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Abstract—Geometric data acquired from real-world scenes,
e.g., 2D depth images, 3D point clouds, and 4D dynamic point
clouds, have found a wide range of applications including
immersive telepresence, autonomous driving, surveillance, etc.
Due to irregular sampling patterns of most geometric data,
traditional image/video processing methodologies are limited,
while Graph Signal Processing (GSP)—a fast-developing field in
the signal processing community—enables processing signals that
reside on irregular domains and plays a critical role in numerous
applications of geometric data from low-level processing to high-
level analysis. To further advance the research in this field, we
provide the first timely and comprehensive overview of GSP
methodologies for geometric data in a unified manner by bridging
the connections between geometric data and graphs, among the
various geometric data modalities, and with spectral/nodal graph
filtering techniques. We also discuss the recently developed Graph
Neural Networks (GNNs) and interpret the operation of these
networks from the perspective of GSP. We conclude with a brief
discussion of open problems and challenges.

Index Terms—Graph Signal Processing (GSP), Geometric
Data, Riemannian Manifold, Graph Neural Networks (GNNs),
Interpretability

I. INTRODUCTION

RECENT advances in depth sensing, laser scanning and
image processing have enabled convenient acquisition

and extraction of geometric data from real-world scenes, which
can be digitized and formatted in a number of different ways.
Efficiently representing, processing, and analyzing geometric
data is central to a wide range of applications from augmented
and virtual reality [1], [2] to autonomous driving [3] and
surveillance/monitoring applications [4].

Geometric data may be represented in various data formats.
It has been recognized by Adelson, et al. [5] that different
representations of a scene can be expressed as approximations
of the plenoptic function, which is a high-dimensional math-
ematical representation that provides complete information
about any point within a scene and also how it changes when
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observed from different positions. This connection among
the different scene representations has also been embraced
and reflected in the work plans for the development of the
JPEG Pleno standardization framework [6]. In this paper, we
mainly consider explicit representations of geometry, which
directly describe the underlying geometry, but the framework
and techniques extend to implicit representations of geometry,
in which the underlying geometry is present in the data but
needs to be inferred, e.g., from camera data. Examples of
explicit geometric representations include 2D geometric data
(e.g., depth maps), 3D geometric data (e.g., point clouds and
meshes), and 4D geometric data (e.g., dynamic point clouds),
as demonstrated in Fig. 1. Examples of implicit geometric
representations include camera-based inputs, e.g., multiview
video. For many cases of interest that aim to render immersive
imagery of a scene, the focus will be on dense representations
of geometry. However, there are also some applications of
interest that benefit from sparse representations of geometry,
such as human activity analysis, in which the geometry of the
human body can be represented with few data points.

Traditional image/video processing techniques assume sam-
pling patterns over regular grids and have limitations when
dealing with the wide range of geometric data formats, some
of which have irregular sampling patterns. To overcome the
limitations of traditional techniques, Graph Signal Processing
(GSP) techniques have been proposed and developed in recent
years to process signals that reside over connected graph
nodes [7]–[9]. For geometric data, each sample is denoted
by a graph node and the associated 3D coordinate (or depth)
is the signal to be analyzed. The underlying surface of
geometric data provides an intrinsic graph connectivity or
graph topology. The graph-based representation has several
advantages over conventional representations in that it is more
compact and accurate, and structure-adaptive since it naturally
captures geometric characteristics in the data, such as piece-
wise smoothness (PWS) [10].

A unified framework of GSP for geometric data is illustrated
in Fig. 1, in which we highlight how geometric data and graph
operators are counterparts in the context of Riemannian man-
ifolds. Given continuous functions on Riemannian manifolds,
geometric data are discrete samples of the functions repre-
senting the geometry of objects, which often lies on a low-
dimensional manifold, e.g., 3D point clouds essentially repre-
sent 2D surfaces embedded in the 3D space. Correspondingly,
graph operators are discrete counterparts of the continuous
functionals defined on Riemannian manifolds. Theoretically, it
has been shown that graph operators converge to functionals
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Fig. 1: Illustration of GSP for geometric data processing.

on Riemannian manifolds under certain constraints [11], while
graph regularizers converge to smooth functionals on Rieman-
nian manifolds that is capable of enforcing low dimensionality
of data [12]–[14]. Hence, GSP tools are naturally advantageous
for geometric data processing by representing the underlying
topology of geometry on graphs.

A graph operator is typically constructed based on do-
main knowledge or inferred from training data as shown
in Fig. 1. It essentially specifies a graph filtering process,
which can be performed either in the spectral-domain (i.e.,
graph transform domain) [15] or nodal-domain (i.e., spatial
domain) [16], which are referred to as spectral-domain GSP
methods and nodal-domain GSP methods, respectively. Nodal-
domain methods typically avoid eigen-decomposition for fast
computing over large-scale data while still relying on spectral
analysis to provide insights [17]. A nodal-domain method
might also be specified through a graph regularizer to enforce
graph-signal smoothness [14], [18]. Sparsity and smoothness
are two widely used domain models. Additionally, Graph
Neural Networks (GNNs) have been developed to enable
inference with graph signals including geometric data [19],
which are often motivated or interpretable by GSP tools.
Hence, methodologically, we will first elaborate on spectral-
domain and nodal-domain GSP methods for geometric data
respectively, then discuss the interpretability of GNNs from
the perspective of GSP.

In practice, GSP for geometric data plays a critical role
in numerous applications of geometric data, from low-level
processing, such as restoration and compression, to high-level
analysis. The processing of geometric data includes denoising,
enhancement and resampling, as well as compression such as
point cloud coding standardized in MPEG1 and JPEG Pleno2,
while the analysis of geometric data addresses supervised or
unsupervised feature learning for classification, segmentation,
detection, and generation. These applications are unique rela-
tive to the use of GSP techniques for other data in terms of

1https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
2https://jpeg.org/jpegpleno/

the signal model and processing methods.

This overview paper distinguishes itself from relevant re-
view papers such as [9], [19]–[22] in the following aspects.
While [9] provides a general overview for GSP covering core
ideas in GSP and recent advances in developing basic GSP
tools with a variety of applications, our paper is dedicated to
GSP for geometric data with unique signal characteristics that
have led to new insights and understanding. Compared with
[19] and [20] which provide a comprehensive overview of
geometric deep learning including GNNs, we focus on those
GNNs that are motivated or interpretable by GSP tools. In
comparison with [21] that reviews recent progress in deep
learning methods for point clouds, we emphasize on GNNs
for geometric data that are explainable via GSP, while in
[21], graph-based methods are discussed only as one of
many types of approaches for 3D shape classification and
point cloud segmentation without further discussion of the
model interpretability. Furthermore, compared with [22] that
analyzes machine learning on graphs from the graph diffusion
perspective and connects different learning algorithms on
graphs with different diffusion models, we emphasize the
graph signal processing aspect of graph neural networks, and
endeavor to interpret their behavior in both the spectral and
the nodal domains, as well as several aspects to understand
the representation learning of graph neural networks from the
perspective of GSP as discussed in Section VI. In summary,
this paper provides an overview of GSP methods specifically
for a unique and important class of data—geometric data, as
well as insights into the interpretability of GNNs from the
perspective of GSP tools.

The remainder of this paper is organized as follows. Sec-
tion II reviews basic concepts in GSP, graph Fourier Trans-
form, as well as interpretation of graph variation operators
both in the discrete domain and continuous domain. Section III
introduces the graph representation of geometric data based on
their characteristics, along with problems and applications of
geometric data to be discussed throughout the paper. Then, we
elaborate on spectral-domain GSP methods for geometric data
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Fig. 2: Geometric data and their graph representations. The graphs of the patches enclosed in red squares are shown at the
bottom; the vertices are colored by the corresponding graph signals. (a) 2D Depth map [24]. (b) 3D Point cloud [25]. (c) 4D
dynamic point cloud [26], where the temporal edges of a point P are also shown.

in Section IV and nodal-domain GSP methods in Section V.
Next, we provide the interpretations of GNNs for geometric
data from the perspective of GSP in Section VI. Finally, future
directions and conclusions are discussed in Section VII and
Section VIII, respectively.

II. REVIEW: GRAPH SIGNAL PROCESSING

A. Graph Variation Operators and Graph Signal

We denote a graph G = {V, E ,A}, which is composed of a
vertex set V of cardinality |V| = N , an edge set E connecting
vertices, and an adjacency matrix A. Each entry ai,j in A
represents the weight of the edge between vertices i and j,
which often captures the similarity between adjacent vertices.
In geometric data processing, we often consider an undirected
graph with non-negative edge weights, i.e., ai,j = aj,i ≥ 0.

Among variation operators in GSP, we focus on the com-
monly used graph Laplacian matrix. The combinatorial graph
Laplacian [7] is defined as L := D−A, where D is the degree
matrix—a diagonal matrix where di,i =

∑N
j=1 ai,j . Given

real and non-negative edge weights in an undirected graph,
L is real, symmetric, and positive semi-definite [23]. The
symmetrically normalized version is Lsym := D−

1
2 LD−

1
2 , and

the random walk graph Laplacian is Lrw := D−1L, which are
often used for theoretical analysis or in neural networks due
to the normalization property.

A graph signal is a function that assigns a scalar or vector
to each vertex. For simplicity, we consider x : V → R, such
as the intensity on each vertex of a mesh. We denote graph
signals as x ∈ RN , where xi represents the signal value at the
i-th vertex.

B. Graph Fourier Transform

Because L is a real symmetric matrix, it admits an eigen-
decomposition L = UΛU>, where U = [u1, ...,uN ] is
an orthonormal matrix containing the eigenvectors ui, and
Λ = diag(λ1, ..., λN ) consists of eigenvalues {λ1 = 0 ≤

λ2 ≤ ... ≤ λN}. We refer to the eigenvalue λi as the graph
frequency/spectrum, with a smaller eigenvalue corresponding
to a lower graph frequency.

For any graph signal x ∈ RN residing on the vertices of G,
its graph Fourier transform (GFT) x̂ ∈ RN is defined as [15]

x̂ = U>x. (1)

The inverse GFT follows as

x = Ux̂. (2)

With an appropriately constructed graph that captures the
signal structure well, the GFT will lead to a compact repre-
sentation of the graph signal in the spectral domain, which is
beneficial for geometric data processing such as reconstruction
and compression.

C. Interpretation of Graph Variation Operators

The graph variation operators have various interpretations,
both in the discrete domain and the continuous domain.

In the discrete domain, we can interpret graph Laplacian
matrices by precision matrices under Gaussian-Markov Ran-
dom Fields (GMRFs) [27] from a probabilistic perspective,
and thus further show the GFT approximates the Karhunen-
Loève transform (KLT) for signal decorrelation under GMRFs.
As discussed in [28], there is a one-to-one correspondence
between precision matrices of different classes of GMRFs
and types of graph Laplacian matrices. For instance, the
combinatorial graph Laplacian corresponds to the precision
matrix of an attractive, DC-intrinsic GMRF. Further, as the
eigenvectors of the precision matrix (the inverse of the co-
variance matrix) constitute the basis of the KLT, the GFT
approximates the KLT under a family of statistical processes,
as proved in different ways in [10], [29]–[31]. This indicates
the GFT is approximately the optimal linear transform for
signal decorrelation, which is beneficial to the compression
of geometric data as will be discussed in Section IV-C2.



IEEE TMM OVERVIEW ARTICLE 4

TABLE I: Representative Geometric Datasets and Relevant Application Scenarios.

Geometric Data Format Datasets Contents Typical Applications/Tasks

2D depth map

FlyingThings3D [34] Synthetic scene

Stereo matching, depth completion
Middlebury [24]

Indoor sceneTsukuba [35]

KITTI [36] Driving scene

3D point cloud

Stanford 3D Scanning Repository [37]
Single object

3D telepresence, surface reconstruction
Benchmark [38]

MPEG Sequences [39]
Single personMicrosoft Sequences [26]

ShapeNet [40]
Single object Classification, part segmentationModelNet [41]

Stanford Large-Scale 3D Indoor Spaces Dataset [42]
Indoor scene

Semantic/instance segmentation
ScanNet [25]

KITTI [36]
Driving sceneWAYMO Open Dataset [43]

4D dynamic point cloud

MPEG Sequences [39]
Single person 3D telepresence, compressionMicrosoft sequences [26]

KITTI [36]
Driving scene Semantic/instance segmentation, detectionSemantic KITTI [44]

In the continuous domain, instead of viewing a neighbor-
hood graph as inherently discrete, it can be treated as a discrete
approximation of a Riemannian manifold [11], [32]. Thus,
as the number of vertices on a graph increases, the graph
is converging to a Riemannian manifold. In this scenario,
each observation of a graph signal is a discrete sample of
a continuous signal (function) defined on the manifold. Note
that not all graph signals can be interpreted in the continuous
domain: voting pattern in a social network or paper informa-
tion in a citation network is inherently discrete. With a focus
on geometric data which are indeed signals captured from a
continuous surface, we have a continuous-domain interpre-
tation of graph signals as discrete samples of a continuous
function (Fig. 1). The link between neighborhood graphs and
Riemannian manifolds enables us to process geometric data
with tools from differential geometry and variational methods
[33]. For instance, the graph Laplacian operator converges
to the Laplace-Beltrami operator in the continuous manifold
when the number of samples tends to infinity. Hence, without
direct access to the underlying geometry (surface), it is still
possible to infer the property of the geometry based on its
discrete samples.

For a clearer presentation, Table II summarizes the most
important mathematical symbols used in this paper.

TABLE II: Key notations employed in this review article.

Notation Description
G The graph being studied.
A Graph adjacency matrix.
L Graph Laplacian matrix.
U Inverse graph Fourier transform matrix.
x Geometric data (graph signal) being studied.
ai,j Graph weight connecting vertices i and j.
λi Graph frequency/spectrum.
ĥ(·) Spectral-domain filter coefficient.
hk Nodal-domain filter coefficient.

III. GRAPH REPRESENTATIONS OF GEOMETRIC DATA

In this section, we elaborate on the graph representations of
geometric data, which arise from the unique characteristics of

geometric data and serve as the basis of GSP for geometric
data processing. Also, we discuss and compare with non-graph
representations, which helps understand the advantages and
insights of graph representations.

A. Problems and Challenges of Geometric Data

There exist various problems associated with geometric
data, e.g., noise, holes (incomplete data), compression arti-
facts, large data size, and irregular sampling. For instance,
due to inherent limitations in the sensing capabilities and
viewpoints that are acquired, geometric data often suffer from
noise and holes, which will affect the subsequent rendering
or downstream inference tasks since the underlying structures
are deformed.

These problems must be accounted for in the diverse range
of applications that rely on geometric data, including pro-
cessing (e.g., restoration and enhancement), compression, and
analysis (e.g., classification, segmentation, and recognition).
Some of the representative geometric datasets along with the
corresponding application scenarios are summarized in Table I.

We assert that the chosen representation of geometric data
is critically important in addressing these problems and appli-
cations. Next, we discuss the characteristics of geometric data,
which lay the foundation for using graphs for representation.

B. Characteristics of Geometric Data

Geometric data represent the geometric structure underlying
the surface of objects and scenes in the 3D world and have
unique characteristics that capture structural properties.

For example, 2D depth maps characterize the per-pixel
physical distance between objects in a 3D scene and the sensor,
which usually consists of sharp boundaries and smooth interior
surfaces—referred to as piece-wise smoothness (PWS) [10],
as shown in Fig. 2(a). The PWS property is suitable to be
described by a graph, where most edge weights are 1 for
smooth surfaces and a few weights are 0 for discontinuities
across sharp boundaries. Such a graph construction will lead
to a compact representation in the GFT domain, where most
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energy is concentrated on low-frequency components for the
description of smooth surfaces [10].

3D geometric data such as point clouds form omnidirec-
tional representations of a geometric structure in the 3D world.
As shown in Fig. 2(b), the underlying surface of the 3D
geometric data often exhibits the PWS property, as given by
the normals of the data [45]. Moreover, 3D point clouds lie
on a 2D manifold, as they represent 2D surfaces embedded in
the 3D space.

For 4D geometric data such as dynamic point clouds, con-
sistency/redundancy exists along the temporal dimension [46],
[47], as shown in Fig. 2(c). However, in contrast to conven-
tional video data, the temporal correspondences in dynamic
point clouds are difficult to track, mainly because 1) the
sampling pattern may vary from frame to frame due to the
irregular sampling; and 2) the number of points in each frame
of a dynamic point cloud sequence may vary significantly.

Thanks to the unique signal characteristics of geometric
data, we may design methods tailored for geometric data
instead of methods for general graph data. For instance,
particular graph smoothness priors may be taken into account
so that methods are optimized for the PWS property of depth
maps, which leads to more robust or efficient processing as
will be discussed in Section V-B.

C. Non-Graph Representations of Geometric Data

There exist a variety of non-graph representations of ge-
ometric data. For instance, depth maps are represented as
gray-scale images, while 3D point clouds are often quantized
onto regular voxel grids [48] or projected onto a set of depth
images from multiple viewpoints [49]. These quantization-
based representations transform geometric data into regular
Euclidean space, which is amenable to existing methods for
Euclidean data such as images, videos, and regular voxel grids.

Further, implicit functions (e.g., Signed Distance Function
(SDF)) for 3D shape representation have been proposed [50],
[51], which represent a shape’s surface by a discrete or
continuous volumetric field: the magnitude of a point in the
field represents the distance to the surface boundary and the
sign indicates whether the region is inside (-) or outside (+) of
the shape. This enables the high-quality representation of the
shape surface, interpolation and completion from partial and
noisy 3D input data. Besides, the sparse tensor representation
is employed due to its expressiveness and generalizability for
high-dimensional spaces [52]. It also allows homogeneous data
representation within traditional neural network libraries as
most of them support sparse tensors.

In spite of the advantages, these non-graph representations
may have the following limitations: 1) Most importantly,
representing geometric data without graphs is often deficient
in capturing the underlying geometric structure explicitly. 2)
Quantization-based representations are sometimes inaccurate,
e.g., due to quantization loss introduced by voxelization or
projection errors when a point cloud is represented by a set of
images or discretized SDF; and 3) The representations can be
redundant, e.g., a voxel-based representation of point clouds
still needs to represent an unoccupied space with zeros, leading
to redundant storage or processing.

D. Graph Representations of Geometric Data

In contrast, graphs provide structure-adaptive, accurate,
and compact representations for geometric data, which further
inspire new insights and understanding.

To represent geometric data on a graph G = {V, E ,A}, we
consider points in the data (e.g., pixels in depth maps, points
in point clouds and meshes) as vertices V with cardinality
N . Further, for the i-th point, we represent the coordinate and
possibly associated attribute (pi,ai) of each point as the graph
signal on each vertex, where pi ∈ R2 or pi ∈ R3 represents
the 2D or 3D coordinate of the i-th point (e.g., 2D for depth
maps, and 3D for point clouds), and ai represents associated
attributes, such as depth values, RGB colors, reflection intensi-
ties, and surface normals. To ease mathematical computation,
we denote the graph signal of all vertices by a matrix,

X =


xT1
xT2
...

xTN

 ∈ RN×d, (3)

where the i-th row vector xTi = [pTi aTi ] ∈ R1×d represents
the graph signal on the i-th vertex and d denotes the dimension
of the graph signal.

To capture the underlying structure, we use edges E in the
graph to describe the pairwise relationship (spatio-temporal
relationship for 4D geometric data [53]–[55]) between points,
which is encoded in the adjacency matrix A as reviewed in
Section II. The construction of A, i.e., graph construction, is
crucial to characterize the underlying topology of geometric
data. We classify existing graph construction methods mainly
into two families: 1) model-based graph construction, which
builds graphs with models from domain knowledge [56], [57];
and 2) learning-based graph construction, which infers/learns
the underlying graph from geometric data [58]–[61].

Model-based graph construction for geometric data often
assumes edge weights are inversely proportional to the affini-
ties in coordinates, such as a K-nearest-neighbor graph (K-
NN graph) and an ε-neighborhood graph (ε-N graph). A K-
NN graph is a graph in which two vertices are connected by
an edge, when their Euclidean distance is among the K-th
smallest Euclidean distances from one point to the others;
while in an ε-N graph, two vertices are connected if their
Euclidean distance is smaller than a given threshold ε. A
K-NN graph intends to maintain a constant vertex degree
in the graph, which may lead to a more stable algorithm
implementation; while an ε-N graph intends to make the
vertex degree reflect local point density, leading to more
physical interpretation. Though these graphs exhibit manifold
convergence properties [11], [33], it still remains challenging
to find an efficient estimation of the sparsification parameters
such as K and ε given finite and non-uniformly sampled data.

In learning-based graph construction, the underlying graph
topology is inferred or optimized from geometric data in
terms of a certain optimization criterion, such as enforcing
low-frequency representations of observed signals. For ex-
ample, given a single or partial observation, [18] optimizes
a distance metric from relevant feature vectors on vertices
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A Figure similar to those in “Deep Learning for 3D Point Clouds: A Survey”
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(Wang et al.)

Spectral Local Graph Network
(Bruna et al.)
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Dynamic PCC
(Anis et al.)
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(Liu et al.)

ChebNet
(Defferrard et al.)

2017

OGLR
(Pang et al.)

GCN
(Kipf et al.)

GPT
(Queiroz et al.)

Approximate FGFT
(Hu et al.)

ECC
(Simonovsky et al.)

MoNet
(Monti et al.)

Fast Resampling
(Chen et al.)

Optimized Graph Transform
(Shao et al.)

2018

AGCN
(Li et al.)

GSP for DNNs
(Gripon et al.)
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(Xu et al.)

Graph Attention Networks
(Veličković et al.)

GTGC
(Rente et al.)
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(Bai et al.)

RGCNN
(Te et al.)

2019
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(Hu et al.)
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(Wu et al.)
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(Wang et al.)

GR-GCN
(Gao et al.)

Graph Topology Inference
(Chen et al.)

GLR for Point Cloud Denoising
(Zeng et al.)

2020

Feature Graph Learning
(Hu et al.)

SDFGLR
(Dinesh et al.)

GSDN
(Fu et al.)

GLNN
(Gao et al.)

Predictive GGFT
(Xu et al.)

2021

RGLN
(Tang et al.)

Fig. 3: Representative works leveraging graph signal processing (GSP) to process or analyze geometric data.

by minimizing the graph Laplacian regularizer, leading to
learned edge weights. Besides, edge weights could be trainable
in an end-to-end learning manner [62]. Also, general graph
learning methodologies can apply to the graph construction of
geometric data [58]–[61].

IV. SPECTRAL-DOMAIN GSP METHODS FOR
GEOMETRIC DATA

Based on the aforementioned graph representations, we will
elaborate on GSP methodologies for geometric data, including
spectral-domain GSP methods, nodal-domain GSP methods,
and GSP-interpretable graph neural networks. Representative
methods using GSP to process/analyze geometric data are
summarized in chronological order in Fig. 3. We start from
the spectral-domain methods that offer spectral interpretations.

A. Basic Principles

Spectral-domain methods represent geometric data in the
graph transform domain and perform filtering on the resulting
transform coefficients. While various graph transforms exist,
we focus our discussion on the Graph Fourier Transform
(GFT) discussed in Section II-B without loss of generality.

Let the frequency response of a graph spectral filtering be
denoted by ĥ(λk) (k = 1, . . . , N), then the graph spectral
filtering takes the form

Y = U

ĥ(λ1)
. . .

ĥ(λN )

U>X. (4)

This filtering first transforms the geometric data X into the
GFT domain U>X, performs filtering on each eigenvalue
(i.e., the spectrum of the graph), and finally projects back to
the spatial domain via the inverse GFT to acquire the filtered
output Y.

As discussed in Section II-C, the GFT leads to compact
representations of geometric data if the constructed graph
captures the underlying topology well. Based on the GFT
representation, the key issue is to specify N graph frequency
responses {ĥ(λk)}Nk=1 to operate on the geometric data; these
filters should be designed according to the specific task.
Widely used filters include low-pass graph spectral filters and

high-pass graph spectral filters, which will be discussed further
in the next subsection.

Due to the computational complexity of graph transforms,
which often involve full eigen-decomposition, this class of
methods are either dedicated to small-scale geometric data
or applied in a divide-and-conquer manner. For instance, one
may divide a point cloud into regular cubes, and perform graph
spectral filtering on individual cubes separately. Also, one may
deploy a fast algorithm of GFT (e.g., the fast GFT in [63]),
to accelerate the spectral filtering process.

B. Representative Graph Spectral Filtering

1) Low-Pass Graph Spectral Filtering: Analogous to pro-
cessing digital images in the regular 2D grid, we can use a
low-pass graph filter to capture the rough shape of geometric
data and attenuate noise under the assumption that signals
are smooth in the associated data domain. In practice, a
geometric signal (e.g., coordinates, normals) is inherently
smooth with respect to the underlying graph, where high-
frequency components are likely to be generated by fine details
or noise. Hence, we can perform geometric data smoothing
via a low-pass graph filter, essentially leading to a smoothed
representation in the underlying manifold.

One intuitive realization is an ideal low-pass graph filter,
which completely eliminates all graph frequencies above a
given bandwidth while keeping those below unchanged. The
graph frequency response of an ideal low-pass graph filter with
bandwidth b is

ĥ(λk) =

{
1, k ≤ b,
0, k > b,

(5)

which projects the input geometric data into a bandlimited
subspace by removing components corresponding to large
eigenvalues (i.e., high-frequency components).

The smoothed result provides a bandlimited approximation
of the original geometric data. Fig. 4 demonstrates an example
of the bandlimited approximation of the 3D coordinates of
point cloud Bunny (35947 points) [37] with 10, 100 and 400
graph frequencies, respectively. Specifically, we construct a
K-NN graph (K = 10) on the point cloud and compute the
corresponding GFT. Then we set the respective bandwidth for
low-pass filtering as in (4) and (5). One can observe that the
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(a) Original. (b) 10 frequencies. (c) 100 frequencies. (d) 400 frequencies. (e) Graph spectral distribution.

Fig. 4: Low-pass approximation of point cloud Bunny. Plot (a) is the original point cloud with 35,947 points. Plots (b), (c)
and (d) show the low-pass approximations with 10, 100 and 400 graph frequency components , respectively. (e) presents the
main graph spectral distribution with frequencies higher than 500 omitted as the corresponding magnitudes are around zero.

first 10 low-frequency components are able to represent the
rough shape, with finer details becoming more apparent with
additional graph frequencies. This validates the assertion that
the GFT achieves energy compaction for geometric data.

Another simple choice is a Haar-like low-pass graph filter
as discussed in [64], with the graph frequency response as

ĥ(λk) = 1− λk/λmax, (6)

where λmax = λN is the maximum eigenvalue for normal-
ization. As λk−1 ≤ λk, we have ĥ(λk−1) ≥ ĥ(λk). As such,
low-frequency components are preserved while high-frequency
components are attenuated.

2) High-Pass Graph Spectral Filtering: In contrast to low-
pass filtering, high-pass filtering eliminates low-frequency
components and detects large variations in geometric data,
such as geometric contours or texture variations. A simple
design is a Haar-like high-pass graph filter with the following
graph frequency response

ĥ(λk) = λk/λmax. (7)

As λk−1 ≤ λk, we have ĥ(λk−1) ≤ ĥ(λk). This indicates
that lower-frequency responses are attenuated while high-
frequency responses are preserved.

3) Graph Spectral Filtering with a Desired Distribution:
We may also design a desirable spectral distribution and then
use graph filter coefficients to fit this distribution. For example,
an L-length graph filter is in the form of a diagonal matrix:

ĥ(Λ) =


∑L−1
k=0 ĥkλ

k
1

. . . ∑L−1
k=0 ĥkλ

k
N

 , (8)

where Λ is a diagonal matrix containing eigenvalues of graph
Laplacian L as discussed in Section II-B, and ĥk is the
filter coefficients. If the desirable response of the i-th graph
frequency is ci, we let

ĥ(λi) =

L−1∑
k=0

ĥkλ
k
i = ci, (9)

and solve a set of linear equations to obtain the graph filter
coefficients, ĥk. An alternative to construct such a graph filter
is the Chebyshev polynomial coefficients introduced in [15].

C. Applications in Geometric Data
Having discussed graph spectral filtering, we review some

representative applications of spectral-domain GSP methods
for geometric data, including restoration and compression.

1) Geometric Data Restoration: Low-pass graph spectral
filtering is often designed for geometric data restoration such
as denoising. As demonstrated in the example of Fig. 4, clean
geometric data such as point clouds are dominated by low-
frequency components in the GFT domain. Hence, a carefully
designed low-pass filter is able to remove high-frequency
components that are likely introduced by noise or outliers.

Based on this principle, Hu et al. proposed depth map
denoising by iterative thresholding in the GFT domain [65]. To
jointly exploit local smoothness and non-local self-similarity
of a depth map, they cluster self-similar patches and compute
an average patch, from which a graph is deduced to describe
correlations among adjacent pixels. Then self-similar patches
are transformed into the same GFT domain, where the GFT
basis is computed from the derived correlation graph. Finally,
iterative thresholding in the GFT domain is performed as the
ideal low-pass graph filter in (5) to enforce group sparsity.

Rosman et al. proposed spectral point cloud denoising based
on the non-local framework as well [66]. Similar to Block-
Matching 3D filtering (BM3D) [67], they group similar surface
patches into a collaborative patch and compute the graph
Laplacian from this grouping. Then they perform shrinkage
in the GFT domain by a low-pass filter similar to (5), which
leads to denoising of the collaborative patch.

In contrast, high-pass graph filtering can be used to detect
contours in 3D point cloud data as these are usually rep-
resented by high-frequency components. For instance, Chen
et al. proposed a high-pass graph-filtering-based resampling
strategy to highlight contours for large-scale point cloud
visualization; the same technique can also be used to extract
key points for accurate 3D registration [64].

2) Geometric Data Compression: Transform-based cod-
ing is generally a low-pass filtering approach. When coding
piece-wise smooth geometric data, the GFT produces small
or zero high-frequency components since it does not filter
across boundaries, thus leading to a compact representation in
the transform domain. Further, as discussed in Section II-C,
the GFT approximates the KLT in terms of optimal signal
decorrelation under a family of statistical processes.
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TABLE III: Properties of different Graph Smoothness Regularizers (GSR).

Graph Smoothness Regularizer (GSR) Math Expression Dynamic Typical Solver Typical Works

Graph Laplacian Regularizer (GLR)
∑

i∼j ai,j · (xi − xj)
2 No Direct Solver / CG to (17) [13], [14], [18]

Reweighted Graph Laplacian Regularizer (RGLR)
∑

i∼j ai,j(xi, xj) · (xi − xj)
2 Yes Proximal Gradient [45]

Graph Total Variation (GTV)
∑

i∼j ai,j · |xi − xj | No Primal-Dual Method [79], [80]

Reweighted Graph Total Variation (RGTV)
∑

i∼j ai,j(xi, xj) · |xi − xj | Yes ADMM [81]

Graph transform coding is suitable for depth maps due
to the piece-wise smoothness. Shen et al. first introduced a
graph-based representation for depth maps that is adaptive
to depth discontinuities, transforming the depth map into the
GFT domain for compression and outperforming traditional
DCT coding [56]. Variants of this work include [68], [69].
To further exploit the piece-wise smoothness of depth maps,
Hu et al. proposed a multi-resolution compression framework,
where boundaries are encoded in the original high resolution
to preserve sharpness, and smooth surfaces are encoded at
low resolution for greater efficiency [10], [70]. It is also
shown in [10] that the GFT approximates the KLT under a
model specifically designed to characterize piece-wise smooth
signals. Other graph transforms for depth map coding include
Generalized Graph Fourier Transforms (GGFTs) [30] and
lifting transforms on graphs [71].

3D point clouds also exhibit certain piece-wise smoothness
in both geometry and attributes. Zhang et al. first proposed
using graph transforms for attribute compression of static
point clouds [57], where graphs are constructed over local
neighborhoods in the point cloud by connecting nearby points,
and the attributes are treated as graph signals. The graph
transform decorrelates the signal and was found to be much
more efficient than traditional octree-based coding methods.
Other follow up work includes graph transforms for sparse
point clouds [72], [73], graph transforms with optimized
Laplacian sparsity [74], normal-weighted graph transforms
[75], Gaussian Process Transform (GPT) [76], and graph
transforms for the enhancement layer [77].

In 4D dynamic point clouds, motion estimation becomes
necessary to remove the temporal redundancy [46], [55],
[78]. Thanou et al. represented the time-varying geometry of
dynamic point clouds with a set of graphs, and considered 3D
positions and color attributes of the point clouds as signals
on the vertices of the graphs [46]. Motion estimation is
then cast as a feature matching problem between successive
graphs based on spectral graph wavelets. Dynamic point cloud
compression remains a challenging task as each frame is
irregularly sampled without any explicit temporal pointwise
correspondence with neighboring frames.

V. NODAL-DOMAIN GSP METHODS FOR
GEOMETRIC DATA

A. Basic Principles

In contrary to spectral-domain GSP methods, this class of
methods performs filtering on geometric data locally in the
nodal domain, which is often computationally efficient and
thus, amenable to large-scale data.

Let Nn,p be a set of p-hop neighborhood nodes of the n-th
vertex, whose cardinality often varies according to n. Nodal-

domain filtering is typically defined as a linear combination
of local neighboring vertices

yn :=
∑

j∈Nn,p

hn,jxj , (10)

where hn,j denotes filter coefficients of the graph filter. Since
Nn,p is node-dependent, hn,j needs to be properly defined
according to n.

Typically, hn,j may be parameterized as a function of the
adjacency matrix A:

y = h(A)x, (11)

where

h(A) =

K−1∑
k=0

hkA
k = h0I+h1A+ . . .+hK−1A

K−1. (12)

Here hk is the k-th filter coefficient that quantifies the con-
tribution from the k-hop neighbors, and K is the length of
the graph filter. Ak determines the k-hop neighborhood by
definition, thus a higher-order corresponds to a larger filtering
range in the graph vertex domain. When operating A on a
graph signal, it computes the average of the neighboring signal
of each vertex, which is essentially a low-pass filter.

A can be replaced by other graph operators such as the
graph Laplacian L:

h(L) =

K−1∑
k=0

hkL
k = h0I + h1L + . . .+ hK−1L

K−1. (13)

When operating L on a graph signal, it sums up the signal
difference between each vertex and its neighbors, which is
essentially a high-pass filter.

B. Nodal-domain Optimization

Besides direct filtering as in (10) or (11), nodal-domain
filtering often employs graph priors for regularization. Graph
Smoothness Regularizers (GSRs), which introduce prior
knowledge about smoothness in the underlying graph signal,
play a critical role in a wide range of inverse problems, such
as depth map denoising [13], [65], point cloud denoising [14],
[18], and inpainting [82].

1) Formulation: In general, the formulation to restore a
geometric datum x with a signal prior, e.g., the GSR, is given
by the following maximum a posteriori optimization problem:

x? = arg min
x
‖y −H(x)‖22 + µ · GSR(x,G), (14)

where y is the observed signal and H(·) is a degradation
operator (e.g., down-sampling) defined over x. The first term
in (14) is a data fidelity term; µ ∈ R balances the importance
between the data fidelity term and the signal prior.
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Next, we discuss two classes of commonly used GSRs—
Graph Laplacian Regularizer (GLR) and Graph Total Variation
(GTV), as well as techniques to solve (14) with these priors.
The property comparison of different GSRs is summarized in
Table III.

2) Graph Laplacian Regularizer (GLR): The most com-
monly used GSR is the GLR. Given a graph signal x residing
on the vertices of G encoded in the graph Laplacian L, the
GLR can be expressed as

x>Lx =
∑
i∼j

ai,j · (xi − xj)2, (15)

where i ∼ j means vertices i and j are connected, implying the
underlying points on the geometry are highly correlated. ai,j
is the corresponding element of the adjacency matrix A. The
signal x is smooth with respect to G if the GLR is small, as
connected vertices xi and xj must be similar for a large edge
weight ai,j ; for a small ai,j , xi and xj can differ significantly.
This prior also possesses an interpretation in the frequency
domain:

x>Lx =

N∑
k=1

λkx̂
2
k, (16)

where λk is the k-th eigenvalue of L, and x̂k is the the k-th
GFT coefficient. In other words, x̂2k is the energy in the k-th
graph frequency for geometric data x. Thus, a small x>Lx
means that most of the signal energy is occupied by the low-
frequency components.

When we employ the GLR as the prior in (14) and assume
H(·) is differentiable, (14) exhibits a closed-form solution. For
simplicity, we assume H = I (e.g., as in the denoising case),
then setting the derivative of (14) to zero yields

x? = (I + µL)−1y, (17)

which is a set of linear equations and can be solved directly
or with conjugate gradient (CG) [83]. As L is a high-pass
operator, the solution in (17) is essentially an adaptive low-
pass filtering result from the observation y. This can also be
indicated by the corresponding graph spectral response:

ĥ(λk) = 1/(1 + µλk), (18)

which is a low-pass filter since smaller λk’s correspond to
lower frequencies. As described in Section IV-B1, the low-
pass filtering will lead to smoothed geometric data with the
underlying shape retained.

Further, as discussed in Section II-C, the graph Laplacian
operator converges to the Laplace-Beltrami operator on the
geometry in the continuous manifold when the number of
samples tends to infinity. We can also interpret the GLR from
a continuous manifold perspective. According to [33], given a
Riemannian manifold M (or surface) and a set of N points
uniformly sampled on M, an ε-neighborhood graph G can be
constructed with each vertex corresponding to one sample on
M. For a function x on manifold M and its discrete samples
x on graph G (a graph signal), under mild conditions,

lim
N→∞
ε→0

x>Lx ∼ 1

|M|

∫
M
‖∇Mx(s)‖22ds, (19)

where ∇M is the gradient operator on manifold M, and s
is the natural volume element of M [33]. In other words,
the GLR now converges to a smoothness functional defined
on the associated Riemannian manifold. The relationship (19)
reveals that the GLR essentially regularizes graph signals with
respect to the underlying manifold geometry, which justifies
the usefulness of the GLR [84].

In the aforementioned GLR, the graph Laplacian L is fixed,
which does not promote reconstruction of the target signal
with discontinuities if the corresponding edge weights are not
very small. It is thus extended to Reweighted GLR (RGLR)
in [13], [81], [85] by considering L as a learnable function of
the graph signal x. The RGLR is defined as

x>L(x)x =
∑
i∼j

ai,j(xi, xj) · (xi − xj)2, (20)

where ai,j(xi, xj) can be learned from the data. Now we have
two optimization variables x and ai,j , which can be optimized
alternately via proximal gradient [86].

It has been shown in [81] that minimizing the RGLR itera-
tively can promote piece-wise smoothness in the reconstructed
graph signal x, assuming that the edge weights are appropri-
ately initialized. Since geometric data often exhibits piece-wise
smoothness as discussed in Section III-B, the RGLR helps to
promote this property in the reconstruction process.

3) Graph Total Variation (GTV): Another popular line
of GSRs generalizes the well-known Total Variation (TV)
regularizer [87] to graph signals, leading to the Graph Total
Variation (GTV) and its variants. The GTV is defined as [88]:

‖x‖GTV =
∑
i∼j

ai,j · |xi − xj |. (21)

where ai,j is fixed during the optimization. Since the GTV is
non-differentiable, (21) has no closed-form solution, but can be
solved via existing optimization methods such as the primal-
dual algorithm [89].

Instead of using fixed A, Bai et al. extended the conven-
tional GTV to the Reweighted GTV (RGTV) [81], where
graph weights are dependent on x:

‖x‖RGTV =
∑
i∼j

ai,j(xi, xj) · |xi − xj |. (22)

This can be solved by ADMM [90] or the algorithm proposed
in [81].

The work of [81] also provides spectral interpretations of the
GTV and RGTV by rewriting them as `1-Laplacian operators
on a graph. The spectral analysis demonstrates that the GTV is
a stronger PWS-preserving filter than the GLR, and the RGTV
has desirable properties including robustness to noise and blur
and promotes sharpness. Hence, the RGTV is advantageous to
boosting the piece-wise smoothness of geometric data.

C. Applications in Geometric Data

In the following, we review a few works on geometric
data restoration with nodal-domain GSP methods. First, we
present a few applications recovering geometric data with the
simple-yet-effective GLR, and then extend our scope to more
advanced graph smoothness regularizers.
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(a) Ground truth. (b) Noisy. (c) Spectral-LP. (d) Nodal- [14]. (e) Nodal- [18].

Fig. 5: Point cloud denoising results with Gaussian noise σ = 0.04 for Quasimoto [38]: (a) The ground truth; (b) The noisy
point cloud; (c) The denoised result by graph spectral low-pass (LP) filtering that we implement according to (5); (d) The
denoised result by a nodal-domain GSP method in [14]; (e) The denoised result by a nodal-domain GSP method in [18].

1) Geometric Data Restoration with the GLR: To cope
with various geometric data restoration problems, GLR-based
methods place more emphasis on the choice of the neighbor-
hood graph and the algorithm design. For instance, to remove
additive white Gaussian noise (AWGN) from depth images,
Pang and Cheung [13] adopted the formulation in (14) with
the GLR. To understand the behavior of the GLR for 2D depth
images, [13] performs an analysis in the continuous domain,
leading to an ε-neighborhood graph (Section III-D) which not
only smooths out noise but also sharpens edges.

Zeng et al. [14] applied the GLR for point cloud denoising.
In contrast to [13], they first formulated the denoising problem
with a low dimensional manifold model (LDMM) [91]. The
LDMM prior suggests that the clean point cloud patches are
samples from a low-dimensional manifold embedded in the
high dimensional space, though it is non-trivial to minimize
the dimension of a Riemannian manifold. With (19) and tools
from differential geometry [92], it is possible to “convert”
the LDMM signal prior to the GLR. Hence, the problem
of minimizing the manifold dimension is approximated by
iteratively solving a quadratic program with the GLR.

Instead of constructing the underlying graph with pre-
defined edge weights from hand-crafted parameters, Hu et
al. proposed feature graph learning by minimizing the GLR
using the Mahalanobis distance metric matrix M as a variable,
assuming a feature vector per node is available [18]. Then the
graph Laplacian L becomes a function of M, i.e., L(M). A
fast algorithm with the GLR is presented and applied to point
cloud denoising, where the graph for each set of self-similar
patches is computed from 3D coordinates and surface normals
as features.

2) Geometric Data Restoration with Other GSRs: Despite
the simplicity of the GLR, applying it for geometric data
restoration involves sophisticated graph construction or algo-
rithmic procedures. This has motivated the development of
other geometric data restoration methods using various GSRs
that are tailored to specific restoration tasks.

To remove noise on point clouds, the method proposed
in et al. [80] first assumes smoothness in the gradient ∇GY

of the point cloud Y on a graph G, leading to a Tikhonov
regularization GSRTik(Y) = ‖∇GY‖22 which is equivalent to
the simple GLR. The method further assumes the underlying
manifold of the point cloud to be piece-wise smooth rather than
smooth, and then replaces the Tikhonov regularization with
the GTV regularization (21), i.e., GSRTV(Y) = ‖∇GY‖1. In
[79], Elmoataz et al. also applied the GTV for mesh filtering
to simplify 3D geometry.

In [45], Dinesh et al. applied the RGTV (22) to regularize
the surface normal for point cloud denoising, where the edge
weight between two nodes is a function of the normals. More-
over, they established a linear relationship between normals
and 3D point coordinates via bipartite graph approximation
for ease of optimization. To perform point cloud inpainting,
Hu et al. [82] also applied a modified GTV called Anisotropic
GTV (AGTV) as a metric to measure the similarity of point
cloud patches.

3) Restoration with Nodal-domain Filtering: Solving op-
timization problems can be formidable and sometimes even
impractical. An alternative strategy for geometric data recov-
ery is to perform filtering in the nodal-domain as discussed in
Section V-A. Examples include point cloud re-sampling [64]
and depth image enhancement [93]. Essentially, nodal-domain
filtering aims at “averaging” the samples of a graph signal
adaptively, either locally or non-locally.

D. Discussion on Spectral- and Nodal-Domain GSP Methods

There exists a close connection between spectral-domain
methods and nodal-domain ones, and as discussed earlier, there
is a correspondence between spatial graph filters and their
graph spectral response. As an example, consider the filter in
(13), where Lk = (UΛU>)k = UΛkU> since U>U = I. It
follows that (13) can be rewritten as

h(L) = Uh(Λ)U>, (23)

which corresponds to a graph spectral filter with h(Λ) as
the spectral response in (4). Another example is the spectral
response of the solution to a GLR-regularized optimization
problem, as presented in (18).
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(a) Spectral graph convolution.

1-hop

2-hop

(b) Spatial graph convolution.

Fig. 6: Graph convolution operations.

In addition, some nodal-domain graph filtering methods are
approximations of spectral-domain filtering, including polyno-
mial approximations of graph spectral filters like Chebyshev
polynomials [15]–[17] for depth map enhancement, as well as
lifting transforms on graphs [71] for depth map coding.

Comparing the two methods, as mentioned earlier, spectral
methods entail higher computational complexity due to eigen-
decomposition, whereas spatial methods avoid such complex-
ity and are thus more amenable to large-scale geometric data.
Also, graph transforms employed in spectral methods are
mostly global transforms, which capture the global features.
In contrast, spatial methods are often applied to capture local
features in graph signals. Taking point cloud denoising as an
example, we show denoising results in Fig. 5 comparing one
graph spectral low-pass filtering method that we implement
according to (5) as well as two state-of-the-art nodal-domain
GSP methods [14], [18]. We can observe from these results
that the nodal-domain methods reconstruct local structural
features better, including fine components such as the tobacco
pipe.

VI. GSP-BASED INTERPRETATION FOR GRAPH NEURAL
NETWORKS

The aforementioned GSP methods are model-based and
built upon prior knowledge and characteristics of geometric
data, which usually perform robustly, e.g., a depth map de-
noising algorithm would still perform reasonably on natural
images. However, model-based approaches lack flexibility as
they are built upon prior observations, e.g., the GSRs in Sec-
tion V-B [94]. In contrast, learning-based methods infer filter
parameters in a data-driven manner, which are highly flexible,
such as the recently developed geometric deep learning [19].
On the other hand, compared to the hand-crafted assumptions
made in model-based approaches, learning-based approaches
effectively learn to abstract high-level (or semantic) features
with a training process [95]. Consequently, they are more
suitable for high-level applications such as segmentation [96]
and classification [97].

Convolutional Neural Networks (CNNs) have shown to
be extremely effective for a wide range of imaging tasks

but have been designed to process data defined on regular
grids, where spatial relationships between data samples (e.g.,
top, bottom, left and right) are uniquely defined. In order
to leverage such networks for geometric data, some prior
works transform irregular geometric data to regular 3D voxel
grids or collections of 2D images before feeding them to a
neural network [98], [99] or impose certain symmetries in
the network computation (e.g., PointNet [100], PointNet++
[101], PointCNN [102]). As discussed in Section III-C, non-
graph representations are sometimes redundant, inaccurate or
deficient in data structural description.

In contrast, GSP provides efficient filtering and sampling of
such data with insightful spectral interpretation, which is able
to generalize the key operations (e.g., convolution and pooling)
in a neural network to irregular geometric data. For example,
graph convolution can be defined as graph filtering either in
the spectral or the spatial domain. This leads to the recently
developed Graph Neural Networks (GNNs) (see [19] and ref-
erences therein), which generalize CNNs to unstructured data.
GNNs have achieved success in both analysis and synthesis
of geometric data. The input geometric features at each point
(vertex) of GNNs are usually assigned with coordinates, laser
intensities or colors, while features at each edge are usually
assigned with geometric similarities between two connected
points.

Nonetheless, learning-based methods are facing common
issues such as interpretability, robustness and generalization
[94], [103]. In the remainder of this section, we will particu-
larly discuss the interpretability of GNNs from the perspective
of GSP for geometric data, which is expected to inspire more
interpretable, robust, and generalizable designs of GNNs.

A. Interpreting Graph Convolution with GSP

GSP tools, particularly graph filters, inspire some early
designs of basic operations in GNNs, including spectral graph
convolution and spectrum-free graph convolution. In addition,
GSP provides interpretation for spatial graph convolution from
the perspective of spatial graph filtering.

1) Spectral Graph Convolution: As there is no clear def-
inition of shift-invariance over graphs in the nodal domain,
one may define graph convolution in the spectral domain via
graph transforms according to the Convolution Theorem. That
is, the graph convolution of signal f ∈ RN and filter g ∈ RN
in the spectral domain with respect to the underlying graph G
can be expressed as the element-wise product of their graph
transforms:

g ?G f = U(U>g �U>f), (24)

where U is the GFT basis and � denotes the Hadamard
product. Let gθ = diag(U>g), the graph convolution can be
simplified as

g ?G f = UgθU
>f . (25)

The key difference in various spectral GNN methods is the
choice of filter gθ which captures the holistic appearance of
the geometry. In an early work [104], gθ = Θ is a learnable
diagonal matrix.
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As schematically shown in Fig. 6(a), the spectral-domain
graph convolution (25) is essentially the spectral graph filter-
ing defined in (4) if the diagonal entries of gθ are the graph
frequency response ĥ(λk). As gθ is often learned so as to adapt
to various tasks, it is analogous to the graph spectral filtering
with desired distribution as discussed in Section IV-B3. Hence,
we are able to interpret spectral-domain graph convolution via
spectral graph filtering for geometric data processing.

2) Spectrum-free Graph Convolution: It has been noted
earlier that the eigen-decomposition required by spectral-
domain graph convolution incurs relatively high computational
complexity. However, one may parameterize the filter using
a smooth spectral transfer function Θ(Λ) [105]. One choice
is to represent Θ(Λ) as a K-degree polynomial, such as the
Chebyshev polynomial which approximates the graph kernel
well [15]:

Θ(Λ) =

K−1∑
k=0

Tk(Λ̃), (26)

where T (·) denotes the Chebyshev polynomial. It is defined as
T0(Λ̃) = I, T1(Λ̃) = Λ̃, Tk(Λ̃) = 2Λ̃Tk−1(Λ̃) − Tk−2(Λ̃).
Λ̃ denotes the normalized eigenvalues in [−1, 1] due to the
domain defined by the Chebyshev polynomial.

Combining (25) and (26), we have

g ?G f = UΘ(Λ)U>f (27)

≈ U

K∑
k=0

Tk(Λ̃)U>f =

K∑
k=0

Tk(L̃)f , (28)

where L̃ = UΛ̃U> is a normalized graph Laplacian. This
leads to well-known ChebNet [106].

If we only consider 1-degree Chebyshev polynomial,
namely, K = 1, it leads to the widely used Graph Convolu-
tional Network (GCN) [107]. With a series of simplifications
and renormalization, the convolutional layer of the GCN takes
the form:

g ?G f = D̃−
1
2 ÃD̃−

1
2 Φ, (29)

where Ã = A + I is the renormalized adjacency matrix, and
D̃ is the corresponding degree matrix. Φ is a matrix of filter
parameters.

While inspired from a graph spectral viewpoint, both the
ChebNet and GCN can be implemented in the spatial domain
directly, which are thus referred to as spectrum-free. The
spectrum-free convolution in (28) and (29) is essentially nodal-
domain graph filtering presented in (13) and (12), respectively.
For instance, the graph convolution in the GCN is a simple
one-hop neighborhood averaging.

3) Spatial Graph Convolution: Analogous to the convo-
lution in CNNs, spatial graph convolution aggregates the
information of neighboring vertices to capture the local ge-
ometric structure in the spatial domain, leading to feature
propagation over adjacent vertices that enforce the smoothness
of geometric data to some extent [108]–[110]. Such graph
convolution filters over the neighborhood of each vertex in
the spatial domain are essentially nodal-domain graph filters
from the perspective of GSP.

As a representative spatial method on point clouds, Wang
et al. introduced the concept of edge convolution [110], which
generates edge features that characterize the relationships
between each point and its neighbors. The edge convolution
exploits local geometric structure and can be stacked to learn
global geometric properties. Let xi ∈ Rd and xj ∈ Rd denote
the graph signal on the i-th and j-the vertex respectively, the
output of edge convolution is:

x′i = Ψ(i,j)∈Eh(xi,xj) ∈ Rd, (30)

where E is the set of edges and h(·, ·) is a generic edge feature
function, implemented by a certain neural network. Ψ is a
generic aggregation function, which could be the summation
or maximum operation. The operation of (30) is demonstrated
in Fig. 6(b), where we could consider not only the 1-hop
neighbors but also 2-hop neighbors or more.

The edge convolution is also similar to the nodal-domain
graph filtering: both aggregate neighboring information; fur-
ther, the edge convolution specifically models each pairwise
relationship by a non-parametric function.

B. Understanding Representation Learning of GNNs with GSP

GSP tools also provide interpretation for representation
learning of GNNs, as discussed below.

1) Low-pass Graph Filtering of Features: Wu et al. [111]
propose to simplify GCNs by successively removing nonlin-
earities in GCNs and collapsing weight matrices between con-
secutive layers and analyze that this simple graph convolution
(SGC) corresponds to a fixed low-pass filter followed by a
linear classifier. That is, SGC acts as a low-pass filter that
produces smooth features over adjacent nodes in the graph.
As a result, nearby nodes tend to share similar representations
and consequently predictions.

Fu et al. [112] show that several popular GNNs can be inter-
preted as implicitly implementing denoising and/or smoothing
of graph signals. In particular, spectral graph convolutions
[106], [107] work as denoising node features, while graph
attentions [62], [113] work as denoising edge weights.

2) Introducing Domain Knowledge via GSP-based Regu-
larization: Some works provide domain knowledge via GSP-
based regularization (e.g., GSRs) for better understanding
the representational properties of GNNs. For instance, Te
et al. proposed a Regularized Graph Convolutional Neural
Network (RGCNN) [114] as one of the first approaches to
utilize GNNs for point cloud segmentation, which regularizes
each layer by the GLR introduced in Section V-B2. This
prior essentially enforces the features of vertices within each
connected component of the graph similar, which is incor-
porated into the loss function and enables explainable and
robust segmentation. Also, the GLR has spectral smoothing
functionality as discussed in Section V-B2, i.e., low-frequency
components are better preserved. Such regularization is robust
to both low density and noise in point clouds.

3) Inferring Data Structure via GSP-based Graph Learn-
ing: Dong et al. [115] discuss that GSP-based graph learning
frameworks enhance the model interpretability by inferring
hidden relational structure from data, which leads to a better
understanding of a complex system. In particular, GSP-based
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graph-learning has the unique advantage of enforcing certain
desirable representations of the signals via frequency-domain
analysis and filtering operations on graphs. For instance,
models based on assumptions such as the smoothness or
the diffusion of the graph signals show their superiority on
geometric structure [53], [110], [116]–[118]. Please refer to
[115] for more discussions.

4) Monitoring Intermediate Representations via GSP:
Gripon et al. [119] improve interpretability by using GSP to
monitor the intermediate representations obtained in a deep
neural network. They demonstrate that the smoothness of
the label signal on a k-nearest neighbor feature graph is a
good measure of separation of classes in these intermediate
representations.

C. Enhancing Robustness and Generalizability with GSP

1) Robustness: ”Robustness” of a deep learning network
may refer to 1) robustness to noisy data or labels; 2) robustness
to incomplete data; 3) robustness to a few training samples
with supervised information (e.g., few-shot learning), etc. As
discussed in Section VI-B2, introducing domain knowledge
via GSP-based regularization would lead to geometric deep
learning that is robust to noisy data and incomplete data.
Besides, Ziko et al. [120] proposed a transductive Laplacian-
regularized inference for few-shot learning tasks, which en-
courages nearby query samples to have consistent label as-
signments and thus leads to robust performance.

2) Generalizability: The generalizability of a model ex-
presses how well the model will perform on unseen data.
Regarding the generalizability, we assume a hypothesis: even
when the unseen data may demonstrate rather different dis-
tribution characteristics, there may be an intrinsic structure
embedded in the data. Such intrinsic structure usually can be
better maintained from seen datasets to unseen data. That is,
the data structure is assumed to be more stable than the data
themselves. Consequently, when GSP tools are incorporated
into deep learning networks, the graph structure (motivated
by the data structure) could provide extra insights / guidance
from the structure domain, in addition to the data domain, that
finally enhances the generalizability of the network. For exam-
ple, deep GLR [121] integrates graph Laplacian regularization
as a trainable module into a deep learning framework, which
exhibits strong cross-domain generalization ability.

VII. FUTURE DIRECTIONS

Regardless of the great success of GSP methods in various
applications involving geometric data processing and analy-
sis, there remain quite a few challenges ahead. Some open
problems and potential future research directions include:
• GSP for time-varying geometric data processing: Unlike

regularly sampled videos, 4D geometric data are char-
acterized by irregularly sampled points, both spatially
and temporally, and the number of points in each time
instance may also vary. This makes it challenging to
establish temporal correspondences and exploit the tem-
poral information. While some works have been done in
the context of 4D point cloud compression [46], [55] and

restoration [47], [54] with GSP, it still remains challeng-
ing to address complex scenarios with fast motion.

• GSP for implicit geometric data processing: While not
discussed in detail, the presented GSP framework em-
braces the processing of geometric data that is implicitly
contained in the data, e.g., multi-view representations and
light fields. For instance, Maugey et al. [122] proposed
a graph-based representation of geometric information
based on multi-view images. While this work aims at
more efficient compression, we believe the use of such
representations can potentially be leveraged for a wide
range of inference tasks as well.

• GSP for enhancing model interpretability: GSP paves an
insightful way to interpretable geometric deep learning,
which also leads to more robust and generalizable deep
learning. While we have discussed the interpretability of
GNNs via GSP from several aspects in Section VI, we
believe further steps could be made for more interpretable
geometric deep learning and even reasoning in artificial
intelligence.

• GSP for model-based geometric deep learning: as men-
tioned in Section VI, model-based GSP methods lack
flexibility but perform robustly for different input data;
while learning-based methods (e.g., with GNN) are highly
flexible but may not generalize well. Hence, it is desirable
to explicitly integrate GSP models (e.g., the GSRs in
Section V-B) into learning-based methods to retain the
benefits of both paradigms [94], [103].

VIII. CONCLUSIONS

We present a generic GSP framework for geometric data,
from theory to applications. Distinguished from other graph
signals, geometric data are discrete samples of continuous 3D
surfaces, which exhibit unique characteristics such as piece-
wise smoothness that can be compactly, accurately, and adap-
tively represented on graphs. Hence, graph signal processing
(GSP) is naturally advantageous for the processing and analy-
sis of geometric data, with interpretations in both the discrete
domain and the continuous domain with Riemannian geome-
try. In particular, we discuss spectral-domain GSP methods and
nodal-domain GSP methods, as well as their relation. Further,
we provide the interpretability of Graph Neural Networks
(GNNs) from the perspective of GSP, highlighting that the
basic graph convolution operation is essentially graph spectral
or nodal filtering and that representation learning of GNNs
can be understood or enhanced by GSP. We anticipate this
interpretation will inspire future research on more principled
GNN designs that leverage the key GSP concepts and theory.
Finally, we discuss potential future directions and challenges
in GSP for geometric data as well as GSP-based interpretable
GNN designs.
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