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Abstract
This paper presents a robust rate-based model predictive control (rate-based MPC) for con-
trolling electric vehicle (EV) with independently actuated wheels and anti-squat/lift/dive
suspensions. We present steps by which we arrive at a controller with good tracking per-
formance, the capability to improve passenger comfort by reducing the lift, pitch, and roll
motion of the vehicle chassis, and the ability to modify the reference to maintain vehicle
lateral stability. CarSim simulation results are presented that demonstrate the ability of
rate-based MPC to achieve good longitudinal acceleration and yaw rate tracking while reduc-
ing the suspension motions, despite the discrepancy between the high-fidelity CarSim model
and the control-oriented model.
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Abstract: We present a robust rate-based model predictive control (rate-based MPC) for
controlling electric vehicle (EV) with independently actuated wheels and anti-squat/lift/dive
suspensions that achieves drivability, i.e., good tracking performance, improved passenger
comfort, i.e., reduction of chassis lift, pitch, and roll, and increased vehicle lateral stability. The
controller is validated in closed-loop with CarSim demonstrating robustness to model errors
between the high-fidelity CarSim simulation model and the control-oriented prediction model.

Keywords: Electric Vehicle; Chassis Control; Model Predictive Control; Robust control

1. INTRODUCTION

Besides the positive impact on “decarbonization” electric
vehicles (EVs) may provide additional advantages. EVs
with multiple smaller electric motors, instead of a tra-
ditional monolithic drivetrain, can vector traction forces,
which can be used to improve vehicle handling, stability,
and responsiveness (Wang et al., 2015; Nahidi et al., 2017).

In (Chen et al., 2020), we explored using independently
actuated wheels to improve passenger comfort by reducing
the chassis motion. In this paper, we develop a control
design that jointly achieve reduction of chassis motion and
vehicle responsiveness. An EV with four independently
actuated wheels has five control inputs, the “throttle”
for each wheel and the steering angle. Vehicle drivability,
which amounts to the vehicle rapidly and predictably
responding to drivers commands, requires precise and fast
tracking of two reference outputs, vehicle acceleration and
yaw-rate. Thus, three degrees-of-freedom remain that can
be used to improve passenger comfort by reducing the
pitch, roll, and lift motion of the chassis.

Most research on EV chassis control has focused on
improving reference tracking, lateral stability, and han-
dling, hence using planar vehicle models (Wang et al.,
2015; Nahidi et al., 2017). (Ochi et al., 2013) proposed
a model describing the vehicle’s roll motion based on anti-
dive/squat suspensions, and designed a controller for lat-
eral stability and chassis roll reduction, for comfort during
cornering. (Zhang and Wang, 2015) a gain-scheduled linear
feedback for active front-wheel steering and direct yaw
moment control for lateral control when longitudinal ve-
locity varies, yet without considering chassis motion. Rel-
atively few works considers EV motors for improve com-
fort (see (Chen et al., 2020) and the references therein),
for which usually semi-active/active suspension systems
are often investigated. (Zhao et al., 2019) proposed a
hierarchical integrated control based on sliding mode, for
vehicle longitudinal, lateral, and vertical dynamics where
the chassis motion control is achieved mainly by active

suspensions. However, these may not be widely used due
to higher cost and possibly reduced durability, while semi-
active suspension benefits may be significantly reduced.

In this paper, we design a model predictive control (MPC)
that provides vehicle drivability while simultaneously im-
proving passenger comfort by reducing chassis motion. Our
controller incorporates a reference governor (RG) (Garone
et al., 2017) that modifies driver commands when nec-
essary to ensure lateral stability, so that, for instance,
the controller prevents the vehicle from losing stability
due to driver oversteering. We validate the controller in
high-fidelity CarSim simulations, that show (a) reduced
chassis motion that improves comfort, (b) improved driv-
ability (responsiveness to the driver commands), and (c)
improved vehicle stability on low-friction roads. The sim-
ulations also demonstrate the controller robustness to the
modeling errors, here caused by the differences between
the simple control-oriented model used for prediction and
the high-fidelity simulation model.

The paper is organized as follows. Section 2 reviews
the control-oriented models, Section 3 proposes a rate-
based model predictive control (rate-based MPC) design
for tracking the driver commands and reducing the chassis
motion. Closed-loop simulation with a CarSim model are
reported in Section 4 and conclusions in Section 5.

Notation: for a continuous time signal x sampled with
period Ts, xt denotes the value of the signal at the tth

step, and xk|t denotes the value predicted k steps ahead
from t, i.e., x(t + k). R, Z are the set of real and integer
number and we use notations such as R+, R0+ to denote
positive and non-negative numbers. The set operators ⊕,
	, co() are the Minkowski sum, Pontryagin difference and
convex hull, respectively. In and 0n are the identity and the
zero matrix of dimension n, respectively, where we drop n
when clear from the context. (x, y) indicates the stacking
of vectors x, y.



2. CONTROL ORIENTED VEHICLE DYNAMICS
AND SUSPENSION MODEL

The motion model of vehicle and chassis is based on our
previous work (Chen et al., 2020), See Fig. 1, 2, where
the assumptions are based on normal driving: linear tire
forces, small angles, equal left–right front tire steering
angles, large longitudinal velocity, and small lift motion.
For compactness, we use as sign convention for front/rear
wheel base bj , j ∈ {f, r}, bf > 0, br < 0, and for left/right
track width Lj,i, i ∈ {l, r}, Lj,l > 0, Lj,r < 0 .

2.1 Vehicle Dynamics

Fig. 1. Trailing arms and parameter definition.

Fig. 2. Free-body diagram of the Sprung-mass and suspension
assemblies. Forces’ names are omitted for simplicity.

The primary objective is to maintain drivability by track-
ing the acceleration and steering commands from the
driver. The longitudinal acceleration ax is modeled by

Max =
∑
i=l,r

(
ufiβ + Cαf αf

)
δ +

∑
j=f,r

(uji − Cαj αjβ) (1)

where j ∈ {f, r}, i ∈ {l, r}, M denotes the sprung mass, β
is the body slip angle, αj is the tire slip angle, and Cαj is
the tire cornering stiffness. In (1), the tire traction forces
uji and the steering angle δ are control inputs. The tire
slip angles are

αf = β +
bf
vx
ψ̇ − δ, αr = β +

br
vx
ψ̇, (2a)

where bj is the wheel base, vx is the longitudinal velocity,

and ψ̇ is the yaw-rate of the sprung mass. The dynamics
of the body slip angle β = tan−1(vy/vx) are modeled by

vxβ̇ = − vxψ̇ − axβ +
1

M

∑
i=l,r

(ufiδ−
∑
j=f,r

Cαj αj) (3a)

and the dynamics of the yaw-rate ψ̇ are modeled by

JZ ψ̈ =
∑
i=l,r

bfufiδ −
∑
j=f,r

(bjC
α
j αj + Ljiuji), (3b)

where the first term is due to steering, the second term
is due to the front-rear tire slips difference, and the last
term is due to left-right traction forces difference. In what
follows, we call xd = [β ψ̇]T the drivability state.

The secondary objective is to improve passenger comfort
in terms of the vehicle chassis motion. The motion of the
chassis height z is modeled by

Mz̈ =−
∑
i,j

(
Kji

(
z − bjθ

)
+ Cji

(
ż − bj θ̇

))
(3c)

−
∑
i,j

(
sign(bj)γjuji + γfCfαfδ

)
−
∑
i=l,rsign(Lfi)ηjufiδ +

∑
i,jKjidji + Cjiḋji

where Kji(Kji = Kj), Cji(Cji = Cj) are the suspension
spring stiffness, damping coefficient, respectively, dij is the
road height at each tire with respect to the nominal and,
γj ≈ tan(γj) is the anti-dive/squat angle of the side-view
trailing arm, ηj ≈ tan(ηj) is the angle between the trailing
arm and the ground in the roll plane, see Fig. 1. The
first term models the suspension forces, the second term
gives the nominal anti-dive and anti-squat forces, the third
term models anti-dive and anti-squat forces for non-zero
steering angle, and the fourth term gives the road forces.

The motion of the vehicle pitch θ is modeled by

JY θ̈ =
∑
i,jKjibj

(
z − bjθ

)
+ Cjibj

(
ż − bj θ̇

)
(3d)

+
∑
j(γj(|bj |−aj)−h+hj)

(
Cαf αf +

∑
iuji

)
+
∑
i=l,rbf sign(Lfi)ηfufiδ −

∑
i,jKjibjdji − Cjibj ḋji

where aj is the longitudinal distance between the wheel
contact point and the pitch-plane trailing arm mounting
point, hj is the height of the pitch-plane trailing arm
mounting point, h is the height of CG to the ground when
vehicle is stationary, see Fig. 1. The first line models the
suspension moments, the second and third lines the anti-
dive/squat moments for zero and non-zero steering angles,
respectively, and the fourth line the road moments.

The motion of the vehicle roll φ is modeled by

JX φ̈ =−
∑
i,j(KjiL

2
jiφ+ CjiL

2
jiφ̇) (3e)

−
∑
i(sign(bj)γjLjiuji + (h− hRCj )Cαj αj)

+
∑
i,jKjiLjidji + CjiLjiḋji

where the first line models the suspension moments, the
second line the anti-dive/squat moments, and the last line
the road torques. The states in (3c), (3d), (3e) are collected

into xc = [z ż θ θ̇ φ φ̇]T , which we call the comfort state.

The full state of the model (3) is composed of the driv-
ability state and the comfort state x = [xTd xTc ]T =

[z ż θ θ̇ φ φ̇ β ψ̇]T , the control input vector is
composed of traction forces and the steering input
u = [ufr ufl urr url δ]

T , and the disturbance vec-
tor contains the road heights and their derivatives d =
[dfr dfl drr drl ḋfr ḋfl ḋrr ḋrl]

T . In (3) the nonlinearities
are the bilinear terms between steering angle δ and either
the body slip angle β or the traction forces uji.

The the anti-dive/squat suspension geometry determined
by γf , γr, ηf can be exploited to use the traction forces uij



to reduce the motion of chassis height z, pitch θ, and roll φ
due to the road roughness dij , ḋij . While here, we assume
a preview for the road roughness, e.g., by cameras and
other sensors, a standard e.g., constant, prediction model
for d, can be used when such preview is not available.

2.2 Vehicle Constraints

For each tire, the total cannot exceed the friction limit

u2
ji + (Cαj αj)

2 ≤ (µNji)
2, (4)

where µ is the road-tire friction coefficient, Nji is the
normal force on the tire

Nfi =N̄f −Kfi(z − bfθ + Lfiφ− dfi)
− Cfi(ż − bf θ̇ + Lfiφ̇− ḋfi) (5a)

− γf (ufi + Cαf αfδ) + sign(Lfi)ηf (ufiδ + Cαf αf )

Nri =N̄r −Kri(z + brθ + Lriφ− dri)
− Cr(ż + br θ̇ + Lriφ̇− ḋri) (5b)

+ γruri + sign(Lri)ηrC
α
r αr,

and N̄f and N̄r are the nominal normal-forces on the
tires for a stationary vehicle. Thus, (4) gives state–input
constraints that limit the tire forces to a circle of radius
µNji, the “friction circle”.

Since we consider normal driving conditions, we make the
following assumption that simplifies the control design.

Assumption 1. There exist lower bounds Nfi ≤ Nfi and
Nri ≤ Nri on the normal-forces (5).

Assumption 1 allows to (conservatively) satisfy (4) while
ignoring the effects from xc. This assumption is implicit
when the chassis is not modeled, e.g. (Ren et al., 2016).

In addition to (4) we enforce constraints ensuring the
validity model (3) assumptions. Hence, we state and input
must be in a region T where the tire forces are linear

T =

{[
x
u

]
:
|β| ≤ βmax, |ψ̇| ≤ ψ̇max, |δ| ≤ δmax

|αf | ≤ αmax
f , |αr| ≤ αmax

r

}
. (6)

which involves the drivability state xd and the steering in-
put δ. For the bound on αmax

f , (αmax
r is similarly bounded)

we consider two cases depending on the road surface

αmax
f =


αlin µ ≥ µ̄
µ

Cαf

(
|br|

2
∑
j |bj |

Ms +Mfi

)
g µ < µ̄ ,

(7)

where the second term is the static tire vertical force
distribution. By (7), for high friction µ ≥ µ̄, e.g., dry road,
we enforce the tire to operate in the linear region, while
for low friction µ ≤ µ̄, e.g. ice, the bound is the peak force.

3. RATE-BASED MPC FOR DRIVABILITY AND
COMFORT

We design a rate-based MPC (Pannocchia, 2015; Huang
et al., 2016) achieving both drivability and comfort by pre-
cisely tracking the driver commands and reducing chassis
motion, respectively. By using a prediction model in ve-
locity form rate-based MPC provides integral action, and
hence offset-free tracking of constant references. For han-
dling constraints in presence of disturbances, we exploit
concepts from tube MPC (Langson et al., 2004) that uses

a disturbance-free prediction model, applies a feedback
correction for disturbance compensation, and tightens the
constraints so that the nominal trajectory subject to dis-
turbances and with feedback correction satisfies the actual
constraints.

3.1 Prediction model

For constructing the prediction model we linearize (3)
with parameter vector ρ = [vx ax]T and obtain the linear
parameter varying (LPV) system

xt+1 =A(ρ)xt+B(ρ)ut+Bddt + wt (8a)

yt =C(ρ)xt+D(ρ)ut, (8b)

where y = [ax ψ̇]T , wt ∈ W, which here is a disturbance
and ignored in the nominal prediction model, contains the
linearization error and possibly the prediction error on the
disturbance vector d, and the polytope W is known.

For handling tracking, we formulate (8) in velocity form

ξt+1 =

[
∆xt+1

et+1

]
=

[
A(ρ) 0
C(ρ) I

] [
∆xt
et

]
+

[
B(ρ)
D(ρ)

]
∆ut

+

[
Bd
0

]
∆dt +

[
I
0

]
∆wt +

[
0
I

]
∆rt (9)

where et = [ax − arx ψ̇ − ψ̇r ]T is the tracking error,
∆xt = xt − xt−1, ∆ut = ut − ut−1, ∆dt = dt − dt−1,

∆wt = wt − wt−1 ∆rt = [arx,t − arx,t−1 ψ̇rt − ψ̇rt−1]T .
In (9), we have approximated the parameter as constant
ρt ≈ ρt−1. In what follows, for shortness we write (9) as

ξt+1 = A(ρ)ξt+B(ρ)∆ut+Bd∆dt+Bw∆wt+Br∆rt (10)

Remark 1. More refined linearization methods can be ap-
plied, such as linearizing about a predicted trajectory.
Our design can still be applied but the the description
is significantly more convoluted, due to the time varying
constraint sets, and hence it is not shown here.

Since (6) only affects the drivability subsystem for robus-
tifying the constraints we extract from (8) the subsystem
corresponding to the drivability state xd, the steering input
δ, and the yaw rate ψ̇

xdt+1 =Ad(ρ)xdt +Bd(ρ)udt + wdt (11a)

ydt =Cd(ρ)xdt +Dd(ρ)udt , (11b)

where udt = δt, y
d
t = ψ̇t. In velocity form, while assuming

∆r = 0, ∆d = 0, (11) gives the subsystem of (9),

ξdt+1 = Ad(ρ)ξt+Bd(ρ)∆ut+Bdw∆wt (12)

where ξd = (∆xd, ed) = (∆xd, ψ̇ − ψ̇r), ∆ud = ∆δ. To
enforce constraints on (11) we extract its states and inputs
from those of (12) as shown in (Betti et al., 2013),[

xdk
δk−1

]
= C∗(ρ)

[
ξdk
ψ̇r

]
, (13)

C∗(ρ) =
[
Ad(ρ) Bd(ρ)

0 1

] [
Ad(ρ)−I Bd(ρ)

Cd(ρ)Ad(ρ) Cd(ρ)Bd(ρ)

]−1

[ I 0 0
0 1 1 ]

=
[
Cdξ (ρ) Cdψ(ρ)

]
.

3.2 Local Linear Controller

For compensating the effects of the uncertainty in (8)
on the constraints, we design a controller that minimizes



the upper bound of the infinite-horizon LQ cost over all
realizations of the plant by solving (Kothare et al., 1996)

min
ς,X,Y

ς (14a)

s.t.


X ∗ ∗ ∗

Ad(ρi)X + Bd(ρi)Y X ∗ ∗
Qd

1
2X 0 ςI ∗

Rd
1
2Y 0 0 ςI

 ≥ 0, ∀i ∈ {1, . . . , `}

where ∗ are the terms completing a symmetric matrix,
ς ≥ 0, and ρi, i ∈ {1, . . . , `} are the parameter values
determining vertex matrices (Ad(ρi),Bd(ρi)) such that
(Ad(ρ),Bd(ρ)) ∈ co({(Ad(ρi),Bd(ρi))}`i=1) for all admis-
sible value of ρ.

The solution of (14) produces a state-feedback controller

∆udt = F dx∆xdt + F de e
d
t (15)

for (9) where Fd = [F dx F
d
e ] = Y X−1 is the controller gain

and P d = X−1 defines the Lyapunov function ξTd P
dξd for

the closed-loop system. When applied to (8), (15) results
in the proportional-integral controller

udt = F dxx
d
t + F de

∑t

k=0
edk (16)

that provides offset-free steady-state tracking of constant
references and rejection of constant disturbances. Con-
troller (16) only actuates steering, since this has larger
authority on the lateral dynamics, where the uncertainty
affects the constraints, and we use the traction forces
primarily for longitudinal dynamics and comfort.

3.3 Robust constraints

As suggested in (Betti et al., 2013), a less conservative
approach for tightening the constraints based on (12)
is to include the auxiliary dynamics ϑdt+1 = ϑdt , where

ϑdt = wdt−1 so that, ∆wdt = wdt − ϑdt . Such procedure
results in the robust positive invariant (RPI) set Z for
the augmented system such that

(ξd, ϑd) ∈ Z =⇒
(Ad(ρ) + Bd(ρ)Fd)ξd + Bdw(wd − ϑd), wd) ∈ Z

∀wd ∈ Wd, ∀ρ ∈ co({ρi}`i=1). (17)

Given a predicted state ξdk|t, computed without distur-

bances, wdk|t = 0, and the corresponding actual state

ξdt+k, we have (ξdt+k, ϑ
d
t+k) ∈ (ξdk|t, 0) ⊕ Z for all k ∈ Z+,

whenever (ξdt − ξd0|t, w
d
t−1) ∈ Z and wdt+k ∈ Wd for all

k ∈ Z+. Thus, since the constraints (6) only involve
elements of (11), we ensure the satisfaction of (6) despite
wd ∈ Wd by enforcing

C∗(ρ)

[
ξdk
ψ̇r

]
∈ T	

[
Cdξ (ρ) Cdw(ρ)

]
Z, (18)

Cdw(ρ) = [ I0 ]

−
[
Ad(ρ) Bd(ρ)

0 1

] [
Ad(ρ)−I Bd(ρ)

Cd(ρ)Ad(ρ) Cd(ρ)Bd(ρ)

]−1 [
I

Cd(ρ)

]
.

3.4 Yaw rate reference manipulation

In order to increase vehicle stability we provide the
rate-based MPC with the capability of manipulating the
reference similar to a RG, see, e.g., (Limón et al., 2008).

Since for normal driving conditions loss of stability is
primarily caused by the lateral dynamics we consider again
the subsystem (11) in velocity form (12). We construct
the maximal output admissible set (MOAS) (Garone

et al., 2017) for constant reference φ̇r, using the approach
in (Betti et al., 2013),

O =
{

(ξd, ψ̇r) : Cψψ̇
r ∈ T	

( [
Cdξ C

d
w

]
Z
)

(19)

Cdξ (Ad + BduFd)kξd + Cψψ̇
r ∈ T	

( [
Cdξ C

d
w

]
Z
)
, ∀k

}
,

for a fixed value of ρ = r0, since this will be used
for manipulating the reference and such approximation
has limited impact, yet allows for much simpler design
procedure than a varying ρ.

Remark 2. Due to (7), T in (18) and (19) changes. How-
ever, the conditions in (7) are kept constant during the
prediction horizon. Thus, the sets for the two conditions
can be easily precomputed.

3.5 Desired Steady-State

Due to having five control inputs and only two references,
the yaw rate and the acceleration, the vehicle is over-
actuated. To obtain uniqueness of the closed-loop equi-
librium, we define additional references for the inputs,
namely, that the steady state left-right traction forces are
balanced, and the front-rear forces are distributed as the
nominal tire normal forces,

ufi,∞ =
|br|

2
∑
j |bj |

Marx, uri,∞ =
|bf |

2
∑
j |bj |

Marx. (20a)

The steady state steering angle is obtained from the (3a),

(3b), (2) for a steady state with ψ̇ = ψ̇r,

δ∞ = K−1

δψ̇
ψ̇r (20b)

where Kδψ̇ is the steady-state gain of (3a), (3b). The
additional references avoid that the closed-loop converges
to an undesirable equilibrium, such as one where opposing
traction forces or steering angles will be used, which would
increase tire wear and consumption.

3.6 Robust Rate-based MPC

At each time t the rate-based MPC solves the constrained
finite-time optimal control problem

min
∆Ut,ξd0|t,ϕ̇

r
t

‖ϕ̇rt − ψ̇rt ‖2T + ‖ξN |t‖2P +
∑N−1
k=0

(
‖ξk|t‖2Q

+‖∆uk|t‖2R + ‖ut−1 + ∆uk|t − u∞‖2Ru

)
(21a)

s.t. (ξd0|t − ξ
d
t , w

d
t−1) ∈ Z, xc0|t = xct (21b)

ê0|t = et + (ϕ̇rt − ψ̇rt ) (21c)

ξk+1|t = A(ρ)ξk|t + B(ρ)∆uk|t + Bd∆dk|t
(21d)

(xdk|t, δk−1|t) ∈ T	
( [
Cdξ (ρ) Cdw(ρ)

]
Z
)

(21e)

ut−1 +
∑N−1
k=0 ∆uk|t ∈ Ut (21f)

(ξdN |t, ϕ̇
r
t ) ∈ O (21g)

where ∆Ut = (∆u0|t, . . .∆uN−1|t), N is the prediction
horizon, P , Q, R, Ru are positive definite matrix weights,



ξdk|t is the subvector of ξk|t for subsystem (12), and wdt
is the estimate of the disturbance at time t which is
computed from the current state and its previous predic-
tion, wdt−1 = xdt − xd1|t−1. In (21) the time varying input

constraint set is

Ut =
{
u ∈ R5 : |uf(r)i| ≤ min

{
uf (r)max, umax

f(r),k|t
}}

(22)

where umax
j,k|t =

√
(µNji,t)2 − (Cαj αj,t)

2, j ∈ {f, r} reduces

the forces bound when necessary due to the friction limit.

Cost (21a) penalizes the tracking error, chassis motion,
input deviation from the steady-state computed from (20),
u∞ = [ufr,∞ ufl,∞ urr,∞ url,∞ δ∞]T , and changes to
traction forces and steering angle. The references are
assumed constant in prediction so that in (21d), ∆rk|t = 0.

The tightened constraints (21e) aim at robust constraint
satisfaction. In the terminal constraint (21g) the reference

ψ̇r can be modified by ϕ̇rt , which affects the tracking error
via (21c), to increase feasibility for a cost penalty, where
T is an appropriate weight (Limón et al., 2008).

Let the predicted optimal state and input trajecto-
ries solving (21) be ξ?t = (ξ?0|t, . . . , ξ

?
N |t), ∆U?t =

(∆u?0|t, . . .∆uN−1|t)
?, respectively. The rate-based MPC

control law is

ut = ut−1 + ∆u?0|t + ΦFd(ξdt − ξd?0|t). (23)

where Φ is a matrix that applies the feedback command
to the proper component of the input vector, i.e., δ.

Remark 3. Due to the approximations and assumptions
made, (21e), (21g) cannot always provide guarantee of
constraint satisfaction and recursive feasibility. However,
in extensive simulations the approximations appeared to
be sufficiently precise, with only rare and minimal con-
straint violations that are only seen in case of an extremely
aggressive tuning, and that are handled in practice by
implementing (21e), (21g) as soft constraints.

Remark 4. In (23) the feedback term designed in Sec. 3.2
only actuates the steering, since (6) affects only (11) and
in (13) the reference and input vectors must have the same
size. We can also use a full feedback gain, i.e., F(ξt− ξ?0|t)
designed by (14) for (9), as long as Z remains a subset of an
RPI for the modified closed-loop system, and the steering
actuation is not larger than that of Fd. These conditions
usually hold, since F has larger authority than Fd, and
hence provides better disturbance rejection (smaller RPI)
and less steering actuation (due to more available inputs).

4. CLOSED-LOOP SIMULATIONS IN CARSIM

In this section we validate our rate-based MPC (23)
through simulations. The closed-loop simulations are ex-
ecuted in Simulink/Matlab using a high precision EV
model developed in CarSim, where the suspension ge-
ometry of the default CarSim model has been modified
to more closely representing today’s anti-dive/squat sus-
pension, according to the models in Section 2, which are
closer to real suspensions. We consider different simulation
scenarios, with lane change and acceleration/deceleration
maneuvers under high and low friction-coefficient, and
smooth and rough road surfaces. We compare the closed-
loop behavior obtained with the rate-based MPC designed

in Section 3, with the CarSim default speed and steering
controller with preview as baseline, which we consider
representative of conventional controllers for EV.

The controller sampling period is Ts = 0.01 s, while the
closed-loop CarSim simulation has an update frequency
at least 20 times higher. The prediction horizon is N = 5
steps, which provides a reasonable balance between per-
formance and computational burden, and the parameter
vector value for terminal set design is ρ0 = (15m/s, 0).

4.1 Rough road disturbance rejection

To evaluate the controller’s performance in passenger
comfort improvement, we consider a straight line, constant
speed driving on a rough road. The road roughness profile
is shown in Fig. 3, the road friction coefficient is µ = 0.9
and the initial vehicle velocity is vx(0) = 15 m/s.

Fig. 3. Road roughness profile for disturbance rejection test. Road
height and height rate at right (blue) and left (left) wheels.

The results for this simulation scenario are shown in Fig. 4.
Figure 4a shows the time domain response of the chassis
lift z, pitch θ, and roll φ motions characterizing the pas-
senger comfort. Figure. 4b shows the tracking performance
for both yaw rate ψ̇ and longitudinal acceleration ax, the
longitudinal velocity vx and the longitudinal force of each
tire uji, j ∈ {f, r}, i ∈ {l, r}, the front steering angle δf

1 .

As it can be observed in Fig. 4a, the chassis motion is
significantly reduced with the rate-based MPC controller
compared to that with the default CarSim controller,
demonstrating the capability of the rate-based MPC in
improving passenger comfort in the presence of the rough
road. Fig. 4b shows that the rate-based MPC controller
uses the anti-lift/squat suspension to create forces to coun-
teract the road forces, as originally suggested in (Chen
et al., 2020), that results in reduced chassis motion. Fig. 4b
shows that the rate-based MPC controller improves the
tracking performance of yaw rate and longitudinal acceler-
ation with respect to the CarSim baseline controller, since
the latter is more affected by the rough road disturbances.
Although preview on road roughness, which was shown to
be achievable to high accuracy, see, e.g., (Tudón-Mart́ınez
et al., 2015), improves performance, in our tests the con-
troller worked well even when such preview was not used.

1 For the CarSim baseline controller the single tire forces and front
tire steering angle are not shown because the CarSim controller
commands the total torque and the steering wheel angle.



(a) Chassis motion: lift, pitch, roll (and derivatives).

(b) Vehicle yaw rate, acceleration, longitudinal velocity, tire forces,
front tire steering angle.

Fig. 4. Simulation results for rough road disturbance rejection:
CarSim baseline controller (red), rate-based MPC controller
(blue), reference trajectories(dash-green). For the scenario of
straight driving at constant speed, arx = 0 and ψ̇r = 0.

4.2 Double lane change on a high friction rough road

Next, we consider a fast double lane change maneuver on
a rough road to evaluate the controller performance in
reference tracking and passenger comfort improvement in
a challenging condition. The road roughness profile is the
same as shown in Fig. 3. The road friction coefficient is
µ = 0.9. The initial condition of the scenario is straight
driving at 15 m/s (54 km/h). After 2 s, the desired yaw
rate ramps up to 0.2 rad/s (left turn), and the desired
acceleration ramps up to 1.5 m/s2. After 3 s, the desired
yaw rate ramps down to −0.2 rad/s (from left turn to right
turn), and the desired longitudinal acceleration ramps
down to zero. From 4 to 6 s, the desired vehicle speed
is constant, and the desired yaw rate is first kept to be
−0.2 rad/s for 0.5 s, and then ramps up back to zero at 5s
and is kept zero until 6 s. After 6 s, the desired yaw rate
ramps down again to −0.2 rad/s (right turn) and held
constant for 0.5 s. The desired acceleration ramps down to
−1.5 m/s2 and is held constant for 0.5 s until 8 s. After 7
s, the desired yaw rate ramps up to 0.2 rad/s (from right
to left turn), held constant for 0.5 s and then ramps up to
0.2 rad/s. After 8 s, the desired longitudinal acceleration
ramps up to zeros and is held constant after that. The
desired yaw rate is held to 0.2 rad/s for 0.2 s and then
ramps down to 0 at 9 s and remain that afterwards.

The results for this simulation scenario are shown in Fig. 5,
which has the same structure and notation as Fig. 4.
As shown in Fig. 5b, the rate-based MPC achieves pre-
cise tracking of longitudinal acceleration and yaw rate

(a) Chassis motion: lift, pitch, roll (and derivatives).

(b) Vehicle yaw rate, acceleration, longitudinal velocity, tire forces,
front tire steering angle.

Fig. 5. Simulation results for double lane change on a rough
road with high friction: CarSim baseline controller (red),
rate-based MPC controller (blue), reference trajectories (dash-
green).

as opposed to the CarSim baseline controller which has
a significantly lower performance, due to the challeng-
ing scenario. As for driver comfort, Fig.5a shows that
the rate-based MPC controller reduces both the chassis
lift and roll motions a when compared to the CarSim
baseline controller, but the pitch angle increases with the
rate-based MPC. This is due to the suspension geometry
that makes lift and pitch reduction conflicting goals when
the vehicle accelerates/decelerates. Since the CarSim con-
troller achieves a worse tracking of the acceleration signal,
reducing the acceleration from the reference, also reduces
the pitch. Instead in order to achieve better yaw rate
and acceleration tracking while reducing roll and lift, the
rate-based MPC sacrifices a little the pitch performance,
since improving all objectives is impossible.

4.3 Double lane change, on a low friction smooth road

Finally, we consider a double lane change maneuver on a
smooth road with a low friction coefficient, µ = 0.3, in or-
der to evaluate the controller’s performance in maintaining
handling stability in a challenging condition. The desired
longitudinal acceleration during the test is arx = 0, i.e.,
constant speed. The initial condition is straight driving at
15 m/s (54 km/h). After 2 s, the desired yaw rate ramps up
to reach 0.3 rad/s (left turn) at 3 s and is held constant
for 2 s. After 5 s, the desired yaw rate ramps down to
zero and keeps constant for 2 s. After 6 s, the desired yaw
rate ramps down to −0.3 rad/s and keeps constant for 2
s. After 11 s, the desired yaw rate ramps up to zero and
then remains that afterwards.



(a) Chassis motion: lift, pitch, roll (and derivatives).

(b) Vehicle yaw rate, acceleration, longitudinal velocity, tire forces,
front tire steering angle.

Fig. 6. Simulation results for double lane change on a smooth
road with low friction: CarSim baseline controller (red),
rate-based MPC controller (blue), reference trajectories (dash-
green), references modified within the rate-based MPC (dash-
magenta), based on MOAS.

Figure 6a shows the results on this maneuver for the
rate-based MPC and the default CarSim controller, with
the same structure and notation as Fig. 4. Fig.6b shows
that since the yaw rate reference is too high for the low
friction of the road, when the default CarSim controller
is used, the vehicle starts to lose stability after 10 s. On
the other hand, when the rate-based MPC controller is
used, the yaw rate reference is adequately reduced by
(21g) based on the achievable set-point. As a result, the
rate-based MPC can maintain handling stability.

5. CONCLUSIONS

This paper presents the design of a rate-based MPC for
controlling EVs with independent wheel motors aimed at
simultaneously achieving drivability, i.e., responsive longi-
tudinal acceleration and yaw rate tracking, and passenger
comfort, i.e., reduced chassis relative motion. We have
evaluated the rate-based MPC controller in closed-loop
simulations with a high fidelity CarSim model in different
maneuvers and road conditions. The results showed im-
provements with respect to a baseline CarSim controller,
representative of conventional controllers in EV, in terms
of reference tracking, passenger comfort improvement, and
lateral stability.

REFERENCES

Betti, G., Farina, M., and Scattolini, R. (2013). A robust
MPC algorithm for offset-free tracking of constant ref-

erence signals. IEEE Trans. Automatic Control, 58(9),
2394–2400.

Chen, D., Danielson, C., and Iezawa, M. (2020). Improving
passenger comfort by exploiting hub motors in electric
vehicles: Suspension modeling. In Dynamic Systems and
Control Conference.

Garone, E., Di Cairano, S., and Kolmanovsky, I. (2017).
Reference and command governors for systems with
constraints: A survey on theory and applications. Auto-
matica, 75, 306–328.

Huang, M., Zaseck, K., Butts, K., and Kolmanovsky, I.
(2016). Rate-based model predictive controller for diesel
engine air path: Design and experimental evaluation.
IEEE Trans. Control Systems Tech., 24(6), 1922–1935.

Kothare, M.V., Balakrishnan, V., and Morari, M. (1996).
Robust constrained model predictive control using linear
matrix inequalities. Automatica, 32(10), 1361–1379.

Langson, W., Chryssochoos, I., Raković, S., and Mayne,
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