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Abstract—Advances in modeling and computation have re-
sulted in high-fidelity digital models capable of simulating the
dynamics of a wide range of industrial systems. These models
often require calibration, or the estimation of an optimal set
of parameters, to reflect a system’s observed behavior. While
searching over the parameter space is an inevitable part of
the calibration process, models are seldom designed to be
valid for arbitrarily large parameter spaces. Application of
existing black-box calibration methods, therefore, often require
repeatedly evaluating a model over a wide range of parameters.
For some parameter combinations, the simulations could be
unreasonably slow or fail altogether. In general, the shape
of subregions in the parameter space that could result in
simulation failure is unknown and near-impossible to ascertain
analytically. In this paper, we propose a novel failure robust
Bayesian optimization (FR-BO) algorithm that learns these
failure regions from simulation data and informs a Bayesian
optimization algorithm to avoid failure regions while searching
for optimal parameters. This results in acceleration of the
optimizer’s convergence and prevents wastage of time trying
to simulate parameters with high failure probabilities.

Index Terms—Machine learning; Bayesian optimization;
model simulation; digital twin; feasibility analysis; numerical
methods; Gaussian processes.

I. INTRODUCTION

Current trends towards model-based system development
and the application of digital twins place an increasing
emphasis on the use of modeling and simulation for large-
scale systems [1]. One essential step in the development of
these technologies involves model calibration, where the goal
is to estimate a set of parameters for a simulation model that
result in predictions which accurately reflect observed system
behavior. Most formulations iteratively solve an optimization
problem through repeated simulation [2]–[4], as parameter
estimates are gradually adjusted to minimize a model-fitting
cost. A widespread assumption is that the model can be
simulated forward in time over any duration of interest for
any set of parameters within an admissible search domain.

This assumption does not always hold. It is not uncom-
mon for calibration algorithms to attempt a simulation for
parameter values that cause the simulation to fail, since,
for black-box models, one does not have prior knowledge
regarding such a failure region. Many existing simulation-
oriented models exhibit multi-scale dynamics, significant
nonlinearities, and numerically stiff behavior that can result
in simulations that take a significant amount of time to
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run or fail entirely [5]. These challenges are particularly
common in building/HVAC dynamics models that seek to
describe the temporal behavior of occupied buildings with
their associated closed-loop space cooling systems [6], due to
their widely separate timescales, hybrid (continuous/discrete)
behavior, and nonlinear interactions between physical sub-
systems. Rather than expend significant effort to identify
parameter sets that result in successful simulations, it is
common practice to ignore the information conveyed by a
failed simulation for a given parameter set and simply re-run
the simulation with a different (often arbitrarily selected) set
of parameters.

Practical calibration methods are often designed to esti-
mate near-optimal parameters without extensive simulations
to avoid expenditure of significant time and resources without
a corresponding increase in simulation quality. Recently,
Bayesian optimization (BO) [7] has emerged as an effective
method for learning parameters based on limited data in a
few-shot manner [8]: that is, with markedly fewer evaluations
of the cost function (equivalently, model simulations) than
population-based methods. Furthermore, Bayesian optimiza-
tion inherently balances exploration and exploitation and can
incorporate non-convex constraints via modified acquisition
functions [9], making it a powerful and easy-to-use learner
for model calibration.

In this paper, we use the information that results from
a failed simulation during the model calibration process to
accelerate the convergence of the calibration process and
improve the quality of parameter estimates. We thus propose
a novel variant of BO called failure robust Bayesian optimiza-
tion (FR-BO), which comprises modules that use simulated
data to delineate regions in the parameter space where the
system is likely to fail. Subsequently, we design a novel
acquisition function, inspired by constrained BO acquisition
functions, that allows searching for optimizer candidates that
not only fit the data well, but also are unlikely to result in
simulation failures.

II. PRELIMINARIES

We denote by
y0:T =MT (θ) (1)

a general model of a dynamical system, wherein the constant
parameters of the model are described by θ ∈ Θ ⊂ Rnθ .
The admissible set of parameters Θ is assumed to be
known. For instance, Θ could denote a set of upper and
lower bounds on parameters obtained from archived data
or domain knowledge. Since the model is black-box, it is



not uncommon for such a range to be purely a guess, and
therefore, not tight around the true parameter set. The output
vector y0:T ∈ Rny×T contains all measured outputs from
the dynamical system obtained over a time period [0, T ]. We
do not make any assumptions on the underlying structure of
the model MT (θ), where simulating MT (θ) forward with
a fixed (and admissible) set of parameters θ yields a vector
of outputs y0:T :=

[
y0 y1 · · · yt · · · yT

]
, with each

output measurement yt ∈ Rny .
We aim to estimate parameters θ? that minimize a cost

based on the modeling error:

ε , y?0:T −MT (θ?), (2)

where y?0:T denotes the measured outputs collected from a
real system, andMT (θ?) denotes the estimated outputs from
the model MT (θ) using the estimated parameters θ?. To
this end, we propose optimizing a calibration cost function
J(y?0:T ,MT (θ)) to yield the optimal parameters

θ? = arg min
θ∈Θ

J(y?0:T ,MT (θ)). (3)

Recent work has shown that Bayesian optimization (BO)
is effective at finding global optima of functions whose
gradients are not available and are expensive to evaluate, as
is the case in black-box model calibration [8].

While various methods have been proposed for solving (3),
most (if not all) these solutions assume that MT (θ) is valid
for every θ ∈ Θ, which implies that the model MT (θ) can
be simulated from the time-span of interest [0, T ] for any
parameter in the admissible parameter space Θ. Unfortu-
nately, this is not always the case and model simulations
can fail to complete in a timespan of interest. Models that
exhibit simulation failures do so in some typically unknown
failure region ΘF ⊂ Θ and the failure does not always
occur instantaneously. Consequently, data-driven algorithms
that have been designed agnostic to simulation failure could
potentially continue to compute optimizer candidates that
reside in the failure region ΘF. In such cases, the algorithm
could deteriorate in performance and lead to large amounts
of computational resources and time being wasted.

Under the critical assumption that θ? 6∈ ΘF, our objective
is to design a data-driven parameter estimation framework
that can learn from simulation failures and incorporate this
information to increase the probability of selecting sets
of parameters that lead to successful simulations, thereby
optimizing (3) without wasting computational resources. To
fulfill this objective, we propose a failure-robust Bayesian
optimization (FR-BO) approach wherein we first design a
probabilistic classifier that can estimate the failure region
ΘF from simulation data obtained by sampling within Θ.
Since function evaluations are assumed to be expensive, we
employ an entropy-based active learning method to reduce
the sample complexity of this step [10]. Once an estimate
Θ̂F of ΘF is obtained, the classifier provides probabilities of
simulation failure over the entire parameter space of interest
Θ. Failure probabilities can be embedded into a Bayesian
optimization framework through a failure-classifier informed
acquisition function, ensuring that optimizer candidates are

biased to reside outside Θ̂F. We posit that if the classifier is
well designed, it will suggest optimizer candidates that lie
within the set difference Θ \ΘF with high probability.

Components of the FR-BO framework include:

(1) a failure classifier for estimating likelihoods of simula-
tion success and failure on Θ by learning the set ΘF;

(2) a parameter-to-cost regressor for learning a map from
parameters θ to the cost J ; and

(3) a failure robust acquisition function that incorporates
probability of simulation failure into the BO framework.

III. FAILURE ROBUST BAYESIAN OPTIMIZATION

In this section, we describe a way to learn the failure
region from data obtained during simulations by posing it
as a classification problem. The classifier can be used via
active learning to accelerate the Bayesian optimization step,
but also to guide where best to simulate the dynamical
model MT (θ) to get better estimates of the failure region
boundaries. We also explain how to incorporate information
from the classifier via a novel acquisition function to promote
the selection of parameters outside the learned failure regions.

A. Learning Failure Regions

1) Data collection: Since the admissible parameter search
domain Θ is known, one can sample on this space to obtain
a training set for learning the failure region subset ΘF. In the
sequel, we will discuss how to select θ ∈ Θ that are most
informative (in an information-theoretic sense), but we will
assume that such a training dataset is initially available, for
instance, obtained by random sampling on Θ. At the j-th
iteration of training the failure classifier, the training dataset

Dj = θ[0:j] × `[0:j] × J[0:j]

comprises a sequence of parameters θ[0:j], a sequence of cor-
responding simulation failure labels `[0:j], and cost function
values J[0:j]. Each failure label is denoted +1 if there is
simulation failure and −1 if not. For failed simulations, we
set the corresponding cost function value to some nonsense
value, e.g., NaN. If the simulation is successful, the cost
function yields a real-valued scalar.

2) The failure classifier: We use a scalable variational
Gaussian process classifiers [11] as a failure classifier; an
advantage of this method is that we can assign a probability
of failure to any parameter in the search space. Inducing
a distribution rather than deterministic classification outputs
enables the proposed failure robust acquisition function,
which we will discuss later.

At the j-th iteration, one can utilize the θ and labels ` of
the dataset Dj to set a Gaussian process prior at the observed
parameter sets. This can be written as φ ∼ N (0,Kj), where
φj is the prior function using Dj and

Kj =

K(θ0, θ0) · · · K(θ0, θj)
...

. . .
...

K(θj , θ0) · · · K(θj , θj)

 , (4)



with a user-specified kernel function K(·, ·) such as a squared
exponential kernel or a Matern kernel; see [12] for more
details about kernel functions.

To perform classification with this prior, one needs to
transform the function φ through a squashing function such
as the cumulative density function of a zero-mean unit-
variance normal distribution γ(·) := N (·|0, 1), given by
Γ(z) =

∫ z
−∞ γ(α) dα. Consequently, a Bernoulli distribution

can be used to represent a likelihood function conditioned on
the transformed data as follows:

B(`j |Γ(φj)) = Γ(φj)
`j · (1− Γ(φj)

1−`j ).

The joint distribution of ` and φ thus becomes

p(`, φ) =

j∏
r=1

B (`j |Γ(φj)) N (0,Kj). (5)

Two more distributions are required to optimize hyperparam-
eters and perform inference: the marginal likelihood PF(`, j)
and the posterior p(φ|`, j). Both of these distributions require
the inversion of the j×j kernel matrix (4), which incurs cubic
complexity and does not scale well to the large values of j
that may be required for FR-BO to compute good solutions.
We therefore resort to the use of approximation methods that
leverage pseudo-inputs, which are more commonly known as
inducing points [13].

Inducing points θ̃ ∈ Θ are design variables that are
augmented with the latent variables φj that also respect the
Gaussian prior and therefore yield a joint distribution

(φ, φ̃) ∼ N
(

0,

[
Kj K̃jm

K̃>jm K̃m

])
.

K̃jm denotes the covariance matrix computed by evaluating
the kernel across j data points and m inducing inputs, while
K̃m denotes the covariance matrix computed by evaluating
the kernel on all pairs of the inducing inputs. Exploiting
the properties of the Gaussian distribution, one can rewrite
the joint distribution of the latent variables and the inducing
variables as

p(`, φ, φ̃) = p(`|φ)p(φ|φ̃)p(φ̃).

To get a variational approximation of the likelihood, the
following inequality is used from [11]:

log p(`|φ̃) ≥ Ep(φ|φ̃)[log p(`|φ)].

Defining a variational distribution q, we get the well-known
variational lower bound

log p(`) ≥ Eq(φ)[log p(`|φ)]− KL[q(φ̃)‖p(φ̃)]. (6)

The optimal hyperparameters for the VGPC can be obtained
by minimizing the loss function formed by the negative of the
right hand side of this inequality using quadrature methods.
If we assume q ∼ N (φ̃|µ̃, Σ̃), then

q(φ) = N (Lµ̃,Kj + L(Σ̃− K̃m)L>), (7)

with L = K̃jmK̃
−1
m , which is an m × m matrix, and

eventually m� j, so this matrix is cheaper to invert, which
makes this method scalable.

3) Active learning: For inference at a set of test points
{θ∗}, we transform those into {φ∗}, and the approximate
posterior is then given by

p(φ∗|`) =

∫
p(φ∗|φ̃)q(φ̃) dφ̃,

which can be computed in a manner similar to (7). Initially,
when the failure region is not estimated well, it is necessary
to select informative elements of {θ∗} that can yield good
estimates of ΘF without exhaustive sampling. To this end,
we propose an active learning strategy wherein the most
informative θ?j ∈ θ∗ is selected based on the maximum
entropy of the posterior distribution, similar to [10]. Since the
mean and variance of the posterior p(φ∗|`) is computed for
each parameter in θ∗, one can compute the entropy (assuming
q is Gaussian) and fix

θ?j = arg max
θ′∈θ∗

1

2
log (2πVar(θ′)) .

We then evaluate θ?j by simulatingMT (θ?j ) to ascertain `j+1

and Jj+1, which yields the updated dataset Dj+1 and the
process iterates till a termination criterion such as a maximum
number of iterations is achieved. We have found the active
learning using VGPC useful for an initial exploration of the
parameter space Θ to significantly reduce the number of
failed simulations during Bayesian optimization.

B. Classical Bayesian optimization

Classical BO methods assume the presence of one global
optimum, and smoothness of the θ to J map. Since J is
typically assumed to be continuous, one can leverage the
data at the j-th iteration to construct a surrogate GP model
of the reward, given by

Ĵj := GP (µ(θ;Dj), σ(θ, θ′;Dj)) , (8)

where µ(·) is the predictive mean function, and σ(·, ·) is the
predictive variance function, and Dj containing {θ[0:j], J[0:j]}
is the dataset collected thus far. Typically, the variance is
expressed through the use of kernel functions [7].

At the j-th learning iteration, for a new query sam-
ple θ ∈ Θ, the GP model predicts the mean and vari-
ance of the reward to be µ(θ) = kj(θ)

>K−1
j J0:j and

σ(θ) = K(θ, θ) − kj(θ)K
−1
j kj(θ)

>, where kj(θ) =[
K(θ0, θ) K(θ1, θ) · · · K(θj , θ)

]
, and Kj is defined

in (4).
The accuracy of predicted mean and variance is strongly

linked to the selection of the kernel and the best (in some
sense) set of hyperparameters such as length scales and
variance parameters of the kernels and estimated noise. We
obtain these hyperparameters by maximizing the log marginal
likelihood function (MLL)

−1

2
log |Kj | −

1

2
J(θ)>K−1

j J(θ)− nθ
2

log 2π.

Note that inducing variables as in the VGPC can be used to
significantly improve scalability of the GP [14].

In Bayesian optimization, we use the mean and variance
of the surrogate model Ĵj in (8) to construct an acquisition



function to inform the selection of a θj that increases the
likelihood of minimizing the current best cost. To this end,
we compute the incumbent Ĵ?j := minθ∈Θ µ(θ;Dj) and use it
to define an expected improvement (EI) acquisition function
that has the form

EI(θ, j) =

{
σ(θ)γ(z) + (Ĵ?j − µ(θ))Γ(z), if σ(θ) > 0,

0 if σ(θ) = 0.

where z =
Ĵ?j −µ(θ)

σ(θ) , and γ(·), Γ(·) are the PDF and the
CDF of the zero-mean unit-variance normal distribution,
respectively.

In the j-th iteration of learning, we use the data Dj to
construct the EI acquisition function using the surrogate Ĵj .
Subsequently, we compute the optimizer candidate

θj+1 = arg max
θ∈Θ

EI(θ, j), (9)

which serves as the parameter estimate θ in (1) in the next
BO iteration. In practice, other acquisition functions such as
the lower confidence bound or entropy search could also be
used instead of EI [7].

C. Incorporating failure probabilities

Since the VGPC generates a probabilistic output, we
can directly incorporate it into the acquisition function, as
proposed in [9]. This yields the failure-robust EI acquisition
function

FREI(θ, j) = EI(θ, j) · (1− PF(θ, j)), (10)

where PF (θ, j) is the likelihood of failure calculated by
training the VGPC using data up to the j-th iteration, and
then evaluating the likelihood of the VGPC at θ.

If the VGPC algorithm does not find any θ such that
P(θ) > 0, then the acquisition function (10) is zero for every
θ ∈ Θ and future candidates are selected randomly until at
least one θ is found which allows for a successful simulation.
This scenario is rarely seen in practice. A more plausible
scenario is that both successful simulations and failure simu-
lations have been observed, and the VGPC has been trained
on a non-trivial classification problem. In such a case, the
higher the value of P(θ, j), the higher the probability that a
particular candidate will be selected, so long as its expected
improvement is high as well. The multiplicative nature of
the components in (10) seeks to ensure that neither one
component can outweigh the other, and candidates will be
selected only if they are both a candidate for optimization and
feasibility (i.e., is expected to yield a successful simulation).
Along the same lines as (9), FR-BO selects the next optimizer
candidate as follows:

θj+1 = arg max
θ∈Θ

FREI(θ, j). (11)

A key difference with FREI and the constrained expected-
improvement acquisition function proposed in [9] is that we
estimate likelihood off binary labels `, whereas constrained
BO estimates probabilities based on continuous slack vari-
ables obtained from the constraints. Both methods are similar

in that they use Gaussian process proxies for constraint-
modeling, although in our case it is a classifier rather than
the regressor proposed in [9].

It is important to note that from an implementation per-
spective, it may be expensive to retrain a VGPC after the
collection of each new data sample. Empirically, we have
observed that this is not always necessary: in fact, as long
as the VGPC has been trained initially with some data,
it can be retrained infrequently. Of course, how frequently
the retraining has to occur is problem dependent, although
heuristics such as retraining the VGPC when the FR-BO
is ‘stuck’ at a local optimum for a pre-decided number of
iterations can be useful.

IV. RESULTS AND DISCUSSION

We provide two examples that demonstrate the effective-
ness of FR-BO. The first involves parameter estimation for
a well-studied stiff nonlinear system of chemical kinetics,
and the second is a real-world building model calibration
problem. All code was implemented in GPyTorch [15],
PyTorch [16], and Python 3.9.

Example: Estimating rate parameters for the Robertson sys-
tem

We consider the Robertson system

ẋ1 = −θ1x1 + θ2x2x3 y = x

ẋ2 = θ1x2 − θ2x2x3 − θ3x
2
2 0 = x1 + x2 + x3 − 1

ẋ3 = −θ3x
2
2,

where x1, x2, and x3 are concentrations of chemical species,
and the true parameters of the system are θ1 = 4 × 10−2,
θ2 = 104, and θ3 = 3 × 107. This system is well known
to be highly stiff and has recently been investigated for
surrogate modeling [17]. Note that the system of equations
is assumed unknown during parameter estimation using FR-
BO. We collect ground truth by simulating the Robertson
system forward for T = [0, 20] s, after which we partition
T into 100 equidistant samples in order to obtain y?0:T . The
admissible parameter space is defined in logarithmic space
and is given by log10 Θ = {[−3,−1] × [2, 12] × [5, 15]}z.
To clarify, θ1 can lie in the interval [10−3, 10−1] and so on.
For each θ sampled on Θ, we simulate the Robertson system
over T using the Radau IIA solver, which is well-suited to
the numerical integration of stiff systems [5]. For each θ, we
can then compute MT (θ) and a parameter estimation cost
function

J(y?0:T ,MT (θ)) = log

(
T∑
t=0

(y?t − yt)>W (y?t − yt)

)
,

where yt is the output vector obtained fromMT (θ) at the t-th
time instant. The matrix W is a scaling matrix to ensure that
the three output components are of similar magnitudes. We
set W = diag[1, 5×104, 1]. We collect 300 data points using
active learning for the VGPC and then run 700 BO iterations,
with the VGPC retrained every 100 iterations during BO.
Table I describes the hyperparameters used for both the
VGPC and the GPR learners needed for FR-BO.



TABLE I
FR-PO IMPLEMENTATION FOR ROBERTSON SYSTEM.

VGPC GP
Model Approximate GP Exact GP
Kernel Squared Exponential Matern-3/2
Inducing Points Yes Yes
Likelihood Bernoulli Gaussian
Loss Function Variational ELBO MLL
Optimizer Adam Adam
Learning Rate 0.01 0.05
Training Iters 2000 500

Fig. 1. Robertson system: Comparison of true outputs and estimated outputs
on testing scenario t ∈ [10−5, 105].

After applying FR-BO, the set of parameters that pro-
duces the lowest cost is given by θ̂1 = 3.717 × 10−2,
θ̂2 = 0.887×104, and θ̂3 = 3.03×107, which is satisfactorily
close to the true parameters. We validate the effectiveness
of the estimated parameters on a time span of [10−5, 105]
as suggested in [18] to showcase multi-scale dynamics. The
similarity of the model outputs and the true outputs is
demonstrated in Fig. 1 and the mean squared error between
the two trajectories is 9.910×10−5. We also demonstrate two
slices of the failure region learned by the VGPC in Fig. 2.
The slice on the left is obtained by fixing θ2 at its estimated
value and allowing θ1 and θ3 to vary over the subset of Θ, and
the slice of the right is obtained by fixing θ1 and allowing the
other two parameters to vary. Both slices clearly indicate that
the VGPC has identified a region where the model simulation
is likely to exhibit failure; moreover, it is also evident that
such a region can have significant curvature. This is evidence
that one must resort to advanced nonlinear classifiers like
VGPC rather than linear classifiers, even for low-dimensional
dynamical systems.

To understand whether FR-BO offers benefits over heuris-
tics that could theoretically provide avenues around simula-
tion failures, we compare the FR-BO algorithm against three

Fig. 2. Robertson system: Slices of the parameter space with classifier
estimating probabilities of failure.

other methods. The first is sampling via Monte-Carlo meth-
ods, e.g., low-discrepancy sampling. The second method,
which we call Zr-BO, runs classical BO and ignores sim-
ulation failures; when a candidate θj results in a simulation
failure, that θj is not added to the dataset and the algorithm
continues with jitter to ensure it does not get stuck in
an infinite loop. The third method, referred to as Hi-BO,
replaces the NaN costs associated with simulation failures
with a high cost function value for θ if it results in a
simulation failure. By associating a high cost for those θ
values that result in simulation failure, the intuition is that
the classical BO algorithm will automatically avoid those
areas in future iterations. We maintain parity among the
methods as much as possible by allowing identical kernels,
hyperparameters, number of iterations, random seeds, and
initial dataset obtained by the VGPC.

Fig. 3 shows the best cost function value up to iteration
j against the j-th horizontal-axis location over optimization
iterations. This figure also illustrates which iterations resulted
in a simulation failure via the red vertical lines. The first
300 iterations are identical for all four methods, since that is
the initial set of parameters and cost values obtained using
the VGPC. After iteration 300, the VGPC is ignored by all
algorithms except FR-BO. It is clear from these plots that the
FR-BO algorithm outperforms all the competitors in terms of
cost decay after 600 iterations and in terms of simulation
failures, as it finds a better solution at the 1000-iteration
mark and exhibits no simulation failure after the initial VGPC
is trained. Conversely, Zr-BO and MCMC sampling both
result in large numbers of simulation failures, with Zr-BO
showing a large number of failures after iteration 300 as the
exploration aspect of Zr-BO keeps trying to search on the
edges of Θ in regions where the model is very likely to fail.
Of the three competitors, Hi-BO performs relatively well, and
certainly reduces the cost over iterations, although there are a
significant number of simulation failures. This indicates that
the total CPU-time required for running Hi-BO could be far
larger than FR-BO if simulation failures do not occur quickly.



Fig. 3. Robertson system: Comparison of best solution found up to an iteration and failures during Bayesian optimization.

V. CONCLUSIONS

Simulation software is dsigned and validated over a limited
region of the available parameter space. Thus, regions of
validity for model parameters, or regions over which the
simulation will fail, are rarely known during downstream
design. Calibrating the model for different datasets requires
exploring the parameter space and could involve trying
parameters that will result in simulation failures. In this paper,
we provided a methodology for model calibration using
failure-robust Bayesian optimization that involves learning
the failure region and embedding that information into the
exploitation step via a failure-robust acquisition function, and
demonstrated the efficacy of this method on a well-studied
numerically stiff system.
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