
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

InSeGAN: A Generative Approach to Segmenting Identical
Instances in Depth Images

Cherian, Anoop; Pais, Goncalo; Jain, Siddarth; Marks, Tim; Sullivan, Alan

TR2021-097 September 09, 2021

Abstract
In this paper, we present InSeGAN, an unsupervised 3D generative adversarial network
(GAN) for segmenting (nearly) identical instances of rigid objects in depth images. Us-
ing an analysis-by-synthesis approach, we design a novel GAN architecture to synthesize a
multiple-instance depth image with independent control over each instance. InSeGAN takes
in a set of code vectors (e.g., random noise vectors), each encoding the 3D pose of an object
that is represented by a learned implicit object template. The generator has two distinct
modules. The first module, the instance feature generator, uses each encoded pose to trans-
form the implicit template into a feature map representation of each object instance. The
second module, the depth image renderer, aggregates all of the single-instance feature maps
output by the first module and generates a multiple-instance depth image. A discrimina-
tor distinguishes the generated multiple-instance depth images from the distribution of true
depth images. To use our model for instance segmentation, we propose an instance pose en-
coder that learns to take in a generated depth image and reproduce the pose code vectors for
all of the object instances. To evaluate our approach, we introduce a new synthetic dataset,
“Insta-10,” consisting of 100,000 depth images each with 5 instances of an object from one of
10 classes. Our experiments on Insta-10, as well as on real-world noisy depth images, show
that InSeGAN achieves state-of-the-art performance, often outperforming prior methods by
large margins.

IEEE International Conference on Computer Vision (ICCV) 2021

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

InSeGAN: A Generative Approach to Segmenting
Identical Instances in Depth Images

Anoop Cherian1 Gonçalo Dias Pais2∗ Siddarth Jain1 Tim K. Marks1 Alan Sullivan1

1Mitsubishi Electric Research Labs (MERL), Cambridge, MA
2Instituto Superior Técnico, University of Lisbon, Portugal

1{cherian, sjain, tmarks, sullivan}@merl.com 2goncalo.pais@tecnico.ulisboa.pt

Abstract

In this paper, we present InSeGAN, an unsupervised
3D generative adversarial network (GAN) for segmenting
(nearly) identical instances of rigid objects in depth im-
ages. Using an analysis-by-synthesis approach, we design
a novel GAN architecture to synthesize a multiple-instance
depth image with independent control over each instance.
InSeGAN takes in a set of code vectors (e.g., random noise
vectors), each encoding the 3D pose of an object that is rep-
resented by a learned implicit object template. The genera-
tor has two distinct modules. The first module, the instance
feature generator, uses each encoded pose to transform the
implicit template into a feature map representation of each
object instance. The second module, the depth image ren-
derer, aggregates all of the single-instance feature maps
output by the first module and generates a multiple-instance
depth image. A discriminator distinguishes the generated
multiple-instance depth images from the distribution of true
depth images. To use our model for instance segmentation,
we propose an instance pose encoder that learns to take
in a generated depth image and reproduce the pose code
vectors for all of the object instances. To evaluate our ap-
proach, we introduce a new synthetic dataset, “Insta-10,”
consisting of 100,000 depth images each with 5 instances
of an object from one of 10 classes. Our experiments on
Insta-10, as well as on real-world noisy depth images, show
that InSeGAN achieves state-of-the-art performance, often
outperforming prior methods by large margins.

1. Introduction
Identifying (nearly) identical instances of objects is a

problem that is ubiquitous in daily life. For example, when
taking a paperclip from a container, choosing an apple from
a box, or removing a book from a library shelf, humans
subconsciously solve this problem because we have an un-
derstanding of what the individual instances are. However,

∗Work done as part of MERL internship.

In
pu

t D
ep

th
 Im

ag
e

Re
nd

er
ed

 Im
ag

e
Se

gm
en

ta
tio

n

Re
nd

er
ed

 S
in

gl
e

In
st

an
ce

s b
y

In
st

aG
AN

In
pu

t D
ep

th
 Im

ag
e

Re
nd

er
ed

 Im
ag

e
Se

gm
en

ta
tio

n

Re
nd

er
ed

 S
in

gl
e

In
st

an
ce

s b
y

In
st

aG
AN

Figure 1. Segmentations and single instances disentangled by In-
SeGAN on two multiple-instance depth images (Left: Nut with
5 instances; Right: Cone with 10 instances—challenging). In-
SeGAN needs only unlabelled multiple-instance depth images for
training. For each input image, the hallucinated depth image (“ren-
dered image”) and the single instances disentangled from the depth
image (“rendered single instances”) are shown. We use depth
pooling (Z-buffering) and thresholding to produce instance seg-
mentation (“segmentation”) from the generated single instances.
Note that our method learns the shape of the object automatically.

when robots are deployed for such a picking task, they need
to be imparted the technology to learn to identify the in-
stances for planning their grasp and approach [30, 2]. Such
a problem is commonplace in large manufacturing, indus-
trial, and agricultural contexts [48, 47, 45, 16, 20]. For ex-
ample, an industrial robot picking parts from a bin, a ware-
house robot picking and placing packages into a delivery
truck, or even a fruit picking robot picking identical fruits
in a supermarket. In these scenarios, the robot’s owners of-
ten have no access to a 3D model of the object to be picked,
and annotating individual instances can be costly, inconve-
nient, and unscalable. However, they may have access to a
large number of images each containing multiple instances
of the object, such as depth images of boxes as they travel

on a conveyor belt from production to a packaging section.
Our goal in this paper is to build an unsupervised instance
segmentation algorithm using unlabeled depth images, each
containing multiple identical instances of a 3D object.

Our problem setting is very different from the instance
segmentation setups that are typically considered, such
as that of Mask-RCNN [12], 3D point cloud segmenta-
tion [28], scene understanding [9], and others [10, 21, 25].
While, these methods usually consider segmenting in-
stances from cluttered backgrounds, our backgrounds are
usually simple, however the foreground instances can be
heavily (self-)occluded or may vary drastically in appear-
ances across their poses (see Figure 1 for example). Prior
methods to solve our instance segmentation problem use
3D CAD models [18], fit the 3D instances using primitive
shapes [11], or use classical image-matching techniques to
identify the instances [4, 35]. More recently, some have at-
tempted to solve this task using deep learning approaches.
For example, in Wu et al. [46], a 3D rendering framework
is presented that is trained to infer the segmentation masks;
however, their losses are prone to local minima. In the
recent IODINE [9], MONET [5], and Slot Attention [29]
deep models, the focus is on RGB scene decomposition,
and may not generalize to segmenting foreground instances
from each other.

In this paper, we present a general unsupervised frame-
work for instance segmentation in depth images, which we
call InSeGAN. Our model is inspired by a key observation
made in several recent works (e.g., [23, 33]) that a random
noise that is systematically injected into a generative adver-
sarial network (GAN) can control various attributes of the
generated images. A natural question then is whether we
can generate an image with a specific number of instances
feeding in the respective number of random noise vectors.
If so, then instance segmentation could be reduced to sim-
ply decoding a test image into several noise vectors, each
of which generates its respective instance. InSeGAN im-
plements this idea using a combination of a 3D GAN and
an image encoder within an ‘analysis-by-synthesis’ regime,
illustrated in Fig. 2. The training data consist of an unla-
beled collection of depth images, each image consisting of
n instances of a rigid object. InSeGAN learns an implicit
3D representation of the object shape and a pose decoder
that maps random noise vectors to 3D rigid transformations.
The generator has two stages. In the first stage, the decoded
3D transformation is applied to the implicit object template,
which an instance feature generator converts into a feature-
map representation of a single object instance. After the
first stage generates n such instance representations from
n random noise vectors, the second stage aggregates these
instance representations and feeds them into a depth image
renderer to produce synthetic depth images that are simi-
lar in distribution to the training images, as enforced via a

discriminator. To achieve instance segmentation, we train
an encoder that takes as input a generated multiple-instance
depth image and encodes it into a latent space in which it
must match the random noise vectors that originally gener-
ated the images in the GAN stream, thus closing the genera-
tion cycle. At inference time, a given depth image first goes
through the encoder to get its set of single-instance latent
vectors; these are then fed into the GAN to synthesize each
instance (each image segment) individually. Results on two
example test images are shown in Fig. 1.

While the task of instance segmentation has been ap-
proached in various contexts, there is no existing dataset
that encompasses this task in the context we are after in
this paper. For example, images in standard datasets such
as MSCOCO [27] and CityScapes [6] contain objects of
several different classes and background, which may not
belong to a common latent space. We introduce a new
dataset, dubbed “Insta-10,” consisting of 10 object classes
and 10,000 depth images per class. Each image was ren-
dered using a physics engine that simulated a bin into which
5 instances of an object are randomly dropped, resulting in
arbitrary poses of the objects in the rendered depth images.
The instances can have significant occlusions and size vari-
ations (due to varying distance from the camera), making
the task very challenging. We use this dataset to compare
our scheme with closely-related methods. We also apply
our instance segmentation approach to a real-world dataset
of blocks in noisy depth images. Our results show that In-
SeGAN outperforms all of the prior methods by a signifi-
cant margin on most of the object classes.

We now summarize this paper’s primary contributions:

• We propose InSeGAN, a 3D GAN that learns to gener-
ate multiple-instance depth images from sets of random
noise vectors in an unsupervised manner.
• We propose a two-stage generator structure for In-

SeGAN, in which the first stage generates a feature map
representation of each instance, and the second aggre-
gates these single-instance feature maps and renders a
multiple-instance depth image.
• To enable segmentation, we propose an instance pose en-

coder that encodes a multiple-instance depth image into
a set of latent vectors that would generate it. To train this
encoder, we introduce novel cycle-consistency losses.
• We have created a new large-scale and challenging

dataset, Insta-10, which we will make public to advance
research on this topic.
• Our experiments on synthetic and real datasets demon-

strate that InSeGAN achieves state-of-the-art perfor-
mance. On the Insta-10 dataset, InSeGAN shows an
overall improvement of nearly 12% against the recent
method in Wu et al. [46] and nearly 6% against Locatello
et al. [29].

2. Related Work
In this section, we review some of the closely related

approaches to our method.
Multiple Objects and Instance Segmentation: In
IODINE [9], a variational generative model is proposed for
instance segmentation in RGB images using an iterative re-
finement of latent vectors against the object instances; sim-
ilar to an expectation maximization (EM) algorithm. Their
key idea is to use a fixed number of latent vectors to describe
the scene and iteratively infer the association of these vec-
tors to the instances; an approach that can be unstable for
complicated scenes (such as on the kind of depth images
we consider in our dataset). In Slot Attention [29], abstract
scene components, called slots, are learned for each in-
stance in an unsupervised manner, however do not account
for the 3D structure of the scene or the instances. In Liao
et al. [26] and O3V-voxel [13], multiple object instances
are created in an adversarial setting through image compo-
sition. Both the methods produce a 3D feature latent space
– the former a 2D primitive of the 3D object and the latter
a 3D voxel – for each object instance. With a fixed number
of instances, [26] projects the primitive to create depth and
alpha maps, to compose the scene. In [13], the authors pro-
pose a scheme to generate a video sequence to extract the
multiple instance images. They follow a framework similar
to [5, 9], where the initial image is generated from a se-
quence of real images, through an encoder. However, they
generate a feature voxel for each object. At each time in-
stance, each object is rendered and composed together.

There are prior approaches that tackles the multiple in-
stance segmentation problem for 2D and 3D images in a
supervised manner. Most of these methods, e.g., [12, 36],
first extract Regions of Interest (RoI) from the input, sub-
sequently classifying the object in these selected regions.
Mask RCNN [12] expands Faster RCNN [38] by creating
a new segmentation branch to classify per-pixel object seg-
ments. DeepMask [36] learns those RoIs and its underlying
mask, which are then passed through the Fast RCNN [8] for
classification. Point cloud segmentation has been explored
in several recent works. For example, [50, 42] propose a
2D architecture. GsPN [50] proposes a network to gener-
ate shapes with their specific segmentations and bounding
boxes. SGPN [42] generates a similarity matrix and group
proposals to create independent clusters for classification.
In contrast to these popular methods for instance segmen-
tation, we differ in that we approach the problem from an
unsupervised perspective.
3D Disentanglement: Several recent works have proposed
approaches for disentangling 3D attributes using deep learn-
ing via implicit or explicit representations. Deep Vox-
els [40] proposes a synthesis approach to learning an im-
plicit 3D representation of the object. The method learns
to synthesize novel perspectives of an object from a learned

voxel feature volume. From these voxels, one may create an
explicit 3D model of the object. However, their model is not
generative and requires camera parameters. HoloGAN [33]
proposes a generative method that creates an implicit 3D
volume of single instances. It first learns a 3D representa-
tion of a target pose, and then projects the 2D features and
renders it to a final image. While, our method is inspired
by HoloGAN, we go beyond it in deriving a scheme for
disentangling the object instances. Another related work is
PlatonicGAN [14] that creates a 3D representation of an ob-
ject while generating different unseen views via adversarial
learning. However, as in HoloGAN, this method is limited
to a single rotation of an object.

A prior work that is most similar to ours is Wu et al. [46],
which proposes to disentangle object instances and their 6D
poses in an unsupervised manner, concurrently learning an
explicit 3D point cloud template of the object. While our
objective is similar, our proposed framework is completely
different. Their framework requires explicit modeling of
point occlusions and computes point cloud alignments us-
ing Chamfer distance, which make their scheme compu-
tationally expensive. We avoid these challenges by using
depth images, and we introduce a discriminator that implic-
itly learns these steps efficiently.

3. Proposed Method
Let X be a given dataset, where each x ∈ X is a depth

image consisting of n instances of a rigid object. Note that
the same rigid object is depicted in all of the images in X .
To simplify the notation, we will use X to also character-
ize the distribution of x. Further, for clarity of presentation,
we assume that n is known and fixed for X , however note
that it is straightforward to extend InSeGAN for an arbitrary
number of instances by using training images with varying
numbers of instances (see Supplementary materials for de-
tails). Our goal in InSeGAN is to learn a model only from
X (without any labels) such that at test time, when given
a depth image x, the learned model outputs the segmenta-
tion masks associated with each instance in the depth image.
In the next section, we provide a brief overview of the In-
SeGAN architecture, followed by a detailed look into each
of its components.

3.1. InSeGAN Overview
The basic architecture of InSeGAN follows a standard

generative adversarial framework, however with several
non-trivial twists. It consists of a generator moduleG that—
instead of taking a single noise vector as input (as in a typ-
ical GAN)—takes n noise vectors, {z1, z2, · · · , zn}, each
z ∈ Rd ∼ N(0, Id), and generates a multiple-instance
depth image as output. Thus, G : Rd×n → X̂ , where X̂
is used to signify the distribution of the generated depth im-
ages, with the limit X̂ → X when G is well-trained. We
denote the set of noise vectors by the matrix Z ∈ Rd×n and

Re
al
/F
ak
e

L1 loss

Align +
L2 loss

Po
se

 D
ec

od
er

Instance
Feature

Generator

Depth
Image

Renderer

Multi-Instance
Discriminator

Instance
Pose

Encoder

Implicit object template

𝑧! , 𝑧" , … , 𝑧#
𝑛 times

�̂�!, �̂�", … , �̂�#

Figure 2. A schematic illustration of the training scheme in InSeGAN. There are three distinct control flows in the framework, as denoted
by the black, red, and the dotted-red arrows. The black arrows capture the generative process producing a multiple instance depth image,
while the solid red arrows depict the scheme to encode a generated depth image to its instances. The dashed red arrows depict the control
flow to train the Instance Encoder via using the encoded latent vectors to re-create the already generated image.

the distribution of Z as Z = {N(0, Id)}n. Next, a discrimi-
nator module D is trained to distinguish whether its input is
an image generated byG or a sample from the data distribu-
tion X . The modules G and D are trained in a min-max ad-
versarial game so that G learns to generate images that can
fool D, while D is in turn trained to distinguish whether its
inputs are real or fake; the optimum occurs when D cannot
recognize whether its input is from G or X . Apart from the
generator and the discriminator modules, we also have an
instance pose encoder module, E, that is key to achieving
instance segmentation. Specifically, E : X̂ → Rd×n takes
as input a generated depth image, and learns to output latent
noise vectors that match the noise vectors that generated the
input depth image. The essence of InSeGAN is to have the
generator G produce depth images for which the instance
segments are implicitly known (through Z), so that E can
be trained on them to learn to disentangle the instances. In
the limit as X̂ → X , as guided by the discriminator D, the
encoderE will eventually learn to do instance segmentation
on real images fromX . An overview of the InSeGAN train-
ing pipeline is shown in Fig. 2. Next, we will describe each
of the modules in detail.

3.2. InSeGAN Generator
The key to InSeGAN is to have the generator G accom-

plish two tasks jointly: (i) to produce depth images x̂ that
match the input image distribution X , and (ii) to identify
each object instance in the generated image x̂. To this end,
we note that sans the other instances, each instance is an
independent depth rendering of an object in an arbitrary 3D
pose. A multiple-instance depth image may be generated by
merging the individual instances, followed by depth-based

inter-object occlusion reasoning.
Motivated by the above insight, we propose to separate

the generator G into two distinct modules: (i) an instance
feature generator that generates feature maps for single
object instances, and (ii) a depth image renderer module
that aggregates the single-instance feature maps and ren-
ders the multiple-instance depth image. As the instances
are assumed to be of the same object, we propose to sample
each noise vector z ∈ Z from the same latent distribution,
z ∼ N(0, Id). Further, our system learns an implicit 3D ob-
ject model (template) that, when geometrically transformed,
produces the varied appearances of the instances.

Our first step in the generator pipeline is to produce 6-
DOF (6 degrees of freedom) 3D rigid geometric transforms
that can be applied to the implicit object template to produce
a transformed implicit model representing each instance. To
this end, each noise vector z ∈ Z is converted to an ele-
ment of the special Euclidean group (SE(3)) using a pose
decoder module (see Fig. 2) which is a fully-connected neu-
ral network, denoted Gp : Rd → R6. In details, Gp pro-
duces an axis-angle representation corresponding to a given
noise vector z; this representation is next converted to an
element in the Special Euclidean group, SE(3). We denote
this operator by Λ : R6 → SO(3)×R3, i.e, Λ produces a
rotation matrix R ∈ SO(3) (the special orthogonal group)
and a translation vector t ∈ R3. A natural question in this
context is why we do not sample the transformation matrix
directly (as in, e.g., HoloGAN [33]). This is because, as
will be clear shortly, we need to match the output of the
encoder module E with the pose representations of the in-
stances, and having a Euclidean embedding for these rep-
resentations offers computationally more efficient similar-

ity measures than directly using a rotation matrix (or axis-
angle) parametrization of the underlying nonlinear geomet-
ric manifold [17, 51].

Next, we use the transformation matrix thus created, i.e.,
Λ(Gp(z)), to geometrically transform an implicit shape ten-
sor T ∈ Rh×h×h×k (we use h=4, k=128); this param-
eter tensor is shared by all the instances and will, when
trained (with the other modules in the pipeline), implicitly
capture the shape and appearance of the object. Similar
to HoloGAN [33], we use a Spatial Transformer Network
(STN) [19] to apply the geometric transform to this implicit
template. The transformed T is reshaped to Rkh×h×h and
projected from 3D to 2D using a single-instance projection
module Gs to output x̂f ∈ Rc×h×h capturing the feature
map representation of an instance. The above steps can be
formally written as:

F(z) := Gs

(
STN

(
Λ
(
Gp (z)

)
, T
))
. (1)

Next, we propose to combine these feature maps by average
pooling them, then render a multiple-instance depth image
using a rendering module Gr, as follows:

x̂ = G(Z) := Gr(F̄) where F̄ =
1

|Z|
∑
z∈Z
F(z), (2)

where x̂ denotes a depth image generated by G. We will
denote the distribution of generated images as X̂ . This gen-
erative control flow is depicted using black arrows in Fig. 2.

3.3. InSeGAN Discriminator
As in standard GANs, the task of the discriminator D

is to decide whether its input comes from the natural dis-
tribution of multiple-instance depth images that produced
the training set (i.e., X) or is synthesized by our genera-
tor G (i.e., X̂). Following standard architectures, D con-
sists of several 2D convolution, instance normalization, and
LeakyRELU layers, and outputs a classification score in
[0, 1]. The objectives for training the discriminator and gen-
erator, respectively, are to minimize the following losses:

LD := −Ex∼X log(D(x))− EZ∼Z log (1−D(G(Z)) ,

LG := −EZ∼Z logD(G(Z)). (3)

The task for our discriminator is significantly different from
that in prior works, as it must learn to: (i) count whether the
number of rendered instances matches the number of in-
stances in the data distribution, (ii) verify whether the ren-
dered 3D posed objects obtained via transforming the still-
being-learned object template T capture the individual ap-
pearances (which are also being learned) of the instances,
and (iii) whether the layout of the rendered image is simi-
lar to the compositions of the instances in the training depth
images. Fortunately, with access to a suitable dataset, D
can automatically achieve these desired behaviors when ad-
versarially trained with the generator.

3.4. InSeGAN Instance Pose Encoder
We now introduce our instance pose encoder module,E,

which is the key to instance segmentation. The task of this
module is to take as input a multiple-instance depth image
x̂ produced by G, and reconstruct each of the noise vec-
tors in Z (encoding the instance poses) that were used to
generate x̂. Let us assume the encoder outputs Ẑ, a set of
latent vectors. Indeed, as x̂ is produced by aggregating n
independently sampled instance appearances of the object,
inverting the process amounts to disentangling x̂ into its re-
spective instances. Thus, when the generator is trained well,
i.e., x̂ ≈ x, we will eventually learn to disentangle each in-
stance in a ground truth image. While this idea is concep-
tually simple, implementing it practically is not straightfor-
ward. There are four main difficulties: (a) the input Z to
the generator and the output Ẑ of E are unordered sets, and
need to be aligned before comparing them, (b) the average
pooling operator in (2) aggregates several feature maps into
one – an operation that loses the distinctiveness of each of
the instance feature maps, (c) the depth rendererGr may re-
move occluded parts of the instances, thus posing ambigui-
ties when mapping them back to the noise vectors, and (d)
the pose encoder Gp projects its noise input to the space of
rigid body transforms, an operation that is inherently low-
rank and nonlinear. We tackle these challenges via impos-
ing losses on the encoder so that it learns to invert each
module in the generator. Let us assume that the encoder
be E = Gs

−1 ◦ Gr−1, consisting of: (i) an image derenderer
Gr

−1 that takes a depth image and produces feature maps,
and (ii) an instance decoder Gs

−1 that takes the feature maps
from Gr

−1 and produces Ẑ.
Alignment and Reconstruction: To tackle our first diffi-
culty (a), we propose to align the sets Z and Ẑ before com-
puting a reconstruction loss on them. Specifically, we seek
to find an alignment matrix π ∈ Π(Z, Ẑ), where Π denotes
the set of all such alignments (i.e., permutations) on its in-
puts, such that the reconstruction loss is minimized:

LaE=
∥∥Z−π∗(Ẑ)

∥∥2
, where π∗= arg min

π∈Π(Z,Ẑ)

OT(π,D(Z, Ẑ)),

(4)
where D denotes the pairwise distances between the
columns in Z and Ẑ, and OT is some suitable match-
ing scheme. We use a general purpose optimal transport
(IPOT [49]) scheme to implement the alignment, which re-
turns a permutation matrix π∗ that is used to align the matri-
ces before comparing them using the `2 distance.1 We show
this encoder control flow using solid red arrows in Fig. 2.
Intermediate Reconstruction: To tackle difficulties (b)
and (c) in the encoder design, which involve E learning to

1We may also use a Hungarian matching scheme [22] to implement
OT if the number of data instances is small, which is usually significantly
faster than optimal transport methods. Note that our experiments suggest
that a greedy way to align is not useful. See supplementary results.

Instance
Pose

Encoder

̂𝑧!, ̂𝑧", … , ̂𝑧#

Po
se

 D
ec

od
er

Instance
Feature

Generator

Depth
Image

Renderer

D
ep

th
-w

is
e

 p
oo

lin
g

One ̂𝑧$ at a time

Learnt object template
Each generated instance

Figure 3. InSeGAN inference pipeline (see Sec. 3.5 for details).

invert the depth renderer, we use the output from the deren-
derer sub-module Gr

−1 in E. Specifically, Gr
−1 is forced to

reconstruct the average-pooled feature map F̄ in (2). Let us
denote this loss by LiE =

∥∥F̄ −Gr−1
(x̂)
∥∥2

.
Pose Decoding: Although one could apply the above inter-
mediate feature decoding strategy even to the pose decoder
Gp, it would not be very efficient to compare its output
Λ(Gp(Ẑ)) to the rigid transforms produced during the gen-
erative process. This is because the geometric matrix that
Λ produces involves a rotation matrix, and thus optimiz-
ing would ideally require Riemannian optimization meth-
ods in the space of SO(3) [1], which is not well suited for
standard optimization schemes such as Adam [24]. Further-
more, there may be several different geometric transforma-
tions that could achieve the same output [51]. To avoid this
technicality, we propose to learn the rigid transform indi-
rectly, by avoiding exact reconstruction of the transform and
instead asking it to have the desired outcome in the genera-
tive process. Specifically, we propose to use the Ẑ produced
by the encoder, and use it as a noise matrix to produce a
depth image G(Ẑ); this depth image is then compared with
the depth image generated in the previous pass usingZ. The
following loss, LpE , captures this idea:

LpE = ‖G(Z)−G(E(x̂))‖1 . (5)

The above control flow is illustrated in Fig. 2 by the dotted
red arrows that go from noise vectors ẑ to the pose decoder
and over to the depth renderer; i.e., the output of G.
Encoder Loss: We combine the above three losses when
training the parameters of the encoder module (see the sup-
plementary materials for details on its architecture):

LE = LaE + λ1LiE + λ2LpE , (6)

where the λ’s provide weights to each type of loss.2 When
backpropagating the gradients on the encoder losses, we fix
the generator parameters, as otherwise they will co-adapt
with the encoder parameters, making training unstable.

2We use λ = 1 in all our experiments.

Learning the Implicit Object Template: The template is
implemented as a weight tensor, learned via backpropaga-
tion gradients from the above loss. That is, when training
the setup, all the arrows in Fig. 2 gets reversed.

3.5. InSeGAN Inference
At inference time, we assume to be given only a depth

image consisting of multiple instances of the rigid object;
our goal is to segment the instances and render each in-
stance separately, while producing an instance segmentation
on the input. To this end, our inference pipeline resembles
the generative process, but with some important differences
as illustrated in Fig. 3. Specifically, for inference, we input
the multiple-instance depth image to the encoder module
E, which produces a set of latent vectors Ẑ. Each ẑ ∈ Ẑ
is input individually into the trained single-instance genera-
tor Gs, the output of which is rendered using Gr to form a
single-instance depth image that corresponds to ẑ. We em-
phasize that in the inference phase, the depth image renderer
sits within the single-instance generation phase—this con-
trasts with the training setting, in which the renderer takes
as input the aggregated feature tensor F̄ . Once the single
instances are rendered, as shown in Fig. 3, we use a depth-
wise max pooling on these instance depth images for inter-
instance occlusion reasoning, followed by thresholding the
instances, where the threshold is decided by the average
depth in the image. Thresholding removes any bias intro-
duced during depth rendering. To produce the pixel-wise
segmentation, we use the index of the generated instance
that is selected for a given pixel.

3.6. Training Pipeline
We train our full framework, including the InSeGAN

generator G, discriminator D, and Encoder E, by minimiz-
ing for the sum of all the losses given by:

L = LD + LE + LG. (7)

The gradients for the various modules are computed using
PyTorch autograd. We use Adam for training all our mod-
els, with a learning rate of 0.0002, β1 = 0.5, and β2 = 0.99.

2000 4000 6000 8000 10000
Dataset size

0.3

0.4

0.5

0.6

0.7

m
Io

U

Bolt
Obj01

(a) Datasize

1 2 3 4 5 6 7
instances used in InstaGAN (gt=5)

0.2

0.3

0.4

0.5

0.6

0.7

m
Io

U

Bolt
Obj01

(b) Instances

Figure 4. mIoU versus (a) training dataset size, (b) number of in-
stances n in model (ground truth has 5 instances).

4. Experiments and Results
In this section, we present experiments demonstrating

the empirical benefits of InSeGAN on the task of instance
segmentation. We will first introduce our new synthetic
dataset, Insta-10, on which most of our experiments are
based. We then introduce a real-world dataset that we col-
lected to evaluate the application of our method on (natu-
rally noisy) depth images of real objects.
Insta-10 Dataset: While there are several real-world
datasets used for instance segmentation, such as
MSCOCO [27], and CityScapes [6], they typically
involve background objects, and other stuff that are un-
related to the objects to be segmented. Datasets such as
CLEVR [21] however are proposed for visual reasoning
tasks, and thus may not fully analyze the segmentation
quality. To this end, we introduce Insta-10, a large-scale
dataset collected in a controlled setting, consisting of depth
images of multiple instances of a CAD object model. We
remove color and texture from the instances, to analyze the
segmentation performance under the difficult condition in
which there are minimal attributes other than shape. This
is inspired by the observation that most of the industrial
objects do not usually have textures [15], in addition to the
intuition that sometimes RGB could distract a shape-based
segmenter. To create the dataset, we used 10 CAD object
models (3 from the T-less dataset [15] and 7 from our own
library). We use the PhysX physics simulator3 to simulate
objects dropping sequentially into a bin, producing syn-
thetic multiple-instance depth images. We used 5 instances
of the same object in each depth image, yielding substantial
inter-instance occlusion, and we selected the bin width so
that the segmentation objective was challenging but not too
hard (even for humans). In addition to the depth images, we
also provide the point clouds associated with each image
and the ground truth instance segmentation masks; these
masks are used for only evaluation, not during training.
We collected 10K images per object, for a total of 100K
depth images in the entire dataset, each with dimension
224× 224. Sample images are shown in Figs. 21 and 20.
Real-World Depth Images Using a Robot: Apart from

3https://developer.nvidia.com/physx-sdk

Nut Stopper Cylinder Obj01 Obj05Obj14Bolt Cone 5 pin Connector

Figure 5. Qualitative results on Insta-10 objects. First row: CAD
models used to produce Insta-10. Second row: the input depth
images. Third row: rendered depth image by InSeGAN. Fourth
row: the predicted segmentations by InSeGAN.

RGB Image Depth Image (input) InSeGAN KMeans Felzenszwalb et al.

Figure 6. Qualitative results on real data. We show the RGB image,
the noisy depth input, and the segmentations produced.

SCWu et al. OursKMeansInput

IODINE [1]

Figure 7. Qualitative comparisons against other methods.

the synthetic Insta-10 dataset, we also analyze the adapt-
ability of our scheme to practical settings. For this experi-
ment, we used a box containing 4 identical wooden blocks
(see Fig. 6), of which depth images were captured using an
Intel RealSense Depth Camera (D435). To produce mul-
tiple diverse images consisting of varied configurations of
the blocks, we programmed a Fetch robot [44] to shake the
box between images. We collected 3,000 depth images us-
ing this setup, of which we hand-annotated 62 images that
we reserved for evaluation. The depth images from this set-
ting are very noisy, and as a result, often the shapes of the
objects do not appear to be identical.
Evaluation Metric and Experimental Setting: To eval-
uate our scheme, we use the mean intersection-over-union
(mIoU) metric, a standard metric for semantic segmenta-
tion. For training and evaluation, we split the data subsets
associated with each class into a training, validation, and
test set. In the Insta-10 dataset, we use 100 randomly se-
lected images for validation in each class. For the test set,
we selected 100 images on which KMeans fails – avoiding
segmentations that are trivial for standard methods.
Performance Analysis: On the Insta-10 dataset, we com-
pare our method on both non-deep and deep learning meth-
ods. The non-deep methods include classic segmentation

https://developer.nvidia.com/physx-sdk

Method Nut Stop. Cyl. Bolt Cone Conn. 5-pin Obj01 Obj14 Obj05 Avg mIoU
Non-Deep Learning Methods

K-Means 0.64 0.297 0.7 0.18 0.35 0.554 0.628 0.208 0.496 0.59 0.464
Spectral Clustering [32] 0.56 0.36 0.54 0.22 0.41 0.56 0.58 0.25 0.47 0.57 0.452
GrabCut [39]+KMeans 0.572 0.232 0.572 0.472 0.231 0.519 0.497 0.597 0.557 0.605 0.486

GraphCut [3] 0.569 0.1 0.589 0.447 0.12 0.476 0.12 0.597 0.540 0.511 0.373
Deep Learning Methods

Wu et al. [46] 0.45 0.28 0.57 0.27 0.33 0.38 0.43 0.23 0.44 0.57 0.385
IODINE [9] 0.026 0.059 0.019 0.040 0.089 0.032 0.034 0.058 0.053 0.118 0.053

Slot Attn. [29] 0.375 0.276 0.535 0.43 0.68 0.662 0.628 0.655 0.622 0.481 0.535
InSeGAN (2D) (ours) 0.215 0.365 0.258 0.524 0.435 0.585 0.628 0.365 0.286 0.532 0.419
InSeGAN (3D) (ours) 0.773 0.301 0.760 0.539 0.47 0.655 0.642 0.686 0.591 0.483 0.590

Table 1. Mean IoU (mIoU) between the segmentation masks predicted by each method and the ground-truth masks.

Generator Loss Bolt Obj01
LaE (OT) + LiE + LpE 0.424 0.686

LaE (greedy) + +LiE + LpE 0.383 0.664
LaE (OT) + LiE 0.312 0.360
LaE (OT) 0.303 0.402

Table 2. Ablative study on the various losses used in InSeGAN
generator and the mIoU achieved on two classes.

Method mIoU
KMeans 0.797

Spectral Clustering 0.668
Graph Segmentation [7] 0.436

InSeGAN 0.857
Table 3. Results on real-world data collected using a robot.

algorithms [32, 3, 39]. The deep learning comparisons in-
clude: (i) Wu et al., [46] that is most similar to ours, (ii)
IODINE [9], which was proposed for scene decomposi-
tion rather than instance segmentation, and (iii) Slot At-
tention [29]. We use the public code for (ii) and (iii), and
use their default hyper-parameters. In Table 1, we show
these results. We find that for most object classes (6/10),
InSeGAN outperforms all other methods. On the Stopper
class, which is the most difficult, InSeGAN outperforms all
other methods except for spectral clustering. Overall, In-
SeGAN showcases about 6% better when the performance
is averaged across all 10 classes. We found that the recent
method of IODINE [9] fails on our images, perhaps because
it is designed for scene decomposition tasks. From Table 3,
we see that our method generalizes to real data as well. In
Fig. 21, we show several qualitative results produced by In-
SeGAN. More results are provided in the Appendix.

4.1. Ablation Studies
In this section, we analyze each component in our de-

sign, empirically justifying its importance.
Is 3D Generator Important? To understand this choice,
we replace the 3D modules in InSeGAN (3D implicit tem-
plate, pose encoder, and STN) by 2D convolutions and up-
sampling layers, similar to those used in the encoder and
discriminator. In Table 1, we provide comparisons of the

3D and 2D GANs on the Insta-10 dataset. Results show that
our 3D generator is significantly better than a 2D generator.
Are all the losses important? There are three losses in
the InSeGAN generator: (i) the LaE , computing the align-
ment loss, (ii)LiE on the intermediate feature maps, and (iii)
LpE between the generated depth image and the re-generated
depth image. For (i), we compare a greedy choice for align-
ment vs. using optimal transport. We provide ablative stud-
ies on two object classes, Bolt and Obj01. As is clear from
Table 2, we find that using a greedy alignment leads to lower
performance. Further, we find that using LpE is empirically
very important, and leads to 10-20% performance differ-
ences. Our analysis substantiates the importance of all the
losses used in our architecture.
Do we need all training samples? In Fig. 16(a), we plot the
performance against increasing the number of data samples;
i.e., we train on a random subset of the 10K depth images
in the training set. Clearly more training data is useful, but
this increment appears to be dependent on the object class.
Number of instances? In Fig. 16(b), we plot the perfor-
mance against increasing the number of instances used in
InSeGAN; i.e., we increase n from 1 to 7. Recall that all
our depth images consist of 5 instances. The plot shows
that InSeGAN performs reasonably well when the number
of instances is approximately close to the ground truth. See
Appendix for results when n could be arbitrary.

5. Conclusions
In this paper, we presented InSeGAN, a novel 3D GAN

to solve unsupervised instance segmentation. We find that
by pairing the discriminator with a carefully designed gen-
erator, the model can reconstruct individual object instances
even under clutter and severe occlusions. We introduce a
new large-scale dataset, which we will make publicly avail-
able, to empirically analyze our approach, and our method
demonstrates state-of-the-art results, generalizing well to
real-world images. Going forward, one direction would be
to extend the framework to use multiple implicit templates
to segment a mix of different objects in the images.

References
[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Opti-

mization algorithms on matrix manifolds. Princeton Univer-
sity Press, 2009. 6

[2] Marcos Alonso, Alberto Izaguirre, and Manuel Graña. Cur-
rent research trends in robot grasping and bin picking. In The
13th International Conference on Soft Computing Models in
Industrial and Environmental Applications, pages 367–376.
Springer, 2018. 1

[3] Yuri Boykov and Vladimir Kolmogorov. An experimental
comparison of min-cut/max-flow algorithms for energy min-
imization in vision. IEEE transactions on pattern analysis
and machine intelligence, 26(9):1124–1137, 2004. 8

[4] Dirk Buchholz. Bin-picking: new approaches for a classical
problem, volume 44. Springer, 2015. 2

[5] Christopher P Burgess, Loic Matthey, Nicholas Watters,
Rishabh Kabra, Irina Higgins, Matt Botvinick, and Alexan-
der Lerchner. Monet: Unsupervised scene decomposition
and representation. arXiv preprint arXiv:1901.11390, 2019.
2, 3

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 3213–3223, 2016. 2, 7

[7] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 8

[8] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 3

[9] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick
Watters, Chris Burgess, Daniel Zoran, Loic Matthey, Matt
Botvinick, and Alexander Lerchner. Multi-object represen-
tation learning with iterative variational inference. arXiv
preprint arXiv:1903.00450, 2019. 2, 3, 8, 16, 17

[10] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. A survey
on instance segmentation: state of the art. International Jour-
nal of Multimedia Information Retrieval, pages 1–19, 2020.
2

[11] Kensuke Harada, Kazuyuki Nagata, Tokuo Tsuji, Natsuki
Yamanobe, Akira Nakamura, and Yoshihiro Kawai. Prob-
abilistic approach for object bin picking approximated by
cylinders. In 2013 IEEE International Conference on
Robotics and Automation, pages 3742–3747. IEEE, 2013. 2

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pages 2961–2969, 2017. 2, 3

[13] Paul Henderson and Christoph H Lampert. Unsupervised
object-centric video generation and decomposition in 3d. Ad-
vances in Neural Information Processing Systems (NIPS),
33, 2020. 3

[14] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Es-
caping plato’s cave: 3d shape from adversarial rendering.
In IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 9984–9993, 2019. 3

[15] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas,
Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-
d dataset for 6d pose estimation of texture-less objects. In
2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 880–888. IEEE, 2017. 7

[16] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-
mann. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3385–3394, 2019. 1

[17] Du Q Huynh. Metrics for 3d rotations: Comparison and
analysis. Journal of Mathematical Imaging and Vision,
35(2):155–164, 2009. 5

[18] Katsushi Ikeuchi. Generating an interpretation tree from a
cad model for 3d-object recognition in bin-picking tasks.
International Journal of Computer Vision, 1(2):145–165,
1987. 2

[19] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2017–2025, 2015.
5, 13

[20] Omid Hosseini Jafari, Siva Karthik Mustikovela, Karl
Pertsch, Eric Brachmann, and Carsten Rother. ipose:
instance-aware 6d pose estimation of partly occluded ob-
jects. In Asian Conference on Computer Vision, pages 477–
492. Springer, 2018. 1

[21] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A
diagnostic dataset for compositional language and elemen-
tary visual reasoning. In IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pages 2901–2910, 2017. 2, 7

[22] Roy Jonker and Ton Volgenant. Improving the hungarian as-
signment algorithm. Operations Research Letters, 5(4):171–
175, 1986. 5

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401–4410, 2019. 2

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[25] Victor Lempitsky and Andrew Zisserman. Learning to count
objects in images. In Advances in neural information pro-
cessing systems, pages 1324–1332, 2010. 2

[26] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas
Geiger. Towards unsupervised learning of generative models
for 3d controllable image synthesis. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pages 5871–5880,
2020. 3

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conf. Computer Vision (ECCV), pages 740–755.
Springer, 2014. 2, 7

[28] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 2

[29] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. In NeurIPS, 2020. 2, 3,
8, 15, 16

[30] Jeffrey Mahler and Ken Goldberg. Learning deep policies for
robot bin picking by simulating robust grasping sequences.
In Conference on robot learning, pages 515–524. PMLR,
2017. 1

[31] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 14

[32] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spec-
tral clustering: Analysis and an algorithm. Advances in neu-
ral information processing systems, 2:849–856, 2002. 8

[33] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. Hologan: Unsupervised
learning of 3d representations from natural images. In
IEEE Int’l Conf. Computer Vision (ICCV), pages 7588–7597,
2019. 2, 3, 4, 5, 13

[34] Jeff M Phillips, Nazareth Bedrossian, and Lydia E Kavraki.
Guided expansive spaces trees: A search strategy for motion-
and cost-constrained state spaces. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), volume 4, pages 3968–3973, 2004. 12

[35] Paolo Piccinini, Andrea Prati, and Rita Cucchiara. Sift-based
segmentation of multiple instances of low-textured objects.
International Journal of Computer Theory and Engineering,
5(1):41–46, 2013. 2

[36] Pedro OO Pinheiro, Ronan Collobert, and Piotr Dollár.
Learning to segment object candidates. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 1990–
1998, 2015. 3

[37] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009. 12

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Pro-
cessing Systems (NIPS). 3

[39] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
ACM transactions on graphics (TOG), 23(3):309–314, 2004.
8

[40] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 2437–2446, 2019. 3

[41] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 13

[42] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. Sgpn: Similarity group proposal network for 3d point
cloud instance segmentation. In IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), pages 2569–2578, 2018. 3

[43] Xing Wei, Qingxiong Yang, Yihong Gong, Narendra Ahuja,
and Ming-Hsuan Yang. Superpixel hierarchy. IEEE Trans-
actions on Image Processing, 27(10):4838–4849, 2018. 12

[44] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr,
and David Dymesich. Fetch and freight: Standard platforms
for service robot applications. 7, 12

[45] Yongxiang Wu, Yili Fu, and Shuguo Wang. Deep instance
segmentation and 6d object pose estimation in cluttered
scenes for robotic autonomous grasping. Industrial Robot:
the international journal of robotics research and applica-
tion, 2020. 1

[46] Yuanwei Wu, Tim Marks, Anoop Cherian, Siheng Chen,
Chen Feng, Guanghui Wang, and Alan Sullivan. Unsuper-
vised joint 3d object model learning and 6d pose estimation
for depth-based instance segmentation. In Proceedings of the
IEEE International Conference on Computer Vision Work-
shops, 2019. 2, 3, 8, 16

[47] Yu Xiang, Christopher Xie, Arsalan Mousavian, and Dieter
Fox. Learning rgb-d feature embeddings for unseen object
instance segmentation. arXiv preprint arXiv:2007.15157,
2020. 1

[48] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter
Fox. Unseen object instance segmentation for robotic envi-
ronments. arXiv preprint arXiv:2007.08073, 2020. 1

[49] Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan
Zha. A fast proximal point method for computing exact
wasserstein distance. In Uncertainty in Artificial Intelli-
gence, pages 433–453. PMLR, 2020. 5

[50] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J
Guibas. Gspn: Generative shape proposal network for 3d in-
stance segmentation in point cloud. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pages 3947–3956,
2019. 3

[51] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5745–
5753, 2019. 5, 6, 13

Summary of Supplementary Material

In these supplementary materials, we provide additional
qualitative results (examples) and numerical results, as well
as algorithmic and experimental details.
1. Explanations and insights into InSeGAN
2. How is the implicit template learned?
3. How to extend the framework for arbitrary number of

instances n?
4. Results on the synthetic setting with n = 10 cones
5. Qualitative instance segmentation results on real data
6. More on the neural architectures, synthetic data genera-

tion, and real robotic data collection setups.
7. Additional qualitative instance segmentation results.

KMeans Spectral Clustering Graph Segment GrabCut + KMeans

InSeGAN

Other Methods

Figure 8. Qualitative results of InSeGAN segmentation on the syn-
thetic 10-cones dataset. We also show example segmentations pro-
duced by other methods.

A. InSeGAN: Insights and Why it Works
A curious reader of our work might ask, How does the

network learn to disentangle the depth image into each in-
stance poses and the implicit template? In particular, how
does it learn to disentangle the pose of each instance from
the depth image into a separate latent vector in Ẑ? And,
why does the network learn an implicit template model that
represents a single instance, rather than multiple instances
within a single template? This is, we believe, because of the
way the generator-discriminator pipeline is trained. For ex-
ample, let us assume for a moment that a single latent noise
vector z controls more than one (or in the extreme, all) of
the instances in a depth image. As z is randomly sampled
from a distribution, it is unlikely that only some of the vec-
tors in Z (the collection of n z vectors used as input to the
generator) would render the instances and some would not,
given that aggregation of all the generated instances should
match up to the number of instances in the input data—a
requirement that the discriminator will eventually learn to
verify in the generated images. Further, given that the object
appearances are varied, it is perhaps easier for the generator
to learn to render the appearance of a single instance than
to capture the joint appearance distribution for all instances,
which could be very large and diverse.

B. How is the Implicit Template Learned?
Note that the template is learned jointly with the rest

of the modules. The teplate is implemented as a PyTorch
weight tensor and is updated with the backpropagation gra-
dients from the losses. Simply put, when training the setup,
all the arrows in Figure 2 gets reversed, thus training the
template along with all of the other weights in the network.

C. Using Arbitrary Number of Instances n?
It is straightforward to extend InSeGAN for an arbitrary

number of instances n, which we do by using training im-
ages with varying numbers of instances. Assuming a max
of n instances in the training images, we have InSeGAN
sample a random number (≤ n) of pose vectors at the input
in Fig. 2 (paper). Further, we also add a simple module
that predicts the number of instances in the rendered image,
which is used to produce that many pose vectors. A loss
is enforced that ensures the number of sampled pose vec-
tors and the number of estimated pose vectors (by the in-
stance pose encoder) are the same. The rest of the pipeline
stays the same. At test time, the input depth image is passed
through the instance pose encoder, alongside the number of
estimated instances (by the additional module), and each
of the produced instance poses are decoded individually to
produce the segmentations. We implemented this variant of
our scheme and found that the GAN successfully learns to
match the new distribution, which is that of depth images
with varied instance count and produces instance segmen-
tations for arbitrary number of object instances. In Fig. 9,
we show results on the Cone class when we vary the count
between 4 and 9. On these data, we achieved 45.1% mIoU.

Figure 9. InSeGAN results when we use the same model to learn
distributions of images with varying number of instnaces. The
results show segmentation visualizations when we used 4–9 in-
stances in each of the depth images.

D. Synthetic Setting with 10 Cones
As introduced in Figure 1 of the main paper, we also

explored the scalability of InSeGAN to depth images with
more than 5 instances. Similarly to how we produced the
synthetic Insta-10 dataset with n = 5 instances in each cat-
egory, we produced an additional dataset using n = 10 in-
stances of cones, to explore how well our model handles
the more difficult case of depth images with twice as many
instances. As in the Insta-10 dataset, all 10 instances were
randomly dropped into a bin in sequence using a physics
simulator. Similar to each category in Insta-10, we created
10,000 depth images with 10 cones each, of which we used
100 for validation and 100 for testing. We did not use K-
Means to select difficult examples for our test set in the
10-instance setting, because the increased number of cones
means that every depth image in the set is cluttered and
quite challenging. We trained our InSeGAN model with ex-
actly the same setting and hyperparameters (except for the

Original
Depth

Filtered &
Masked
Depth

InSeGAN-
hallucinated
Depth Image

InSeGAN
Output

Figure 10. Qualitative results on instance segmentation of real
data. We show the original depth images collected using a robot
(first row), the output of a masking and filtering step we do
to clean up the inputs (second row), the depth images halluci-
nated/rendered by InSeGAN (third row), and the segmentations
(fourth row).

number of instances n). Qualitative results are provided in
Figure 8. In Table 4, we quantitatively compare the perfor-
mance of InSeGAN on this dataset.

Method mIoU
KMeans 0.302

Spectral Clustering 0.324
Superpixels [43] 0.398

GrabCut+KMeans 0.021
InSeGAN 0.501

Table 4. Numerical comparison of InSeGAN vs. other methods on
challenging dataset with n = 10 cones in each image.

E. Qualitative Results on Real Data

In Figure 10, we show qualitative results of instance seg-
mentation on real data. We also highlight the preprocessing
steps we follow to apply InSeGAN to this dataset, which
are necessary because the input depth images are very noisy
(e.g., jitter/spurious noise in the depth sensor, and hole-
filling that the sensor algorithm implicitly applies). These
steps often alter the object shape, for example, merging two
adjacent instances to appear as a single large object. To use
these depth images in our setup, we first masked out the sur-
rounding region (everything outside of the bin). This is pos-
sible because the bin is always at the same location. After
applying the mask, we thresholded the z values in the depth
image to only show z values greater than half the height of a
block instances. This provided a relatively clean depth im-
age, reducing the jitter and other artifacts (see Figure 10).
Next, we applied InSeGAN to these preprocessed images.
The qualitative and quantitative results (in the main paper)
show that InSeGAN is very successful in segmentation on
these images (85% mIoU).

F. Data Collection Setup
In this section, we detail our synthetic and real-world

data collection setups.

F.1. Physics Simulator and Depth Image Generation

As described in the main paper, we use the NVIDIA
PhysX physics simulator4 to create our Insta-10 dataset. A
screenshot of this simulator software setup is shown in Fig-
ure 12. Specifically, the simulation consists of a virtual bin
of a suitable size and depth (depending on the size of the
object) into which virtual instances (Cones in the figure, for
example) are dropped sequentially from random locations
above the bin. Next, an overhead simulator depth camera
captures the depth image associated with the instances. A
snapshot of the instance segmentation of the five objects is
shown in the figure (right). The simulator automatically
takes care of avoiding intersecting objects (because it is
physically impossible) and accounts for occlusions. It takes
approximately 2 seconds to generate one depth image using
this setup with 5 identical object instances.

F.2. Robotic Collection of Real-World Depth Images

We first describe our robotic experiment system, then ex-
plain how we use it to collect more than 3,000 real-world
depth images for testing our approach. Our experiments are
carried out on a Fetch robot [44] equipped with a 7-degree-
of-freedom (7-DOF) arm, and we use ROS [37] as our de-
velopment system. The Fetch robotic arm is equipped with
a stock two-fingered parallel gripper. Mounted above the
box is a downward-pointing Intel RealSense Depth Camera
(D435), which consists of depth sensors, RGB sensor, and
infrared projector. The camera, which is attached to a Noga
magnetic base, provides a depth stream output with resolu-
tion up to 1280 × 720 resolution of the scene with which
the Fetch robot interacts. For trajectory planning, we use
the Expansive Space Tree (EST) planner [34]. Note that
during the experiments, human involvement is limited to
switching on the robot, configuring the planner, and placing
the objects in the box arbitrarily. Apart from this initializa-
tion, our robotic pipeline has no human involvement in the
process of data collection.

The data collection setup is depicted in Fig. 11. The
workspace is first set up with a box with plain background,
and the box is fitted with a handle that is grasped by the
Fetch robotic arm. Four identical wooden blocks are placed
inside the box in random pose configurations. A single
instance of a trial proceeds as follows: A depth image of
the box is captured by the depth camera and recorded to a
disk. The robot then initiates the trajectory planner, and the
robotic arm executes a motion trajectory to tilt-shake the
box randomly in the clockwise or anticlockwise direction

4https://developer.nvidia.com/physx-sdk

https://developer.nvidia.com/physx-sdk

Figure 11. Robotic data collection system used to acquire real-
world depth images.

such that the motion is collision free, then returns the box
to its original location. The degree of tilt shake is also ran-
domized (up to a specified maximum to prevent the blocks
falling out of box). Multiple trials are executed in succes-
sion for the robot to autonomously record the dataset, with
four cycles per minute.

G. Network Architectures

In this section, we will detail the neural architectures of
the three modules in InSeGAN: (i) the Encoder, (ii) the Dis-
criminator, and (iii) the Generator.
Generator: In Fig. 13, we provide the detailed architec-
ture of our InSeGAN Generator. It has five submodules:
(i) A pose decoder, which takes n random noise vectors
zi ∈ R128 ∼ N(0, I128), where n = 5 in our setup, and
produces 6-D vectors that are assumed to be axis-angle rep-
resentations of rotations and translations [51] (three dimen-
sions for rotation and three for translation). Each 6-D vec-
tor is then transformed into a rotation matrix and a transla-
tion vectors, to produce an element in the special Euclidean
group

(
SE(3)

)
. (ii) A 3D implicit template generation mod-

ule, which takes a 4×4×4×64 dimensional tensor (repre-
senting an implicit 3D template of the object) as input, then
up-samples in 3D using ResNet blocks and 3D instance nor-
malization layers to produce a 16 × 16 × 16 × 16 feature
maps. (iii) A spatial transformer network (STN) [19], which
takes as input the 3D implicit template and the geometric

Figure 12. An illustration of the physics simulator that we use
to render our synthetic dataset, Insta-10. Left: the simulated bin
into which the identical objects (e.g., Cone) are dropped. Right:
The ground-truth instance segmentation masks for each of the
instances. We use the depth images associated with these in-
stances for training InSeGAN, so that at inference time, segmenta-
tion masks are recovered. The ground-truth instance segmentation
masks are not used for training—they are only used for testing our
unsupervised method.

transform for every instance, then transforms the template,
resamples it, and produces a transformed feature map of the
same size as its input. (iv) A single-instance feature gener-
ator module, which reshapes the transformed template fea-
ture and produces single-instance 2D feature maps (each of
size 16× 16× 128). (v) A depth renderer module that takes
an average pool over the n feature maps representing the n
instances, and renders a multiple-instance depth image from
the pooled feature map.

The 3D implicit template loosely follows the architec-
ture of a HoloGAN [33], but differs in that we do not use
any stochastic modules (via MLP) that were critical in their
framework to produce stochastic components in the gener-
ated images (RGB images, in their case). We found that us-
ing noise vectors as in HoloGAN failed in our setup, caus-
ing us to lose the ability to disentangle instances.
Encoder and Discriminator: In Fig. 14, we show the neu-
ral network used in our Encoder and our Discriminator.
They loosely follow similar architectures, except that the
Discriminator takes a 64×64 depth image (either generated
or from the real examples) as input and produces a scalar
score, while the encoder takes a generated depth image and
produces the n pose instance vectors as output. We use 128-
D noise vectors when generating the images, and thus the
Encoder is expected to produce 128-D features as output
(one 128-D feature for each instance). Both the Discrim-
inator and the Encoder use 2D convolutions, leaky ReLU
activations, and 2D instance normalization [41] modules.

G.1. Implementation Details and Training Setup

Our InSeGAN modules are implemented in PyTorch. As
alluded to above, we generate 224 × 224 depth images us-
ing our simulator; however, we use 64 × 64 images in our

Re
LU

4 x 4 x 4 x 64

Re
sN

et
3D

U
p

sa
m

pl
e

3D

In
sta

nc
e

3D

16 x 16 x 16 x 16

STN

Re
sh

ap
e

Co
nv

 2
D

In
sta

nc
e

2D

16 x 16 x 12816 x 16 x 16 x 8

Re
LU

Co
nv

 3
D

In
sta

nc
e

3D

× 2× 2

16 x 16 x 128

Co
nv

2D
T

(K
=4

)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
T

(K
=4

)

32 x 32 x 64 64 x 64 x 1

Ta
nh

× n

AxisAngle 2
RotTransFC

LR
eL

U

× 2

FC

128 x n

6 x n

G
en

er
at

ed
 D

ep
th

 Im
ag

e

Multi-Instance Depth Image Renderer

Pose Encoder

Implicit Object Template Single Instance Feature Generator

Figure 13. Detailed architecture of InSeGAN generator.

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)Synthesized

image

64 x 64 x 1

32 x 32 x 64 16 x16 x128 8 x 8 x 256 4 x 4 x 512 512 x (128n)
128 x n

(a) Encoder

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)

Le
ak

yR
eL

U

In
sta

nc
e

2D

Co
nv

2D
 (K

=4
)Synthesized / Real

image

64 x 64 x 1

32 x 32 x 64 16 x16 x128 8 x 8 x 256 4 x 4 x 512 512 x 1

Si
gm

oi
d

Re
al

 /
Fa

ke
?

(b) Discriminator

Figure 14. (a) depicts detailed architecture of our Encoder module,
and (b) shows our Discriminator module.

InSeGAN pipeline. To this end, each 224 × 224 image is
rescaled to 64× 64 and normalized using mean subtraction
and normalization by the variance. For training, we use hor-
izontal and vertical image flips for data augmentations. We
do not use any other augmentation scheme.

G.2. Evaluation Details

For our evaluations, we use the mean IoU (mIoU) metric
between the ground truth instance segments and the pre-
dicted segmentations. Specifically, for each ground truth
segment, we find the predicted segment that is most over-
lapping with this segment, and compute their intersection-
over-union (IoU); we then use every segment’s IoU to com-
pute the mean IoU over all segments.
Training: We train our modules for 1000 epochs using a
single GPU; each epoch takes approximately 30 seconds
on the ∼10,000 training samples for each object. We use
the Adam optimizer, with a learning rate of 2 × 10−4, and
β1 = 0.5. We use 128-D noise samples from a Normal

distribution for the noise vectors, and a batch size of 128
samples.

H. Additional Ablative Studies

In this section, we extend the ablative studies presented
in the main paper with additional results, and analyze and
substantiate the importance of each choice in InSeGAN.

Is 3D Generator Important? An important choice that we
made in InSeGAN is the use of a 3D generator instead of a
2D generator. For comparison, we use a standard 2D image-
based generator typically used in conditional GANs [31].
Specifically, for the 2D generator, we replace the 3D mod-
ules in InSeGAN (i.e., the 3D implicit template, the pose
encoder, and the STN) by 2D convolutions and upsampling
layers, similar to those used in the encoder and the dis-
criminator. We perform two experiments to analyze and
substantiate our choice: (i) to evaluate the training stabil-
ity and convergence, and (ii) to evaluate the performance of
instance segmentation on the various objects. In Figs. 15,
we plot the convergence of the 2D and 3D GANs on three
objects from our Insta-10 dataset, namely Obj01, Cone, and
Connector. We make three observations from these results:
(i) 3D GAN is significantly faster than 2D GAN in conver-
gence, (ii) 3D GAN is more stable, and (iii) 3D GAN leads
to better mIoU for instance segmentation. In Table 1 of
the main paper, we provide comparisons of the 3D and 2D
GANs on all the objects in the Insta-10 dataset. Our results
show that our 3D generator is significantly better than a 2D
generator on a majority of the data classes.
Do We Need All Training Samples? In Fig. 16(a), we plot
the performance against increasing the number of data sam-
ples. That is, we use a random subset of the 10K depth
images and evaluate it on our test set. We used subsets
with 500, 1000, 3000, 7000, and the full 9800 samples.
In Fig. 16(a), we plot this performance. As is clear more

0 50 100 150 200 250 300
Epoch #

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
Io

U

InSeGAN with 2D generator
InSeGAN 3D

(a) Obj01

0 100 200 300 400
Epoch #

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
Io

U

InSeGAN with 2D generator
InSeGAN 3D

(b) Cone

0 200 400 600 800 1000
Epoch #

0.1

0.2

0.3

0.4

0.5

0.6

m
Io

U

InSeGAN with 2D generator
InSeGAN 3D

(c) Connector

Figure 15. Convergence plots for three objects comparing InSeGAN with 3D modules (i.e., using pose encoder, 3D instance template,
and STN), shown in orange, with a version in which the 3D modules are replaced by a 2D GAN (i.e., replacing the 3D modules by 2D
convolutions and upsampling layers, similar to the encoder and discriminator in reverse). In the figures, we plot mIoU versus the number
of training epochs. As is clear, using a 3D GAN leads to better performance and more stable convergence. Note that in the Cone (middle
plot), the 2D generator is unstable and often diverges—we reset the optimizer when this happens. This is captured by the discontinuities in
the blue plot. In contrast, using the 3D generator leads to very stable training of the generator and discriminator.

2000 4000 6000 8000 10000
Dataset size

0.3

0.4

0.5

0.6

0.7

m
Io

U

Bolt
Obj01

(a) Datasize

1 2 3 4 5 6 7
instances used in InSeGAN (gt=5)

0.2

0.3

0.4

0.5

0.6

0.7

m
Io

U

Bolt
Obj01

(b) Instances

Figure 16. (a) IoU vs. increasing dataset size. (b) IoU vs. increas-
ing number of instances used in InSeGAN (n), where the ground-
truth number of instances used to generate the data was always
n = 5. Results are shown for two object categories from Insta-10:
bolt (blue) and Obj01 (orange).

training data is useful, although this increment appears to be
dependent on the object class. In Fig. 18, we show qualita-
tive results of instance segmentations obtained for different
training set sizes to gain insights into what the performances
reported in Fig. 16(a) can be interpreted as. The results
show that beyond about 3000 samples, our method seems
to start producing qualitatively reasonable instance segmen-
tations, albeit with more data mIoU performance improves.

Figure 17. Results using Slot Attention [29].

Number of Instances/Disentanglement? A key question
about our framework is whether the algorithm really needs
to know the exact number of instances in order to do well

at inference, if the model is trained for a fixed number of
instances? What happens if we only have a rough esti-
mate? In this section, we empirically answer this question.
In Fig. 16(b), we plot the performance against increasing
the number of instances used in InSeGAN; i.e., we increase
n from 1 to 7 for the number of noise vectors we sample for
the generator. Recall that all our ground-truth depth images
consist of 5 instances. The plots in Fig. 16(b) for two ob-
jects (Bolt and Obj01) shows that InSeGAN performs rea-
sonably well when the number of instances is close to the
ground-truth number. In Fig. 19, we plot qualitative results
from these choices. Interestingly, we find that using n = 1
completely fails to capturing the shapes of the objects, while
n = 4 learns a two-sided bolt, and n = 5 seems to cap-
ture the shape perfectly. While n > 5 seems to show some
improvements, it is not consistent across the data classes.
Overall, it looks like a rough estimate of the number of in-
stances is sufficient to achieve reasonable instance segmen-
tation performance.

Effect of Noise in the Depth Images? In Table 5, we added
Gaussian noise N(0, σ) to each pixel in the synthetic depth
images input to the algorithm for σ = 0.1, 0.2, 0.5, and
pixels depth values in the range [−1, 1]. We find that In-
SeGAN’s performance on noisy depth images is still much
better than the performance of K-Means on the noise-free
images.

σ KMeans No noise 0.1 0.2 0.5
Bolt 0.18 0.424 0.352 0.326 0.318
obj01 0.2 0.686 0.662 0.643 0.421

Table 5. mIOU for for different noise levels in the depth images.

n=500 n=1000 n=3000 n=7000

0.274 0.313 0.398 0.438 0.424

n=10000 n=500 n=1000 n=3000 n=7000 n=10000

0.373 0.547 0.546 0.669 0.689

Figure 18. Qualitative instance segmentation results using various data training sizes, for two object classes: Bolt (left) and Obj01 (right).
First row: input depth image; second row: hallucinated depth image by InSeGAN; third row: inferred instance segmentation; fourth row
onwards: the single instances hallucinated by InSeGAN. The mIoU on the full test set is shown at the bottom.

Inst = 1 Inst = 2 Inst = 3 Inst = 4 Inst = 6Inst = 5

0.172

0.255

0.319

0.391

0.424

0.446

Inst = 7

0.417

Inst = 1 Inst = 2 Inst = 3 Inst = 4 Inst = 6Inst = 5

0.175

0.291

0.394

0.524

0.689

0.409

Figure 19. Qualitative instance segmentation results when the number of instances used in InSeGAN is increased, with a fixed ground-truth
number of instances (n = 5 instances). First row: input depth image; second row: hallucinated depth image by InSeGAN; third row:
inferred instance segmentation; fourth row onwards: the single instances hallucinated by InSeGAN. The mIoU on the full test set is shown
at the bottom.

H.1. Qualitative Comparisons

In Fig. 20, we compare qualitative results from In-
SeGAN with those from other methods. For spectral clus-
tering, we used an automatic bandwidth selection scheme
in the nearest neighbor kernel construction. For Wu et
al. [46], we use their 1-channel variant, as the 2-channel
variant turned out to be very expensive – it is 32x slower
than 1-channel. That said, we did explore the performance
of 2-channels on our Bolt class, but did not see any signif-
icant performance differences to using 1-channel. We also
show comparisons to another recent state of the art method,
IODINE [9]. For all of the prior works, we used code pro-
vided by the respective authors, and only changed the file
path to our dataset. They were trained until convergence
(that is, until no change in the objective was found). As
is clear from Fig. 20, InSeGAN produces more reasonable
segmentations than other methods. We found that IODINE
completely fails on our dataset. In contrast, InSeGAN, via
modeling the 3D shape of the objects, leads to significant
benefits in challenging segmentation settings. In Fig. 17,

we show qualitative results using the recent Slot Attention
method [29] for the cone class with 5 and 10 instances.

H.2. Qualitative Results

In Figure. 21, we show several more qualitative results
for each of the 10 object classes in Insta-10.

SCWu et al. OursKMeansInput

IODINE [1]

Figure 20. Qualitative comparisons of results from InSeGAN against other methods. On the right, we show a sample result from a
segmentation from the competitive method IODINE [9] (using their code on our data).)

Figure 21. Qualitative results using InSeGAN on the 10 object classes in Insta-10. We show 10 segmentation results for each class. First
row: input depth image; second row: hallucinated (reconstructed) depth image by InSeGAN; third row: inferred instance segmentation;
fourth row onwards: the single instances hallucinated by InSeGAN.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-097.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

