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ABSTRACT

This paper examines the use of OpenFOAM’s cellPoint and cellPointWallModified interpolation routines in fast fluid
dynamics (FFD). In addition, an arrangement of OpenFOAM’s data structures is proposed which speeds up FFD and an
adjustment to FFDwhich incorporates the Boussinesq approximation is discussed. The findings of this paper show that
the use of the cellPointWallModified interpolation routine in FFD produces results closer to reference data in higher
Reynolds number flows than the use of the cellPoint interpolation routine, a result which highlights the important role
that interpolation plays in the accuracy of FFD.

1. INTRODUCTION

The efficient use of air conditioners in buildings is an important, ongoing area of research. In order to develop accurate
models of the performance of an air conditioner, it is necessary to incorporate information about the room that the air
conditioner cools. The accuracy of a coupled simulation which models an air conditioner as well as the dynamics of
the air flow in a room induced by the air conditioner can be enhanced through the use of computational fluid dynamics
(CFD). By using a CFD simulation to generate detailed information about the dynamical and thermal patterns of air flow
in a room generated by an air conditioner, researchers can, for instance, determine locations for the air conditioner which
will lead to more efficient performance. Although there are great benefits to using CFD in a coupled simulation which
models the performance of an air conditioner and the room that it cools, CFD simulations can be slow as described in
Qiao et al. (2019).

Concerns around the speed of CFD have facilitated an interest in an alternative algorithm to traditional computational
fluid dynamics called fast fluid dynamics (FFD) in which the solutions to the Navier-Stokes equations are approximated
through the use of a time-splitting method which generates separate equations for the dynamics related to advection,
diffusion, and pressure gradients as described in Zuo (2010). The authors of this paper have implemented a version
of FFD using the open-source software toolbox OpenFOAM which is in line with the work of Liu et al. (2016). One
particularly interesting aspect of FFD is that the advection equation that it generates necessitates the use of an inter-
polation routine to determine intermediate velocities at points not located at the cell centers of meshes designed to
cover the domain of interest. Following this line of inquiry, the current paper compares and contrasts the use of two
of OpenFOAM’s interpolation routines - cellPoint and cellPointWallModified - in the FFD algorithm. In addition, this
paper presents a novel use of OpenFOAM’s data structures which speeds up FFD and discusses the incorporation of
the Boussinesq approximation into FFD.

2. METHODOLOGY

The following section introduces FFD aswell as describes a way in whichOpenFOAM’s data structures can be arranged
to speed-up FFD. Incorporation of the Boussinesq approximation into FFD is also discussed.

2.1 Basic Fast Fluid Dynamics Algorithm
When considering only pressure and velocity in incompressible flow and with an index repeated in a term implying
summation of that index over the number of relevant dimensions, the Navier-Stokes equations are given by Equation
(1).
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The fast fluid dynamics algorithm breaks up themomentum equation, Equation (1b), into three separate equations when
in discretized form, one equation each for the effects of advection, diffusion, and pressure gradients. The time-splitting
approach of FFD can be quantitatively described by Equation (2).
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To ensure that the velocity field is divergence-free at time step n+ 1, one can take the divergence of Equation (2c) and
utilize Equation (1a) to derive a Poisson equation for the pressure as given in Equation (3).
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Δt

∂U∗∗i
∂xi

(3)

FFD then solves Equation (2a) to obtain U∗i , Equation (2b) to obtain U∗∗i , Equation (3) to obtain pn+1, and Equation
(2c) to obtain Un+1

i . While FFD solves Equation (2b) and Equation (3) by standard means, FFD solves Equation (2a)
via a semi-Lagrangian scheme: Equation (2a) can be taken to represent the idea that a fluid particle’s velocity will
remain unchanged as it advects from a departure point xd where it has velocity Un to an arrival point xa where it has
velocity U∗. The departure point xd can be approximated using known variables as in Equation (4).

xd = xa − Δt ⋅Un(xa) (4)

U∗ at the arrival point xa, U∗(xa), can be related to Un at the departure point xd, Un(xd), as in Equation (5).

U∗(xa) = Un(xd) (5)

Using Equation (4), Equation (5) can be rewritten as in Equation (6).

U∗(xa) = Un(xa − Δt ⋅Un(xa)) (6)

By taking arrival points to be the cell centers of the mesh covering the domain of interest, Equation (6) can be used to
determine U∗ in the FFD algorithm. Because the departure point xd will, in most instances, not coincide with a cell
center as in Figure 1, Un(xd) has to be determined through interpolation as in Liu et al. (2016).

xa

xd

Figure 1: Illustration of a departure point ( ) advecting to an arrival point ( ) which coincides with a cell center;
denotes a generic cell center

The authors of this paper implemented FFD using OpenFOAM following the work of Liu et al. (2016). OpenFOAM
has a number of different interpolation routines which can be used to determine Un(xd), two of which are the cellPoint
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and cellPointWallModified routines. Once the cell to which an interpolation point belongs is determined, the cellPoint
method, as discussed in an OpenFOAMWiki (2010), works by covering each face of the cell with triangles, forming
tetrahedrons composed of these triangles and the cell center, determining which tetrahdron encloses the interpolation
point, and performing linear interpolation using inverse distance weights. The cellPointWallModified method, as
documented in the OpenFOAM-7 Source Code (2019), is defined only when the interpolated variable is a vector
(velocity, for instance) and works similarly to the cellPoint method except that the values of the interpolated variable at
points on the boundaries of the domain are extrapolated from their values at the cell centers and then modified in such a
way that they do not point out of the domain. Figure 2 compares and contrasts these two interpolation routines.

xD4

xD1
xD2

xD3xI

Figure 2: Data points xD1 - xD4 ( ) used to evaluate a fluid property at an interpolation point xI ( ); if a data point lies
on a boundary face, the cellPoint interpolation routine considers the value of the fluid property at that point to be as
prescribed by the relevant boundary condition while the cellPointWallModified interpolation routine bases the value
of the fluid property at the boundary data point on the value at the cell center

The cellPointWallModified interpolation routine significantly improves the accuracy of FFD in the following way:
suppose, along the lines of Figure 2, xDi , i = 1, . . . , 4 are the positions of points used to perform interpolation in which
xD1 , xD2 , and xD3 are cell vertices of a face which lie on the boundary of the mesh, xD4 is a cell center, and xI is the
interpolation point. Suppose also that f is a component of velocity which is to be interpolated and d(xDi ,xI) denotes
the distance between xDi and xI. With Δ ≡ ∑4

i=1
1

d(xDi ,xI)
, then, without loss of generality for the following argument,

the value of the velocity component f at xI, fI, can be taken to be based on the values of f at the four data points, fD1 -
fD4 , as in Equation (7).
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1
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If, as previously specified, xD1, xD2, and xD3 lie on a boundary face and fI lies close to this face and away from the cell
center then, according to Equation (7), 1
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, 1
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, 1
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>> 1
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and fI ≈ 1
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+ fD3
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).
If, in addition, the values of fD1 , fD2 , and fD3 are taken to be those prescibed by the relevant boundary conditions, as in the
cellPoint interpolation routine, then the value of fI will not be accurately approximated in high Reynolds number flows
because of a failure to take into account the steep velocity gradients that exist near boundaries as noted by Kundu et al.
(2012). The cellPointWallModified interpolation routine rectifies this problem near the boundary by basing fD1 , fD2 ,
and fD3 on the value of f in the cell center, fD4 , when fD1 , fD2 , and fD3 lie on a boundary face. Because fD4 represents the
value of f at an interior point in the flow, the cellPointWallModified routine better resolves the steep velocity gradients
present near boundaries in high Reynolds number flows. In order to observe the differences in performance when used
in FFD, the cellPoint and cellPointWallModified interpolation routines were tested on three different cases and the
outcomes of these tests are presented in the Results section of this paper.

Because the present authors implemented FFD in OpenFOAM, an arrangement of OpenFOAM’s data structures which
sped-up the authors’ implementation of FFD is now described. OpenFOAM enables its users to represent the velocity
at the cell centers of a mesh through the use of data structures called Fields, as documented in the OpenFOAM Pro-
grammer’s Guide (2015). In addition, the authors’ implementation of FFD solved the matrix equations generated by
Equation (2b) through the use of an iterative solver which used as its initial guess for U∗∗ at time step n + 1 the value
of U∗∗ at time step n, as documented in the OpenFOAM User Guide (2019). By using separate Fields for U, U∗, and
U∗∗, the solution to Equation (2b) was sped-up because at each time step the initial guess for U∗∗ was its value at the
previous time step and as a simulation approached steady-state fewer iterations were needed to solve Equation (2b) as
the change in U∗∗ diminished.
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2.2 Incorporation of the Boussinesq Approximation into FFD
When performing simulations of air flow in rooms related to the performance of air conditioners, it is clearly important
to account for thermal effects. Use of the Boussinesq approximation allows for the incorporation of thermal effects
into CFD without having to solve the fully compressible Navier-Stokes equations. In particular, the Boussinesq ap-
proximation assumes that the fluid’s density is constant except when generated by buoyant forces and it is noteworthy
that Gray and Giorgini (1976) demonstrated the validity of the Boussinesq approximation for air at room temperature.
The Navier-Stokes equations with the Boussinesq approximation are given by Equation (8).
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= 0 (8a)
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∂τ
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∂xj
= α ∂2τ

∂xj∂xj
(8c)

The relative temperature, τ, is defined as τ ≡ T−T0. In order to incorporate the change to the body force term generated
by the Boussinesq approximation into FFD, the authors of this paper utilized a technique wherein at each time step
after the semi-Lagrangian procedure was employed to determineU∗ an iterative procedure was used which first solved
Equation (2b), Equation (3), Equation (2c), and Equation (8c) for the intermediate variables Ũ∗∗, p̃n+1, Ũn+1, τ̃n+1 and
then solved Equation (2b), Equation (3), Equation (2c), and Equation (8c) again with the intermediate variables to
determine U∗∗, pn+1, Un+1, τn+1. The first iteration of this procedure can be quantitatively described by Equation (9a)
- Equation (9d).
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The second iteration of this procedure can be quantitatively described by Equation (10a) - Equation (10d).
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As a way of providing a visual summary, Figure 3 displays a flowchart of FFD with the Boussinesq approxima-
tion.
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Advection via semi-Lagrangian scheme
with interpolation to obtain U∗

Solve diffusion equation with
Boussinesq body force term to obtain Ũ∗∗

Solve Poisson equation to obtain p̃

Obtain Ũn+1

by ensuring that it is divergence-free

Solve energy equation to obtain τ̃

Repeat steps 2-5 with the known (̃·) variables
to obtain U∗∗, pn+1, Un+1, τn+1

1

2

3

4

5

6

Figure 3: Flowchart of FFD with the Boussinesq approximation

3. RESULTS

The following section presents and discusses results from the authors’ implementation of FFD in OpenFOAM for
three different cases: flow in a 2D cavity, flow in a 2D forced convection cavity, and flow in a 3D mixed convection
cavity. Table 1 displays the specifications for these cases while Table 2 displays the runtimes of FFD when using
cellPoint interpolation as compared to cellPointWallModified interpolation. All subsequent velocity and temperature
plots in this section are taken from the final time step of the simulations to which these plots belong. While the results
and discussions in this section compare the accuracy of using cellPoint interpolation in FFD with the accuracy of
using cellPointWallModified interpolation in FFD, examination of Table 2 demonstrates that the runtimes of these two
different versions of FFD are roughly equivalent.

Table 1: Case Specifications

Case Simulation Time (sec) Δt (sec) Re Mesh
2D Cavity 10 0.01 100 64x64

2D Forced Conv. 400 1 ∼5000 44x27
3D Mixed Conv. 100 0.05 ∼2000 44x44x44

Table 2: Case Runtimes (in seconds) when using a 2 GHz processor

Interpolation Routine 2D Cav. 2D Forc. Conv. 3D Mix. Conv.
cellPoint 20.7 13.2 1629.36

cellPointWallModified 20.79 14.17 1692.01

3.1 2D Cavity
The 2D cavity case, pictured in Figure 4a, consists of flow in a two-dimensional square cavity driven by a top plate
which moves with a constant velocity while the other boundaries remain stationary. Figure 4b displays the mesh used
to run the simulation.

To check the current authors’ implementation of FFD, Figure 5 compares velocity profiles generated by FFD using
both the cellPoint and cellPointWallModified routines to reference data given in Ghia et al. (1982). Examination of
Figure 5 demonstrates that, in this low Reynolds number flow, using both interpolation routines in FFD yield accurate
results for the 2D cavity.
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Figure 6 plots the number of iterations needed to solve thematrix equations forU∗∗x andU∗∗y as the simulation proceeded
forward in time. Examination of Figure 6 demonstrates that the number of iterations does indeed decrease with time
as the simulation approaches steady-state and the initial guesses to solve for U∗∗x and U∗∗y at each time step become
closer to their true values.

x

y

U = U0

L

(a) (b)

Figure 4: Illustration of the 2D cavity case: (a) Schematic (based on Figure 4-1 of Zuo (2010)) (b) Mesh
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Figure 5: Velocity profiles from the 2D cavity case: , cellPoint; , cellPointWallModified; , Reference data from
Ghia et al. (1982)
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Figure 6: Number of iterations necessary to solve the matrix equations for U∗∗x and U∗∗y vs. simulation time (sec):
, U∗∗x ; , U∗∗y

3.2 2D Forced Convection
The 2D forced convection case, pictured in Figure 7a, consists of a 2D, rectangular cavity in which an inlet stream
flows in from the upper left corner of the domain and an aperture in the bottom right corner of the domain allows for
mass flow out of the cavity. Table 3 provides numerical values for the parameters specified in Figure 7a, while Figure
7b displays the mesh used to run the simulations. The values in Table 3 are the same as in Liu et al. (2016) while the
mesh in Figure 7b is based on the mesh in Figure 2b of the same journal article.
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Figure 8a displays instantaneous streamlines from the FFD simulation of the forced convection cavity with the cellPoint
interpolation routine while Figure 8b displays instantaneous streamlines from the FFD simulation with the cellPoint-
WallModified interpolation routine. Figure 8c displays a plot of how the streamwise velocity varies along the height
of the forced convection cavity from two-thirds of the way down the length of the cavity while Figure 8d charts how
the streamwise velocity varies along the length of the cavity starting in the middle of the inlet slot for the FFD sim-
ulations with the cellPoint and cellPointWallModified interpolation routines as compared against reference data from
Nielsen et al. (1978). Examination of Figure 8c and Figure 8d demonstrates that the FFD simulation with the cellPoint-
WallModified interpolation routine does indeed do a better job of capturing the steep velocity gradient present at the
top of the domain in this high Reynolds number flow. In addition, comparison of Figure 8a and Figure 8b demonstrates
that the FFD simulation with the cellPointWallModified interpolation routine generates a smoother, more well-formed
recirculation bubble in the center of the cavity. Because the cellPointWallModified routine adjusts the treatment of
the velocity at the wall, Figure 8 demonstrates that the way in which the conditions at the wall are incorporated into a
solver affect not only the behavior of the fluid near the wall, but also the behavior within the interior of the domain as
can be seen by the stark change in streamline pattern between Figure 8a and Figure 8b.

hin

hout

Uin

H

Lx

y

(a) (b)

Figure 7: Illustration of the 2D forced convection case: (a) Schematic (based on Figure 4-9 of Zuo (2010))
(b) Mesh

Table 3: Numerical values of the parameters displayed in the schematic of the 2D forced convection case, Figure 7a

Parameter L H hin hout Uin
Value 9 m 3 m 0.168 m 0.48 m 0.455 m/s

(a) (b)

0.2 0.0 0.2 0.4
U(x = 2H)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

(c)

0 2 4 6 8
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

U(
y 

= 
H-

h i
n/2

)

(d)

Figure 8: Results of the FFD simulation of the 2D forced convection case: (a) Streamlines from the simulation with
the cellPoint interpolation routine color-coded by the magnitue of velocity (b) Same plot as (a) except cellPoint-
WallModified was used (c) Plot of U(x = 2H) vs. y , cellPoint; , cellPointWallModified; , Reference
data from Nielsen et al. (1978) (d) Plot of x vs. U(y = H − hin/2) with the same color-coding as in (c)
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3.3 3D Mixed Convection
The 3D mixed convection case, pictured in Figure 9a, consists of a cubic cavity in which there exists a solid cubic
box at the bottom of the cavity. An inlet stream sends air into the cavity and there exists an outlet slot through which
mass can leave the cavity. The walls of the cavity and the box are maintained at different temperatures so that it is
necessary to account for thermal effects. Table 4 provides numerical values, equivalent to those in Liu et al. (2016), for
the parameters relevant to this case. Because the temperature distribution is non-uniform in the 3D mixed convection
cavity, FFD with the Boussinesq approximation as in Section 2.2 was used to simulate this case. Figure 9b displays the
mesh used to conduct the simulations. The mesh in Figure 9b is based on Figure 9b of Liu et al. (2016). To analyze the
results of the simulation Figure 10 plots the variation of a scaled magnitude of velocity along the y axis at four different
locations while Figure 11 plots the variation of a scaled temperature at the same locations as in Figure 10. The points
in the x-z plane from which the data from Figure 10 and Figure 11 are taken are visualized in Figure 9c.

Examination of Figure 10 demonstrates that the FFD simulation with the cellPointWallModified routine not only gen-
erates an inlet stream with more momentum than its counterpart simulation with the cellPoint interpolation routine,
behavior which is in line with the other higher Reynolds number flow tested in this paper (2D forced convection),
but also possesses greater momentum in the interior of the domain, results which are closer to the reference data. Ex-
amination of Figure 11 demonstrates that the FFD simulation with the cellPointWallModified routine does a better
job of capturing the temperature in the interior of the domain, but also is more effective at capturing the trend of the
temperature distribution near the inlet (Figure 11a).

z

x
y

hin

Uin

hout

L

H

(a) (b)

x

z

6 7 8 9 10

1

2

3

4

5

Inlet

(c)

Figure 9: Illustration of the 3D mixed convection case based on Figure 9 of Liu et al. (2016): (a) Schematic
(b) Mesh (c) View from above of the x-z locations from which the data in Figure 10 and Figure 11 are taken

Table 4: Numerical values of the parameters displayed in the schematic of the 3D mixed convection case, Figure 9a

Parameter L H hin hout Uin
Value 2.44 m 1.22 m 0.03 m 0.08 m 0.455 m/s

Parameter Tin Tbox Tcavity ceiling Tcavity walls Tcavity floor
Value 22.2 °C 36.7 °C 25.8 °C 27.4 °C 26.9 °C
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Figure 10: Plots of ∣U∣/Umax vs. y/L at locations (specified by Figure 9c): (a) 1 (b) 3 (c) 5 (d) 6;
Umax = 1.5 m/s; , cellPoint; , cellPointWallModified; , Reference data from Wang and Chen (2009)
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Figure 11: Plots of (T − Tmin)/(Tmax − Tmin) vs. y/L at locations (specified by Figure 9c): (a) 1 (b) 3 (c) 5
(d) 6; Tmin = 22.2 °C, Tmax = 36.7 °C; , cellPoint; , cellPointWallModified; , Reference data from Wang and
Chen (2009)

4. CONCLUSIONS

In this paper, FFD was implemented in OpenFOAM with two different interpolation schemes, cellPoint and cell-
PointWallModified, and applied to three different test cases. While the timings of FFD with cellPoint interpolation and
cellPointWallModified interpolation were roughly equivalent, FFDwith cellPointWallModified interpolation produced
more accurate simulations in higher Reynolds number flows by adjusting the nature of the interpolation scheme near the
boundaries of the domain. Given this information, it appears that the version of FFD with the cellPointWallModified
interpolation scheme is superior to the version of FFD with the cellPoint interpolation scheme.
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NOMENCLATURE

α thermal diffusivity (m2 s−1)
β coefficient of thermal expansion (K−1)
B body forces (N)
d(⋅, ⋅) distance (m)
Δ sum of reciprocal distances (m−1)
f generic velocity component (m s−1)
fD velocity component at data point (m s−1)
fI velocity component at interpolation point (m s−1)
g gravitational acceleration (m s−2)
ρ density (kgm−3)
p pressure (Pa)
τ relative temperature (K)
T temperature (K)
T0 reference temperature (K)
t time (s)

Δt time step (s)
U velocity (m s−1)
ν kinematic viscosity (m2 s−1)
x spatial coordinates (m)
xa arrival point (m)
xd departure point (m)
xD data point (m)
xI interpolation point (m)
Superscript
n current time step
n + 1 succeeding time step
∗, ∗∗ intermediate time variables
∼ intermediate iteration variables
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