would be to use networks
capturing such discontinuous behavior (Forti and Nistri,
2003), which however are harder to train since the loss
functions are no longer always differentiable, and activa-
tion function selection requires knowledge of the type (e.g.,
jump) of discontinuities. Thus, in this paper we use feed-
forward neural networks to imitate the MILP solver but
we propose modifications that increase the likelihood of
obtaining feasible trajectories. Hereafter, we describe the
implementation of the different modules.

4. EXPERT 1: MILP FORMULATION (OFFLINE)

4.1 System Dynamics and Boundary Conditions

For each robot i ∈ I, the system dynamics are described
by (2) with initial condition

xi0 = xiinit, (3)

where xik ∈ X i is the state of the robot i at time step k and
xiinit ∈ X i is the initial condition. For each robot i ∈ I,

reaching the corresponding goal state xigoal is enforced as

‖xik − xigoal‖1 ≤M (1− gik) ,

T∑
k=1

gik = 1, (4)

where M > 0 is a constant that is always larger than the
left-hand side (Conforti et al., 2014), and gik ∈ {0, 1} for
all i ∈ I, k ∈ Z[1,T ], where gik = 1 if robot i reaches
the goal at step k. In addition, path inequality constraints
are included to restrict the position within the workspace
zik ∈ D = {z ∈ R2 : pmin ≤ z ≤ pmax}, and to limit the
velocity vik and input acceleration uik for each robot i ∈ I
and each time step k ∈ Z[0,T ] as

‖vik‖∞ ≤ vimax, ‖uik‖∞ ≤ uimax. (5)

4.2 Collision Avoidance Constraints

The obstacle avoidance for each robot i ∈ I with respect
to each obstacle j ∈ O is enforced by the constraints

Hj
o(zik − ϑj) ≥ Kj

o −M (1− bi,jk ),

no
j∑

h=1

[bi,jk ]h ≥ 1, (6)

where ϑj is the given position of the jth obstacle reference
point, e.g., its center, noj is the number of inequalities of

the polytope centered at ϑj , and for each robot i ∈ I,
obstacle j ∈ O, and time k ∈ Z[0,T ], b

i,j
k ∈ {0, 1}

no
j is a

binary vector that enforce zik to lie outside of the polytope
Hj

o(zi − ϑj) ≤ Kj
o where a collision occurs.

For any i, p ∈ I, i 6= p, k ∈ Z[0,T ], the inter-robot collision
avoidance is enforced by the constraints

Hp
r (zik − z

p
k) ≥ Kp

r −M (1− di,pk ),

nr
p∑

h=1

[di,pk ]h ≥ 1, (7)

where nrp is the number of inequalities of the polytope

around the pth robot, and di,pk ∈ {0, 1}
nr
p is a binary vector

that enforce zik to lie outside of the polytope Hp
r (zik −

zpk) ≤ Kp
r where a collision occurs.

4.3 Minimum Time Cost Function

The MILP cost function is

J∗ =
∑
i∈I

T∑
k=1

(
k gik + γ‖uik−1‖1

)
, (8)

where the first term minimizes the time to reach each
robot’s target, and the second term adds a small con-
trol penalty to make the B&B algorithm more effi-
cient (Richards, 2002, pp. 75-76); here, 0 < γ � 1. The
1-norm in (8) is encoded by adding auxiliary continuous
variables as in (Richards, 2002).

4.4 MILP Problem Formulation

The complete MILP is given by

min
x,u,g,b,d

J∗(g, u)

subject to: (2), (3), (4), (5), (6) and (7),
(9)

including (T + 1)
∑
i∈I ni state variables in x, T

∑
i∈Imi

control variables in u, T N binary variables in g for



reaching goals, T N
∑
j∈O n

o
j binary variables in b for

obstacle avoidance and T (N−1)
∑
j∈I n

r
j binary variables

in d for inter-robot collision avoidance. Assuming for
simplicity, noj = no for all j ∈ O, nrj = nr for all j ∈ I, the
total number of binary variables in (9) is

T N (1 +No n
o + (N − 1)nr) . (10)

The number of binary variables increases quadratically
with the number of robots N and the number of obstacles
No in the environment, making the solution of MILP in (9)
generally intractable for fast re-planning during operation
of the multi-robot system.

5. PREDICTION BY IMITATION LEARNING: DEEP
NEURAL NETWORK (DNN)

The training module constructs the predictor by learning
the parameters of a neural network with given architecture
from Expert 1 trajectories for different robots’ initial
and goal conditions, and obstacle positions. While the
architecture and hyperparameters are specific to our case
study, the approach is general and extends to other cases.

5.1 Sampling For Dataset Generation

Expert trajectories are generated by solving (9) using
Expert 1, where each solution is computed for different
xi0, xigoal, i ∈ I, and ϑj , j ∈ O. Concretely, we generate

data for xi0, xigoal, ϑ
j by sampling from a low-discrepancy

sequence which ensures that the samples of initial con-
ditions, goals, and obstacle positions are well-distributed
within the workspace, rather than being clustered in sub-
regions that could happen by sampling from a uniform
distribution (Chakrabarty et al., 2017). These samples,
along with the expert trajectories, constitute the training
and label sets used for training, validation, and testing of
the predictor module. In a 2D workspace (p = 2) with two
robots and one obstacle, assuming nx = 4 state variables
in the robot dynamics and the velocities are set to 0 for
the target goal conditions, each sample in the training set
is a vector with 2(nx+p)+p = 14 elements comprising the
initial state condition of each robot and the coordinates of
its target goal, and of the obstacle center.

We make two modifications to the sampling method,
inspired by practical considerations. A well-distributed
sampling pattern will result in samples being drawn from
within the obstacle, which we know a priori to result
in Expert 1 to be infeasible. Therefore, first, we remove
these infeasible samples from our dataset without even
generating the labels. Second, we generate more samples in
the immediate neighborhood of the obstacles, since more
data increase learning precision and obstacle avoidance
actions need to be more precise near the obstacles. Thus,
we first randomly sample ϑj , j ∈ O, xigoal, i ∈ I, then
select neighborhoods of the obstacles and randomly sample
xi0, i ∈ I in such neighborhoods.

5.2 Imitation Learning Network Architecture

The predictor is obtained by learning to imitate Expert 1
and implemented as a deep neural network. In our simu-
lations of Section 8, the predictor is a five-layer (1 input,

3 hidden, 1 output) deep neural network with 50 neurons
in the input layer and 100-100-50 neurons in the hidden
layers. Each network layer is fully connected with Leaky
ReLUs as activation functions, with slope 0.1 and no
dropout. The output layer is linear. For No obstacles and
N robots, each with state dimension nx, the input to the
predictor module has dimension N(nx + p) + Nop and
the output has dimension N Tnx, including a trajectory
of state values for each robot over the T -steps horizon.

5.3 Imitation Network Training

We use a train-validation-test split of 80/10/10 and set the
number of epochs to 2000. We describe the loss function
in more detail in the next subsection. We use the Adam
algorithm to optimize the network (Kingma and Ba, 2014)
with a batch-size of 64, and an adaptive learning rate:
10−2 for the first 50 epochs, 10−3 for the next 150 epochs,
and 10−4 afterwards. To avoid overfitting and promote
uniqueness of solutions, we add a L2 regularizer to the
loss function, with regularization parameter 10−4.

5.4 Tailored Loss Function Implementation

In order to promote feasibility of predictor module trajec-
tories, we include in the imitation learner’s loss function
a barrier term to bias each robot configuration to stay
outside a neighborhood of the obstacles and other robots

Lobs =
1

N No T B

N∑
i=1

∑
m∈O

B∑
j=1

T∑
k=0

φmo (zi,jk ),

Lrobots =
1

N2 T B

N∑
i=1

∑
m∈I\{i}

B∑
j=1

T∑
k=0

φmr (zi,jk ),

(11)

where φmo (·) and φmr (·) denote the barrier functions for the
obstacles and robots, respectively. The barrier terms (11)
are imposed for each element in the batch size B and
for each time step k ∈ Z[0,T ]. In addition to (11), given

the state xi,jref,k of the Expert 1 trajectory for robot i
at time step k in batch element j, we add a mean-
squared error (MSE) loss term, to promote imitating such
trajectories

LMSE =
1

N T B

N∑
i=1

B∑
j=1

T∑
k=0

‖xi,jk − x
i,j
ref,k‖

2
2. (12)

Then, the complete loss function (without regularization)
reads as

L = wMSE LMSE + wobs Lobs + wrobots Lrobots, (13)

where wMSE, wobs, wrobots ∈ R>0 are loss function weights.
A candidate for the barrier function in (11) is

φm? (zi,jk ) =
π

2
− tan−1

(
α
(
‖zi,jk − Cm‖

2
Pm
− 1
))

, (14)

where ‖zi,jk −Cm‖2Pm
= (zi,jk −Cm)>Pm(zi,jk −Cm) and α >

0 is a scaling factor. The barrier loss (14) is based on an
ellipsoid enclosing the obstacle or robot m, with symmetric
positive definite shape matrix Pm � 0 and center Cm ∈ D.
The weights in the loss (13) and the shape parameters in
the barrier function (14) are hyperparameters, tuned using
the validation dataset.



Algorithm 1 Receding Horizon-based DNN Predictor.

1: Input: Initial f0 =
(
{xi0}i∈I , {xigoal}i∈I , {ϑj}j∈O

)
.

2: T i ← ∅, ∀i ∈ I and f ← f0.
3: {xik}i∈I,k∈Z[0,T ]

← DNN(f).

4: δobs ← ObstacleCollision
(
{xik}i∈I,k∈Z[0,T ]

, {ϑj}j∈O
)
.

5: δrobot ← RobotCollision
(
{xik}i∈I,k∈Z[0,T ]

)
.

6: if δobs is False and δrobot is False then
7: T i ← Concatenate

(
T i, {xik}k∈Z[0,T ]

)
, ∀i ∈ I.

8: Return T i for i ∈ I.
9: else

10: T i ← Concatenate
(
T i, xi0

)
, ∀i ∈ I.

11: f ←
(
{xi1}i∈I , {xigoal}i∈I , {ϑj}j∈O

)
.

12: GoTo Step 3.
13: end if
14: Output: Trajectories xik for i ∈ I, k ∈ Z[0,T ].

6. RECEDING HORIZON-BASED DNN
PREDICTOR (ONLINE)

In practical situations, even if the training set is well-
distributed and the imitation learner is of sufficient com-
plexity to imitate Expert 1 with high accuracy, open-loop
prediction of trajectories can result in infeasibility, due
to inter-robot collisions or collisions with obstacles. This
is because the imitation learner cannot mimic Expert 1
with 100% accuracy for the reasons discussed in Section 3.
To alleviate this issue, we propose a receding horizon
implementation along the lines of (Chakrabarty et al.,
2017), where only a part of the robot trajectory from the
predictor is used, the state values are updated accordingly,
and the learner re-predicts the remainder of the trajectory
from such new states.

The approach is summarized in Algorithm 1. The algo-
rithm first predicts trajectories of the robots, given the
initial conditions (step 3). If the trajectories are feasible,
then the algorithm terminates, and the predicted trajec-
tory, concatenated to any previously computed trajectory
prefix, is returned (step 7− 8). If infeasibility is detected,
due to a collision with obstacles (ObstacleCollision) or
due to a collision between robots (RobotCollision), then
the initial state is concatenated to any existing trajectory
prefix. The robots’ state values are updated by one step,
and used as the new initial condition from which a new tra-
jectory is predicted. This process is repeated until feasible
trajectories for all robots are obtained, or a pre-decided
termination time is reached, after which one could apply a
backup approach (e.g., solving the full MILP on-line). Due
to concatenation, the trajectories provided to Expert 2
may be longer than T time steps, which can be handled in
post processing if the goal is reached in less than T steps,
or by expanding the horizon in Expert 2. Re-planning
the trajectories adds a significant degree of robustness,
as expected from receding horizon methods (Rawlings and
Mayne, 2009).

7. EXPERT 2: REDUCED
RE-OPTIMIZATION (ONLINE)

The Expert 2 module in Figure 1 aims at improving
the trajectories from the predictor towards optimality.

Expert 2 solves online a small-scale optimization problem
obtained by fixing most or even all of the binary variables
in the MILP (9). Given the trajectories (zik)Tk=0 for each
i ∈ I provided by the predictor module, the values for
the binary variables bi,jk in (6) and di,jk in (7) are uniquely
defined. Fixing these binary variables results in a set of
convex constraints that enforce each robot i to be on the
outside of (at least) one half-space of the polytope j ∈ O,
j ∈ I \ {i} where a collision occurs with obstacles and
other robots, respectively. The resulting reduced MILP is

min
x,u,g

J∗(g, u)

subject to: (2)–(7),

[bi,jk ]h = 0 or 1, h ∈ Z[1,no
j
], i ∈ I, j ∈ O,

[di,jk ]h = 0 or 1, h ∈ Z[1,nr
j
], i ∈ I, j ∈ I \ {i}.

(15)

The above MILP includes T N binary variables, those re-
lated to reaching the goal state (4), which are considerably
less than the binary variables in (10). A solution of (15)
could be obtained by solving convex linear programs (LPs)
for fixed values of the binary variables gik, hence fixing the
time for each robot to reach its goal state (4), until the
minimum time is found. In addition, the trajectories from
Expert 2 could be further refined by using them as an
integer-feasible solution guess for the full MILP (9), to be
solved with a fixed timeout for real-time feasibility.

8. NUMERICAL SIMULATION RESULTS

In this section, we illustrate our approach for a two-robot
and a four-robot system in a 2D workspace D of size 5×5.
The robots are shaped as squares of width 0.6 and have
decoupled x–y double integrator dynamics (2), where

Ai =

[
I TsI
0 I

]
, Bi =

[
T 2
s

2 I
TsI

]
,

Ci = [ I 0 ] Di = 0, ∀i ∈ I, (16)

Ts = 0.1 is the sampling period, and I ∈ R2×2 is the
identity matrix. Thus, zi ∈ D ⊂ R2 is the 2D position
vector, the state xi ∈ X i ⊂ R4 contains the position
vector zi ∈ D and the velocity vector vi ∈ Vi ⊂ R2,
[vi]h ∈ [−1, 1], h ∈ Z[1,2], and the input ui ∈ U ⊂ R2

is the acceleration vector, [ui]h ∈ [−1, 1], h ∈ Z[1,2]. The
obstacles are grown to account for the robot volume.

8.1 Case 1: Two robots and one fixed obstacle

First, we consider a scenario where there are two robots
and one fixed obstacle centered at (2.5, 2.5). Here, our
approaches significantly reduce the number of initial con-
ditions from which predicted trajectories are infeasible.
Table 1 reports the actual number of infeasible trajectories
using only MSE loss (12), MSE loss with barrier term (13),
and loss (13) and Algorithm 1. Averaging across the tests,
the loss (13) reduces the infeasible trajectories by more
than 30%, and adding also Algorithm 1 results in no more
than 0.5% predicted trajectories to be infeasible.

8.2 Case 2: Two robots and two changing obstacles

We extend the previous setup to a scenario with 2 robots
and 2 static obstacles, where the center of each obsta-
cle can be changed from one planning time step to the



Table 1. Number of infeasible trajectories pre-
dicted using MSE loss (12), the proposed loss
with barrier terms (13), and (13) in combina-

tion with Algorithm 1.

# Samples MSE MSE + MSE +
Barrier Barrier + Alg. 1

1000 146 91 5
2000 253 174 7
3000 411 291 9
4000 524 380 11
5000 660 459 17

Fig. 2. Trajectories based on the receding horizon predictor
in Algorithm 1 when the positions of the two obstacles
change. The proposed approach predicts feasible tra-
jectories for the different conditions, including when
the obstacles partially or completely overlap.

next. Therefore, the inputs to the DNN predictor module
include the current position for each of the 2 obstacles,
which allows us to compute motion planning trajectories
for different obstacle configurations. This is illustrated in
Figure 2, which shows the trajectories by the receding
horizon-based predictor in Algorithm 1 for different center
positions of the obstacles. As illustrated in Figure 2, vary-
ing the positions of the obstacles in the training dataset
allows us to compute online plans for the cases where mul-
tiple obstacles are merged into one larger obstacle (bottom
left) or the number of obstacles is reduced by placing two
obstacles on top of each other (bottom right).

8.3 Case 3: Four robots and three fixed obstacles

Next, we consider a scenario with four robots and three
obstacles, see Fig. 3, where the problem horizon is T = 60.
In Fig. 3, the trajectories generated by Expert 1 are shown
in dashed yellow, and the solid green lines are the trajec-
tories generated by Expert 2, which is initialized by the
predictor module. Using Gurobi (Gurobi Optimization,
2020) from its Python interface, the computing time for
Expert 2 was 81 milliseconds, whereas the computation
time for Expert 1 was 2207 milliseconds, both including
the interface overhead which is approximately constant.
Table 2 reports additional data of the computation time
comparison between Expert 1 and our approach of pre-

Fig. 3. Trajectories for four robots obtained from Expert 1
(yellow, dash) and by the proposed approach with
receding horizon predictor and Expert 2 (green, solid).
Initial conditions (blue circles), targets (red circles).

dictor and Expert 2, for different initial conditions. Our
approach speeds up the solution from 4 to 55 times, with
more evident improvements in the more complex cases.

8.4 Case 4: Changing number of active robots

Next, we show that the deep neural network does not
appear to need specific training to handle cases that are
simplifications of the training scenarios. We consider the
case where we train a network with 4 robots, but during
testing only a subset of robots in the environment are ac-
tive. Here, for simplicity, we set the target positions of the
inactive robots to their initial positions, and use the neural
network to compute trajectories for all the robots. In
Figure 4, we show the plan made by the neural network in
a receding horizon manner for 4, 3, 2, and 1 active robots.
The neural network restricts the inactive robots near their
respective initial conditions while generating feasible paths
for the active robots, indicating that it has learned that
the robots motion can be somewhat decoupled when they
are inactive, even though this behaviour was not explic-
itly part of the training dataset. The approach could be
further refined by placing the inactive robots in a special
section of the workspace that is disconnected from the
main workspace, thus avoiding potential impact caused by
their mere presence. The results in Figure 4 suggest that
the DNN may be trained for a larger number of robots
and obstacles, and then used without transfer learning
or online adaptation in scenarios with fewer robots and
obstacles, which increases the generalization capabilities
of the proposed method.

9. CONCLUSIONS AND FUTURE WORK

We proposed a motion planning method for multi-robot
systems that leverages machine learning to reduce the
computational burden of MILP-based online trajectory



Fig. 4. Trajectories for varying number of active robots
based on Algorithm 1 and Expert 2, by setting initial
condition equal to target position for inactive robots.

Table 2. Computation time for the predictor
module plus Expert 2 (ML-MILP) versus the

MILP timing in Expert 1.

Scenario Proposed ML-MILP Traditional MILP
of Robots Framework (ms) of Expert 1 (ms)

1 95 570
2 96 420
3 16 836
4 12 667
5 109 3929

generation while ensuring feasibility of the plan under
operational and safety constraints. We construct a predic-
tor by imitation learning from an expert that solves the
computationally intensive MILP-based trajectory genera-
tion problem. Using the predictor, the online trajectory
generation problem is reduced, so that it solves faster and
requires fewer computational resources. We developed a
receding horizon-based predictor method to increase the
likelihood of returning feasible trajectories, i.e., collision-
free and reaching the targets. We provided simulation
results that showed the effectiveness and generalization
capabilities of the approach.
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