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Abstract—This paper proposes an anomaly detection
algorithm for a factory automation system, which jointly
performs data pre-processing and time-delay autoencoder
(TDAE) with a hybrid loss function. The source data
are pre-processed by digital filters before feeding into
a TDAE for anomaly detection. The digital filters
extract analog signals from a variety of frequency bands
to facilitate identifying anomalies. The pre-processed
data then takes time-delay reform to explore temporal
relationship of data signals. In addition, two anomaly
diagnosis algorithms, a statistical based method and an
autoencoder based method, are presented. Numerical
results show that time-delay reform can improve the
anomaly detection accuracy compared to the conventional
autoencoder. Data pre-processing can further improve the
anomaly detection accuracy. Moreover, we confirm that
our anomaly diagnosis algorithms outperform traditional
method that does not perform data pre-processing and
time-delay reform.

Index Terms—Factory automation, Deep learning,
Anomaly detection, Fault diagnosis

I. INTRODUCTION

The performance of factory automation (FA)
systems is typically determined by a factor of
downtime, which describes the period of time
that system stops its production. Manufacturing
machines in the FA system might stop working due
to undesired faults, intrusions and system failures
[1]. Therefore, it is crucial to detect the anomalies,
where a machine is in an abnormal condition
whenever anomalies occur [2], [3]. Traditional
machine learning algorithms such as isolation
forest (IF), one-class support vector machine (OC-
SVM) and local outlier factor (LOF) have been
widely used for anomaly detection [4]–[8]. Without
introducing a large computation latency, these
unsupervised machine learning techniques are easy
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to be implemented but the detection performance is
limited since a complex data structure is involved
for analysis.

Modern deep learning techniques have been
applied to anomaly detection for various
manufacturing systems due to its excellent
performance to learn a complex data structure
[9]. Among numerous deep learning techniques,
autoencoder (AE), as a powerful technique to learn
the underlying representation of the data [10], is
the core technology in deep anomaly detection
[2], [11]. The attractiveness of employing AE on
factory anomaly detection is that it can inherit
various neural network architecture to find a best-fit
compressed representation of the original data. As
such, AE has shown a robust and better anomaly
detection performance in many real-world problems
[12], [13]. Nevertheless, the AE-based algorithms
are designed relying on the complex structure of
neural networks, where the source data are usually
not pre-processed. After an off-line training, the
overall AE performance can be degraded by
disruption that contains undesirable information.

In the meantime, as an extension of anomaly
detection, several anomaly diagnosis methods have
been studied [12], [14], [15]. Once an anomaly has
been detected, anomaly diagnosis is to identify the
exact sources that have caused the anomaly. In FA
system, a source can be a machine, a hardware
part, or a software program. Since many sensors are
typically placed to collect data in FA system, the
anomaly diagnosis aims at finding specific sensors
that have captured anomalous events. The anomaly
score of an anomaly detection algorithm describes
the status of sensor signal at a specific time and
the individual anomaly contribution of each sensor
signal needs to be characterized according to the
specific anomaly detection algorithm.
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This paper firstly introduces a pre-processing
based time-delay autoencoder (Prep-TDAE)
structure for the anomaly detection in FA systems.
The proposed Prep-TDAE structure pre-processes
the sensor signals before feeding into a TDAE. In
specific, digital filters are used to process the sensor
signals to extract the data features among a preset
frequency range. By filtering the signals, we expect
the TDAE to represent the signals more precisely
during the decoding, which results in an improved
anomaly detection performance. In addition to the
proposal of the anomaly detection algorithm, this
paper then proposes anomaly diagnosis schemes
based on the proposed Prep-TDAE algorithm, in
which we introduce a statistics-based anomaly
diagnosis method named Prep-TD-SD and an
AE-based anomaly diagnosis method named Prep-
TDAE-AD to demonstrate the effectiveness of the
time-delay reform and data pre-processing. We test
the proposed algorithms based on the data that is
obtained from a real FA system. Numerical results
show that Prep-TDAE outperforms the traditional
machine learning anomaly detection algorithms
and both anomaly diagnosis methods outperform
the traditional diagnosis method, which does not
perform time-delay reform and data pre-processing.

A. Notations
We use small boldface letters for vectors. For

any real matrix A, its transpose is denoted by
AT. tr{A} indicates the trace of a matrix A. IN
refers to the N×N identity matrix. The probability
density function (PDF) of the multivariate normal
distribution is denoted as N (μ,Σ). A uniform PDF
is defined to be U(a, b), where a and b are the
minimum and maximum values of the uniform
interval, respectively. |x| denotes the cardinality of
the vector x. We let abs(·) denote the element-wise
absolution function. We use Υ(x) = {i|xi ∈ F2} to
denote a function which finds the set of indices of
the binary variables in x and Φ(x) = {0, ..., |x| −
1} \ Υ as the set of indices of the non-binary
variables in x. In general, we use a symbol with
prime, e.g., x′ to indicate the test data and a symbol
without prime to indicate the training data.

II. PRELIMINARIES

A. System Model and Data Type
In this paper, we consider an FA system that

uses N sensors to collect data. Mixture of binary

and analog sensors are considered. Since the
analog sensors have different ranges of values, the
sensors source signals are normalized by min-max
normalization, where the resulting signals are in the
range from 0 to 1. We use xt = [xt

0, x
t
1, ..., x

t
N−1]

T

to denote the min-max normalized sensor signals at
the tth time index. Correspondingly, (x′)t indicates
the test data and (y′)t ∈ {0, 1} denotes the labelling
of the test data, where 0 indicates that the sensor
collected normal data at the tth time index and 1,
otherwise. The time index indicates the sampling
index during the consecutive data collection.

Using real FA devices such as robot and conveyor,
a testbed has been built for data collection and
functional test. The testbed uses about 100 sensors
for data collection. The sensors include both
binary sensors and analog sensors. The data are
sampled at a sampling rate of 100 Hz. Normal
and abnormal data are collected separately. Normal
data are collected with a duration of 3232s and
the abnormal data are collected multiple rounds,
where each round has a duration of 205s. During
abnormal data collection, the anomaly occurs at
around 170s after the start of the data collection.
Therefore, the abnormal data are labelled as 1 after
170s. A downsampling factor f can be considered
to reduce the total number of training and test
samples. The corresponding sampling rate becomes
100/f Hz.

B. TDAE Design

TDAE is one of the autoencoder structures
to leverage neural networks for the task of
representation learning [10]. TDAE has been
proposed to learn acoustic-phonetic features in
[16]. It learns the temporal relationships between
the signals over time to reveal critical information
in FA systems. As shown in Fig. 1, given a
time-delay window size w, the source data are
successively concatenated to a time-delay sequence.
We define the concatenated sequence as follows.

Definition 1 (Time-delay form): The sensor signals
are concatenated in w time samples, where
lt = [xt, ...,xt+w−1] denotes the tth concatenated
sequence.

In Fig. 1, the encoder and decoder refer to
the neural network layers in the AE structure
that compresses the data and recover the input
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Fig. 1. An example of a conventional TDAE with a time-delay
window size of w = 2.

sequence lt to an estimate l̂t. A loss function
L(lt, l̂t) is preset to manipulate the reconstruction
loss of the autoencoder, where the backpropagation
is performed to tune the trainable parameters
by stochastic gradient descent algorithms. The
TDAE is trained by using normal data. When
the reconstruction loss L(lt, l̂t) becomes large, it
indicates that an abnormal data sequence (anomaly)
is encountered by the anomaly detector. The
one-to-one labelling of the tth concatenation is
determined according to the last concatenated
sequence yt+w−1. Since the TDAE considers the
sensor signals in both the time and space domains,
it is able to achieve a better anomaly detection
performance compared to the conventional AE,
which directly processes xt without the time-delay
reform.

III. ANOMALY DETECTION

In FA systems, the sensor signals are sensitive
to the corruptions such as noise and inconsistent
operations of the machines. Therefore, quickly and
efficiently sensing the erroneous information and
processing the information becomes the main target
of anomaly detection.

In order to magnify the difference in signals
between normal and abnormal data and improve
the accuracy of anomaly detection, we introduce
the Prep-TDAE algorithm, which pre-processes the
normalized analog sensor signals by applying digital
filters. The digital filters are chosen to filter the
signals in a preset frequency band. As a result, the
magnitude of each sensor’s constituent frequencies
that are out of the designed frequency bands are
diminished. The TDAE is expected to learn the
frequency characteristics better after digital filtering.

Normalized source data

Chebyshev high-pass filter
Chebyshev band-pass filter

[ ]

Time-delay reform

[ ]

, for

Autoencoder

[ ]

Pre-processing

, for

Unit impulse

Fig. 2. Flowchart of the proposed Prep-TDAE.

Fig. 2 depicts the flowchart of the proposed Prep-
TDAE algorithm, where a Chebyshev type-1 band-
pass and high-pass filters are employed to pre-
process the normalized analog sensor signals [17].
The essential parameters, the order of the filters and
the cutoff frequencies are chosen to minimize the
TDAE’s reconstruction loss of the normal data.

Let xt
F = {xt

i| i ∈ Υ(xt)} and
xt

A = {xt
i|i ∈ Ψ(xt)} be the set of binary sensor

signals and analog sensor signals, respectively. The
signals xt

A will be convoluted with the predefined
Chebyshev type-1 filters. The output of the band-
pass and high-pass filters of the analog sensors
are defined as xt

B = [xt
B,0, ..., x

t
B,|Ψ(xt)|−1]

T and

xt
H = [xt

H,0, ..., x
t
H,|Ψ(xt)|−1]

T. As shown in Fig. 2,
the unity impulse function indicates that the binary
sensor signals are preserved. In the following, we
define two forms of the processed data.

Definition 2 (Pre-processed form): The
concatenation of the pre-processed analog signals
and the binary signals at time index t, i.e.,
xt

P = [xt
F,x

t
B,x

t
H], which has a cardinality of

NP = |Υ(xt)|+ 2|Ψ(xt)|.
Definition 3 (Time-delay pre-processed form):
The concatenation of the pre-processed signals
over a time-delay window of size w, i.e.,
xt

T = [xt
P, ...,x

t+w−1
P ], which has a cardinality of

NT = wNP.

Since the source data contain both binary and
analog signals and the binary signals are preserved
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by the pre-processing, a hybrid loss function
that combines cross-entropy and squared error is
proposed. We define the sigmoid cross-entropy loss
function as:

Lc(x
t
T, x̂

t
T) =

∑
i∈Υ(xt

T)

CE(xt
T,i, x̂

t
T,i), (1)

where

CE(xt
T,i, x̂

t
T,i) = −xt

T,ilog
( 1

1 + exp(−x̂t
T,i)

)
−

(1− xt
T,i)log

( 1

1 + exp(−x̂t
T,i)

)
, (2)

and the squared error loss function is defined as

Ls(x
t
T, x̂

t
T) =

1

2

∑
i∈Ψ(xt

T)

(xt
T,i − x̂t

T,i)
2. (3)

Then, the final loss function L(xt
T, x̂

t
T) at the tth

time index is define to be

L(xt
T, x̂

t
T) =

1

NT

(
λLc(x

t
T, x̂

t
T) + (1− λ)Ls(x

t
T, x̂

t
T)
)
,

(4)

where λ is a scaling factor to balance the loss
contribution of each loss function. The larger of
the reconstruction loss L(xt

T, x̂
t
T), the more likely

an abnormal data is observed at the tth time index.
In the training phase of the autoenocder, the data
that are obtained when a machine works normally
are used to train the tunable parameters in the
neural network. During the testing phase, the same
steps are performed as in Fig. 2 but the data input
becomes the test data. It will be shown in the
numerical results that performing the pre-processing
to the analog sensors is capable to improve the
anomaly detection performance.

IV. ANOMALY DIAGNOSIS

Once an anomaly is detected, anomaly diagnosis
is to find the exact sources that work abnormally.
Other than detecting the exact time index that a
machine works abnormally, as described in Sec. I,
anomaly diagnosis aims at identifying the sensors
that captured abnormal data. In other words, each
sensor’s contribution to the anomaly needs to be
measured. We present our statistics-based anomaly
diagnosis scheme Prep-TD-SD and AE-based
anomaly diagnosis scheme Prep-TDAE-AD herein.

A. Prep-TD-SD

Notice that the sensor signals can be naturally
correlated and a large number of sensors can be
used in an FA system. Limited by the computational
complexity, variables substitution is not applicable
to determine the anomalous sensors if the number
of anomalous sensors is large [12]. Regarding to the
Prep-TD-SD, suppose x̃t

T is the standard normalized
sequence of xt

T, where the entries of x̃t
T have zero

mean and unit variance, we assume that x̃t
T follows

a model of:

x̃t
T = Ωst + et, (5)

where Ω is the matrix that correlates the unknown
independent and identically distributed random
variables s ∈ R

NT×1 that has si ∼ N (0, 1). Here,
e ∈ R

NT×1 refers to the error sequence, where
the non-zero elements are the error signals of
the anomalous sensors. If the FA system works
normally, all the entries of e are zeros. All the
three variables at the right-hand side are unknown.
Our motivation is to de-correlate the time-delay
pre-processed signals and transform it back to
the anomaly contribution of each sensor. The
Prep-TD-SD is summarized into two phases, the
training phase and the testing phase. The algorithm
is summarized in Algorithm 1. In the training
phase, the whitening matrix is found and stored
before the testing phase. In Algorithm 1, we use
pt to denote the anomaly score in a pre-processed
form, which has pt = [pt

F,p
t
B,p

t
H]. The final

anomaly scores of the sensors are denoted by at.
Note that to avoid the covariance matrix to be

noninvertible, a shrunk covariance estimator for the
covariance matrix Σx̃T

can be computed. The shrunk
covariance is obtained by

Σshurnk = (1− α)Σx̃T
+ α

tr{Σx̃T
}

NT

I, (6)

where α is a shrinkage coefficient to balance the
bias and variance of the estimation in the covariance
matrix. Since the shrunk coavriance matrix is used,
the signals after whitening transform are standard
normalized, where the standard normalizations are
performed in both the training and testing phases.

Following the model assumption in (5), when Λ
perfectly de-correlates and whitening transforms
x̃t

T, the term ΛΩst can be reduced to st, which
is considered as NT variables that are normally
distributed, and the error term Λet is added.
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Algorithm 1 Prep-TD-SD Algorithm

Phase 1 – Training

Step 1: Compute the statistical mean μxT
∈

R
NT−1 and variance σ2

xT
∈ R

NT−1 based on
the data xT.

Step 2: Standard normalize the signals by x̃t
T,i =

(xt
T,i − μxT,i)/σxT,i for i ∈ {0, ..., NT − 1} and

compute the statistical covariance matrix Σx̃T
.

Step 3: Given the covariance matrix Σx̃T
,

compute the whitening matrix Λ.
Step 4: Whitening transform x̃t

T by ẋt
T = Λx̃t

T.
Step 5: Find the mean μẋT,i and variance σ2

ẋT,i

of the ith whitened signal ẋT,i, where i ∈
{0, ..., NT − 1}.

Phase 2 – Testing

Step 1: Standard normalize the test data (x̃′
T,i)

t =
((x′)tT,i − μxT,i)/σxT,i.

Step 2: Whitening transform (ẋ′
T)

t = Λ(x̃′
T)

t.
Step 3: Standard normalize (ẋ′

T)
t by (x́′

T,i)
t =

(ẋ′
T,i)

t−μẋT,i

σẋT,i
for i ∈ {0, ..., NT − 1}.

Step 4: Find pt by pt =
∑t+w−1

m=t

(
(x́P

′)m
)2

,

where
(
(x́P

′)m
)2

is the pre-processed form of
the anomaly score at the mth time index.

Step 5: Find the summation of the anomaly
scores of the analog sensors by at

A = [pt
B+pt

H].
The final anomaly scores of the sensors are
returned as at = [pt

F, a
t
A].

When the error sequence et is sparse, we expect
to accurately detect the anomalous sensors by
element-wisely comparing at to a threshold,
where the anomalous sensor is detected if at is
greater than the threshold. Notice that when the
time-delay pre-processed form is not applied and
the Mahalanobis whitening matrix is used, the
algorithm reduces to the complete decomposition
contribution (CDC) to T 2 as discussed in [15].

B. Prep-TDAE-AD
Instead of collecting the information of

covariance as in previous section, Prep-TDAE-AD
is designed based on the proposed AE structure
in Sec. III. The loss function of an AE assumes
that the reconstruction errors of the signals are

Algorithm 2 Prep-TDAE-AD Algorithm

Phase 1 – Training

Step 1: Find the residual error rtT of each element
in xt

T.
Step 2: Find the mean of each signal μrT

∈
R

NT−1 and the variance σ2
r ∈ R

NT−1.

Phase 2 – Testing

Step 1: Compute the residual errors (r′T)
t of the

test sequence (x′
T)

t.

Step 2: Standard normalize (ŕ′T,i)
t =

(r′T,i)
t−μr,i

σr,i
,

where (ŕ′T)
t has its time-delay pre-processed

form: (ŕ′T)
t = [(ŕ′P)

t, ..., (ŕ′P)
t+w−1].

Step 3: Find the anomaly score of the
pre-processed form, where pt =∑t+w−1

m=t abs
(
(ŕP

′)m
)
.

Step 4: Find the summation of the anomaly score
of the analog sensors by at

A = [pt
B + pt

H]. The
final anomaly scores of the sensors are returned
as at = [pt

F, a
t
A].

independent as the anomaly detection score is the
linear combination over all the signals. Therefore,
define rtT ∈ R

NT as the residual errors of a Prep-
TDAE. The residual errors of binary sensors are
computed by rtT,i = CE

(
xt

T,i, x̂
t
T,i

)
, for i ∈ Υ(xt

T)
and analog sensor’s residual error is computed

by rtT,i = 1
2

(
xt

T,i − x̂t
T,i

)2
, for i ∈ Ψ(xt

T). Once
all the signals’ residual errors are found, by
standard normalizing rtT of the Prep-TDAE, we can
assume that the normalized reconstruction errors
are samples from an identical and independent
Gaussian distribution. Finally, we compute the
anomaly contribution of each sensor based on the
normalized reconstruction errors.

The main difference between Prep-TDAE-AD
and Prep-TD-SD is that Prep-TD-SD performs
a linear transformation to find the anomaly
contribution of each sensor, whereas Prep-TDAE-
AD relies on the target loss function of Prep-TDAE.

In a practical application, a threshold is preset
to determine the anomalous sensors. It can be
observed that if the residual errors of Prep-TDAE
are independent, when an anomaly occurs, a large
reconstruction error of the corresponding sensors
will be induced. The anomaly contribution of
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anomalous sensors will exceed the preset threshold
and as a result, anomaly is diagnosed.

V. NUMERICAL RESULTS

A. Anomaly Detection
We use a downsampling factor of f = 10

to generate the training data and test data. For
the TDAE and conventional machine learning
algorithms, the time-delay form of data are used
as the training and test sequences. We evaluate
the performance of anomaly detection methods in
terms of area under the curve (AUC) of receiver
operating characteristics (ROC). Note that a worse
AUC-ROC is obtained if the time-delay form is
not performed. The hyper-parameters to train the
Prep-TDAE and TDAE are listed in Table I.

TABLE I
HYPER-PARAMETERS FOR THE TDAE AND PREP-TDAE

TRAINING

Hyper-parameters Default value

Time-delay window size w 10
Number of epochs 80

Learning rate 0.5
Hidden layer size [800, 700]
Momentum factor 0.9
Loss weighting λ 0.5
Mini-batch size 30

Optimizer Momentum optimizer
Shrunk estimator factor α 0.005

High pass filter cutoff frequency 0.6 (normalized)
Band pass filter cutoff frequencies [0.25, 0.9] (normalized)

We use normalized anomaly score to show the
robustness of our Prep-TDAE anomaly detection
algorithm. Fig. 3 shows that even conventional AE
detects anomaly at around 180s, where a large
value of anomaly score is obtained, but it has
false alarms and big end transient. Both TDAE
and Prep-TDAE are able to detect anomaly with
much smaller end transient. From Fig. 3, we can
observe that Prep-TDAE has much more stable and
smaller anomaly scores during the normal region
compared to the TDAE algorithm. This directly
results in a better AUC-ROC obtained by the Prep-
TDAE algorithm. The AUC-ROC results of anomaly
detection algorithms are plotted in Fig. 4. It can
be seen that at a small false alarm probability
(false positive rate), Prep-TDAE has the highest true
positive rate. We observe that employing the pre-
processing is efficient to improve the AUC-ROC
of an FA system that contains both binary and

Fig. 3. Normalized anomaly score of TDAE and Prep-TDAE
algorithms.

Fig. 4. AUC-ROC of anomaly detection algorithms.

analog sensors. Since binary sensors are contained,
conventional machine learning anomaly detection
algorithms may lack in high moment statistics that
result in worse performance than the Prep-TDAE
algorithm.

B. Anomaly Diagnosis

Although the anomaly is observed during data
collection, the exact sensors that cause the anomaly
are unknown. Based on the normal data, in the
anomaly diagnosis testing, we assume that an
independent error event occurs during the normal
operation. The process of testing anomaly diagnosis
performance is shown in Fig. 5. We define a binary
error as an erroneous flip of the sensor’s value, i.e.,
{0 → 1, 1 → 0}. A non-binary error is introduced
by replacing the original value of the ananlog
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Fig. 5. Flowchart of the tests on anomaly diagnosis.

sensor with an outlier. For example, if jth sensor
is assumed to be an anomalous sensor, where
j ∈ Ψ(x), an error ej is randomly sampled from
U(μj + 3σ2

j , μj + 5σ2
j ) or U(μj − 3σ2

j , μj − 5σ2
j ),

where μj and σ2
j are the mean and variance

values of the jth sensor, respectively. As shown
in Fig. 5, for every error event, we assume that
random kb binary sensors and ka analog sensors
are operated abnormally, where kb, ka ∈ {1, ..., 4}.
The erroneous value is assumed to be held for 5
consecutive time indices and we expect to detect
the anomalous sensors by computing the anomaly
score from t − 20 to t + 20. This time range
is selected to sufficiently measure the possible
false alarm and miss detection probabilities of the
anomaly diagnosis. The random selection of the
anomalous sensors are tested 500 times. The time
index is randomly chosen from 50s to 130s after
the start of data collection, which corresponds to
the time duration that the machine works normally.
The final anomaly score of each sensor is the
summation of the anomaly score over the time
interval from t− 20 to t+ 20.

For the Prep-TD-SD algorithm, the Mahalanobis
whitening matrix is computed by a given statistical
covariance matrix Σx̃T

. Table II shows that the
proposed Prep-TD-SD algorithm outperforms the
proposed Prep-TDAE-AD method. TDAE-AD
indicates that the residual error of a TDAE is

TABLE II
COMPARISONS OF AUC-ROC OF THE ANOMALY DIAGNOSIS

ALGORITHMS

Algorithms AUC-ROC

Prep-TDAE-AD 0.869
Prep-TD-SD 0.919
TDAE-AD 0.848

CDC to T 2, w = 10 0.897

CDC to T 2, w = 1 0.743

computed without the preprocessing reform.
Table II shows that Prep-TDAE has a better
AUC-ROC than the TDAE-AD. The CDC to
T 2 without the time-delay form has the worst
AUC-ROC score, while obtaining the time-delay
form helps the diagnosis algorithm explore the time
domain correlation and result in a better diagnosis
performance.

VI. CONCLUSION

In this paper, we have proposed a data pre-
processing based TDAE to detect anomaly. Digital
filters have been used to process the analog sensor’s
signals and help the TDAE learn the data features.
Moreover, based on the proposed Prep-TDAE
algorithm, we have introduced a statistics-based
method and an autoencoder-based method for
anomaly diagnosis. Numerical results have shown
that Prep-TDAE outperforms traditional machine
learning detection algorithms and pre-processing is
effective for improving the anomaly detection and
diagnosis performances.
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and M. Takáč, “Anomaly detection in manufacturing systems
using structured neural networks,” in 13th World Congress Intel.
Control Aut. (WCICA), 2018, pp. 175–180.

[3] L. Martí, N. Sanchez-Pi, J. M. Molina, and A. C. B. Garcia,
“Anomaly detection based on sensor data in petroleum industry
applications,” Sensors, vol. 15, no. 2, pp. 2774–2797, Jan. 2015.

[4] J. Ma and S. Perkins, “Time-series novelty detection using one-
class support vector machines,” in IEEE Proc. Int. Joint Conf.
Neural Networks, vol. 3, 2003, pp. 1741–1745.

[5] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, Mar.
2012.

[6] M. Amer and M. Goldstein, “Nearest-neighbor and clustering
based anomaly detection algorithms for rapidminer,” in
Proc. 3rd RapidMiner Community Meeting Conf. (RCOMM),
S. Fischer and I. Mierswa, Eds. Shaker Verlag GmbH, Aug.
2012, pp. 1–12.



8

[7] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing
one-class support vector machines for unsupervised anomaly
detection,” in Proc. ACM SIGKDD workshop on outlier
detection and description, 2013, pp. 8–15.

[8] S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, “Fault
detection and identification of nonlinear processes based on
kernel PCA,” Chemometrics Intel. Lab. Sys., vol. 75, no. 1,
pp. 55 – 67, Jan. 2005.

[9] R. Chalapathy and S. Chawla, “Deep learning for anomaly
detection: A survey,” CoRR, vol. abs/1901.03407, 2019.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016.

[11] T. Tagawa, Y. Tadokoro, and T. Yairi, “Structured denoising
autoencoder for fault detection and analysis,” in Proc. Sixth
Asian Conf. Machine Learning, vol. 39. Nha Trang City,
Vietnam: PMLR, Nov. 2015, pp. 96–111.

[12] K. Singh, “Anomaly detection and diagnosis in manufacturing
systems: A comparative study of statistical, machine learning
and deep learning techniques,” in PHM-CONF, vol. 11, no. 1,
Sep. 2019.

[13] Y. Fan, G. Wen, D. Li, S. Qiu, M. D. Levine, and F. Xiao,
“Video anomaly detection and localization via Gaussian mixture
fully convolutional variational autoencoder,” Comput. Vis.
Image Understanding, vol. 195, p. 102920, Jun. 2020.

[14] Y. Liang, S. Wang, W. Li, and X. Lu, “Data-driven anomaly
diagnosis for machining processes,” Engineering, vol. 5, no. 4,
pp. 646 – 652, Aug. 2019.

[15] C. F. Alcala and S. Joe Qin, “Analysis and generalization of
fault diagnosis methods for process monitoring,” J. Process
Control, vol. 21, no. 3, pp. 322 – 330, Mar. 2011.

[16] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 37, no. 3, pp. 328–
339, Mar. 1989.

[17] L. D. Paarmann, Design and Analysis of Analog Filters: A
Signal Processing Perspective. Springer Science & Business
Media, 2006, vol. 617.


	Title Page
	page 2

	Anomaly_Detection_Paper.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


