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Abstract
Predicting the future frames of a video is a challenging task, in part due to the underlying
stochastic real-world phenomena. Prior approaches to solve this task typically estimate a
latent prior characterizing this stochasticity, however do not account for the predictive un-
certainty of the (deep learning) model. Such approaches often derive the training signal from
the mean-squared error (MSE) between the generated frame and the ground truth, which can
lead to sub-optimal training, especially when the predictive uncertainty is high. Towards this
end, we introduce Neural Uncertainty Quantifier (NUQ) – a stochastic quantification of the
model’s predictive uncertainty, and use it to weigh the MSE loss. We propose a hierarchical,
variational framework to derive NUQ in a principled manner using a deep, Bayesian graph-
ical model. Our experiments on four benchmark stochastic video prediction datasets show
that our proposed framework trains more effectively compared to the state-of-the-art models
(especially when the training sets are small), while demonstrating better video generation
quality and diversity against several evaluation metrics.
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Abstract

Predicting the future frames of a video is a challenging
task, in part due to the underlying stochastic real-world
phenomena. Prior approaches to solve this task typically
estimate a latent prior characterizing this stochasticity, how-
ever do not account for the predictive uncertainty of the
(deep learning) model. Such approaches often derive the
training signal from the mean-squared error (MSE) between
the generated frame and the ground truth, which can lead
to sub-optimal training, especially when the predictive un-
certainty is high. Towards this end, we introduce Neural
Uncertainty Quantifier (NUQ) - a stochastic quantification
of the model’s predictive uncertainty, and use it to weigh
the MSE loss. We propose a hierarchical, variational frame-
work to derive NUQ in a principled manner using a deep,
Bayesian graphical model. Our experiments on four bench-
mark stochastic video prediction datasets show that our
proposed framework trains more effectively compared to the
state-of-the-art models (especially when the training sets are
small), while demonstrating better video generation quality
and diversity against several evaluation metrics.

1. Introduction

Extrapolating the present into the future is a task essential
to predictive reasoning and planning. When artificial intel-
ligence systems are deployed to work side-by-side with hu-
mans, it is critical that they reason about their visual context
and generate plausible futures so that they can anticipate the
potential needs of humans or catastrophic risks and be better
equipped. Such a visual future generation framework could
also benefit applications such as video surveillance [58], hu-
man action recognition and forecasting [50, 56] as well as
simulation of real-world scenarios to train robot learning
algorithms, including autonomous driving [28]. However,
such applications have a high element of stochasticity, which
makes this prediction task challenging.
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Figure 1. Qualitative results vis-á-vis state-of-the-art video predic-
tion baselines using the proposed NUQ framework on the BAIR
Push dataset [15], trained using only 2,000 samples (rather than
the full 40K samples). Regions with high motion are shown by a
red box. Also shown is an estimate of the per-frame scaled uncer-
tainty estimated by our model. Note that the robotic arm changes
direction at t = 8, which is reflected in the predicted uncertainty.

The resurgence of deep neural networks, especially the ad-
vent of generative adversarial networks [20], has enabled sig-
nificant progress in the development of frameworks for gen-
erating visual data, such as images [30]. While, temporally-
evolving extensions of such image generation techniques
have shown benefits in artificially producing video sequences
for deterministic visual contexts [55, 57, 19, 37, 29], they
usually fail to model real-world sequences that are often
highly stochastic. Several recent works in video generation,
thus design modules to factor in data stochasticity while
making predictions [39, 2, 13, 8]. Specifically, such meth-
ods assume a latent stochastic prior, from which random
samples are drawn, in order to generate future frames. In
Babaeizadeh et al. [2], this stochastic prior is assumed to
follow a fixed normal distribution, which is sampled at every
time step, while Denton and Fergus [13], learn this prior
from data. The latter’s key insight is to use a variational
posterior to guide the learning of the prior to produce the
sufficient statistics of the normal distribution governing the
prior. Such stochastic methods typically employ a determin-
istic decoder (a neural network) that combines an embedding
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of the visual context and a random sample from the stochas-
tic prior to generate a future video frame. The variance in
this prior accounts for the stochasticity underlying the data.
To train such models, the mean-squared error (MSE) is then
minimized by comparing the predictions against the true
video frames.

Nonetheless existing stochastic methods have largely ig-
nored the predictive uncertainty (aleatoric uncertainty) [31]
of the models, which might adversarially impact downstream
tasks that leverage these predictions. From a machine learn-
ing stand point, ignoring the predictive uncertainty might
lead to the model being unnecessarily penalized (via the
MSE), even if it makes a very uncertain prediction that ends
up being different from the ground-truth. This can destabi-
lize the training of the underlying neural networks, leading
to slower convergence or requiring larger training data. This
is of importance because such data might be expensive or
sometimes even difficult to collect (e.g., predicting the next
human actions in instruction videos, or a rare traffic incident),
and thus effective training with limited data is essential.

In this work, we rise up to these challenges by quantifying
the predictive uncertainty of a stochastic frame prediction
model and using it to calibrate its training objective. In par-
ticular a stochastic estimate of the predictive uncertainty,
derived from the latent space of the model, is used to weigh
the MSE. That is, when the uncertainty is high, the MSE
is down-weighted proportionately, and vice versa; thereby
regularizing the backpropagation gradients to train the frame
generation module. Moreover, this uncertainty estimate can
be used for downstream tasks, such as for example, regulat-
ing the manuevers in autonomous driving [28, 56]. We call
our scheme, Neural Uncertainty Quantifier (NUQ).

We observe that the weight on the MSE that NUQ in-
troduces, basically amounts to the variance of the normal
distribution governing the generated output. Thus, an obvi-
ous consideration would be to estimate the variance directly
from the output. However, this may be cumbersome due to
the very high dimensionality of the output space (order of
the number of pixels). We instead, choose to derive it from
the variance of the latent space prior, which has far fewer
dimensions. Specifically, NUQ leverages a variational, deep,
hierarchical, graphical model to bridge the variance of the
latent space prior and that of the output. Our framework is
trained end-to-end. Sample generations by our framework
is shown in Figure 1. In addition, inspired by the recent
successes of generative adversarial networks [20, 37, 39],
we propose a variant of our framework that uses a novel
sequence discriminator, in an adversarial setting. This dis-
criminator module helps to constrain the space of possible
output frames, while enforcing motion regularities in the
generated videos.

To empirically verify our intuitions, we present experi-
ments on a synthetic (Stochastic Moving MNIST [13]) and

three challenging real world datasets: KTH-Action [47],
BAIR push [15], and UCF-101 [48] for the task of future
frame generation. Our results show that our framework con-
verges faster than prior stochastic video generation methods,
and leads to state-of-the-art video generation quality, even
when the dataset size is small, while exhibiting generative
diversity in the predicted frames. Below, we summarize the
main contributions of this paper:

1. We present Neural Uncertainty Quantifier (NUQ), a
deep, Bayesian network that learns to estimate the pre-
dictive uncertainty of stochastic frame generation mod-
els, which can be leveraged to control the training up-
dates, for faster and improved convergence of predictive
models.

2. We propose a novel, hierarchical, variational training
scheme that allows for incorporating problem-specific
knowledge into the predictions via hyperpriors on the
uncertainty estimate.

3. Experimental results demonstrate our framework’s bet-
ter video generation and faster training capabilities,
even with small training sets compared to recent state-
of-the-art methods on stochastic video generation tasks,
across multiple datasets.

2. Related Work

Early works in video frame prediction mostly resorted
to end-to-end deterministic architectures [44, 49, 17]. Ran-
zato et al. [44] proposed to divide frames into patches and
extrapolate their evolution in time. Srivastava et al. [49]
use image encoders with pre-trained weights to encode the
frames. ContextVP [7] and PredNet [41] leverage Convo-
lutional LSTMs [61] for video prediction. Fragkiadaki et
al. [19] proposes pose extrapolation using LSTMs. More
recent approaches [37, 63] seek to predict frames bidirec-
tionally (future and past), during training. However, the
inherent deterministic nature of such models [29] often be-
comes a bottleneck to their performance. Instead, we seek to
investigate approaches that allow modeling of the underlying
stochasticity in the data while generating an assessment of
the model’s predictive uncertainty.

Stochastic approaches constitute a recently emerging and
one of the most promising classes of video prediction meth-
ods [39, 2, 13]. These approaches model the data stochastic-
ity using a latent prior distribution and are thus readily gen-
eralizable to real-world scenarios. Popular among them are
STORNs [5], VRNNs [11], SRNNs [18], and DMMs [35].
SV2P [2] is a more recent method that uses a single set of
stochastic latent variables that are assumed to follow a fixed
prior distribution. Denton and Fergus [13] improve upon
SV2P [2] by allowing the prior distribution to be adapted at



every time step by casting the prior as a trainable neural net-
work. Their method is shown to achieve superior empirical
performance, thus underlining the importance of learning to
model data stochasticity. We also note that generative models
have recently been adapted to incorporate stochastic infor-
mation through a hierarchical latent space [52, 53]. Such
networks have also been applied to frame prediction tasks [8].
None of these approaches however, explore the effectiveness
of modeling the predictive uncertainty. While, technically it
might be possible that the stochastic modules in these prior
approaches can learn to quantify this uncertainty implicitly,
it may need longer training periods or larger datasets. In-
stead we show that explicitly incorporating the predictive
uncertainty into the learning objective, via a hierarchical,
variational framework improves training and inference.

Another line of work in frame prediction seeks to decou-
ple the video into static and moving components [54, 14,
40, 26, 60, 21]. Some of these approaches are determinis-
tic, others stochastic. Denton et al. [14] extracts content
and pose information for this purpose. Villegas et al. [54]
adopt a multiscale approach towards frame prediction which
works by building a model of object motion, however they
require supervisory information, such as annotated pose, dur-
ing training. Ye et al. [62] propose a compositional approach
to video prediction by stitching the motion of individual
entities. While promising, their approach relies on auxiliary
information such as spatial locations of the entities, and as a
result, is difficult to generalize. Jin et al. [29] investigates de-
coupling in the frequency space, however they do not model
the data stochasticity explicitly. Hsieh et al. [27] describes a
similar approach by modeling the motion and appearance of
each object in the video, but without requiring any auxiliary
information. Different from these set of approaches, our
proposed framework models frames holistically and is thus
agnostic to the video content.

Modeling the predictive uncertainty in deep networks has
garnered significant attention lately [6, 12, 36, 42, 51]. Some
of these works [1, 36, 42] investigate it in a classification
setting, while some others [6, 24] in the context of regression.
Uncertainty has also recently been explored in the context
of generative models [38, 43, 59]. However, predictive un-
certainty modeling in the context of frame prediction has
remained largely unexplored. NUQ attempts to fill this gap.

3. Background
Suppose x1:T := 〈x1,x2, · · · ,xT 〉 denotes a sequence

of random variables, each xt representing a video frame at
time step t. Assuming we have access to a few initial frames
x1:F , to set the visual context (where 1 ≤ F < T ), our goal
is to generate the rest of the frames xF+1 onwards autore-
gressively, i.e., conditioned on the seen frames and what
has been generated hitherto. This task amounts to finding a
prediction model pθ(·), parameterized by θ, that minimizes

the expected negative log-likelihood. When unknown factors
of variation are involved in the data generation process, a
determinstic predictive model is insufficient. A standard way
to incorporate stochasticity is by assuming the generated
frames are in turn conditioned on a latent prior model p(zt);
i.e., zt ∼ p(zt),xt ∼ pθ(xt|x1:t−1, zt). Specifically, the
stochasticity in the generative process is characterized by
the variance in p(zt), that produces diversity in zt ∼ p(zt).
Diversity among predicted frames emerges as a result of this
variance.

A well-known problem with the use of such latent stochas-
tic priors is the intractability that it brings into the estimation
of the evidence or the log-partition function: p(xt|x1:t−1) =∫
zt
pθ(xt|x1:t−1, zt)p(zt)dzt. This problem is typically

avoided by casting this estimation in an encoder-decoder
setup, where the encoder embeds x1:t as zt ∼ p(zt|x1:t),
while the decoder outputs xt ∼ pθ(xt|x1:t−1, zt). In or-
der to train efficiently, access to a variational posterior
qφ(zt|x1:t) – that approximates the true posterior p(zt|x1:t)
of the encoder – is assumed. Using this approximate pos-
terior, learning the model parameters θ and φ amounts to
maximizing the variational lower bound, Lθ,φ [33]:

log p(xt|x1:t−1) ≥ Lθ,φ, where

Lθ,φ :=

∫
zt

qφ(zt|x1:t) log pθ(xt|x1:t−1,zt)dzt

−
∫
zt

qφ(zt|x1:t) log
qφ(zt|x1:t)

p(zt)
dzt

(1)

From the definition, this amounts to:

Lθ,φ = Eqφ(zt|x1:t) log pθ(xt|x1:t−1,zt)−
KL (qφ(zt|x1:t)‖p(zt)) , for t > F.

(2)

Leveraging the re-parametrization trick ([33]) allows effi-
cient optimization of the likelihood loss in Eq. 2, permitting
us to learn the parameters θ and φ. Note that the expecta-
tion term in Eq. 2 boils down to a standard MSE over all
predicted frames xF+1:T in the training set when the pθ(·)
term is assumed to follow a Gaussian distribution with an
isotropic constant variance. In this setting, the KL diver-
gence in Eq. 2 acts as a regularizer on qφ(·) so that this
posterior does not just copy an encoding of xt available to it
as zt, instead captures the density of a latent distribution that
is useful to the prediction model in maximizing the first term
in Eq. 2. In conditional variational autoencoders [2, 33],
the latent prior p(zt) is typically assumed to be N (0, 1)
- a choice that can be sub-optimal. A better approach is
perhaps to learn this prior so that the stochasticity of the
future frame can be guided by the data itself. To this end,
Denton and Fergus [13] suggests a learned stochastic prior
model p(zt) = pψ(zt) := pψ(zt|x1:t−1), parametrized by
ψ, which is learned by minimizing its divergence from the
variational posterior qφ(·) through the KL-term in Eq. 2. As
the posterior qφ(·) has access to the current input sample xt,



it can guide the prior (which does not have access to xt, but
only to x1:t−1) to produce a distribution on zt that mimics
the posterior (and hence we can discard the posterior at test
time). Thus, the training-time sampling pipeline is given by:
zt ∼ qφ(zt|x1:t),xt ∼ pθ(xt|x1:t−1, zt), and pψ

d←→ qφ
(matching in distribution). While learning the stochastic
prior pψ(·) allows for characterizing the data stochasticity,
the model’s predictive uncertainty remains unaccounted for.
Our hierarchical framework for estimating this uncertainty,
follows a two-step process. The first is the estimation of the
learned prior, pψ(·). The key idea in the second step is to
leverage the variance in the learned prior pψ(·) to estimate
this uncertainty. Since the prior estimation network, pψ(·),
is retained both during training and inference (unlike the pos-
terior), this permits its usage for downstream tasks, during
inference.

4. Proposed Method
As alluded to above, we seek to control the prediction

model using the uncertainty estimated directly from the
stochastic prior. Subsequently, we assume the prediction
model consists of an LSTM, fθ, with weights θ such that:

x̂t = fθ(x1:t−1, zt) := fθ(xt−1, zt;h
θ
t−1), (3)

where x̂t denotes the tth generated frame and hθt−1 captures
the internal states of the LSTM. The generated frame x̂t is
then sent through the likelihood model to compute the MSE.
With this setup, we are now ready to introduce our neural
uncertainty quantifier (NUQ). Figure 2 provides an overview
of our framework.

4.1. Neural Uncertainty Quantifier

As is standard practice, let us assume the data likelihood
model pθ(xt|x1:t−1, zt) ∼ N (xt,

1
bt

), where bt denotes the
precision (inverse variance) of our prediction model, where
bt > 0, bt ∈ R. Denton and Fergus [13] assumes bt to be an
isotropic constant, such that the negative log-likelihood of
the predicted frame x̂t boils down to computing the `2-loss.
This reduces Eq. 2 to become the evidence lower bound
(ELBO) [33]:

Lθ,φ,ψ :=

T∑
t=F+1

1

2
‖x̂t − xt‖2 +

KL (qφ(zt|x1:t) ‖ pψ(zt|x1:t−1)) .

(4)

Our key insight to the proposed uncertainty measure
arises from the observation that the `2-norm term in Eq. 4
does not include any dependency on the uncertainty asso-
ciated with the prediction of x̂t. Note that there are two
extreme situations when this loss is large that impacts ef-
fective training: (i) when there is no uncertainty associated
with the generation of x̂t, however the prediction model is

not trained well, such that x̂t does not match xt, and (ii)
when there is uncertainty involved in the generative model
such that the generated x̂t, while plausible given the context,
is different from xt. Thus, the key research question for
effective model training becomes: how can we equip the pre-
diction model to differentiate these situations? Our solution
is to directly condition the prediction model with the uncer-
tainty derived from the prior pψ(zt|x1:t−1), so that when
the stochasticity is high for the generated frames, the `2-loss
term is weighed down such that the gradients computed on
this term will have a lesser impact in updating the weights
of the neural network; thereby stabilizing the training.

Suppose our prior pψ(zt|x1:t−1) is a normal distribution
N (µz

t ,Σ
z
t ), with parameters µz

t , the mean, and Σz
t the

covariance matrix - capturing the predictive uncertainty, in
the latent space. For better characterization of this prior
model, we assume it to be implemented as an LSTM gψ with
weights ψ such that (µz

t ,Σ
z
t ) = gψ(xt−1;hψt−1), where

hψt−1 denotes the hidden state. Similarly, we assume the pos-
terior qφ(zt|x1:t) is normally-distributed: N (µqt ,Σ

q
t ), and

is implemented using an LSTM lφ(xt;h
φ
t ) with weights φ

and hidden state hφt . This leads us to the following sampling
pipeline:

x̂t = fθ(xt−1, zt;h
θ
t−1) ∼ N (xt,

1

bt
), (5)

zt|x1:t−1 ∼ N (µz
t ,Σ

z
t ) ; (µz

t ,Σ
z
t ) = gψ(xt−1;hψt−1),

(6)

zt|x1:t ∼ N (µqt ,Σ
q
t ) ; (µqt ,Σ

q
t ) = lφ(xt;h

ψ
t ), (7)

Using this setup, we are now ready to present our hierar-
chical, generative, variational model for uncertainty estima-
tion, an overview of which is shown in Figure 2. To set the
stage, let us assume the precision is sampled from the distri-
bution p(bt|x1:t−1). Then, we can rewrite the log-likelihood
in Eq. 1 by including the precision distribution as:

∫
bt,zt

log p(xt|bt, zt, x1:t−1) + log p(zt|x1:t−1) (8)

+ log p(bt|x1:t−1) dbt dzt

The above integral is intractable. Hence, we approximate
it by sampling bt and zt. Note that the first two terms taken
together is essentially the left-hand side of Eq. 1, except
with the additional conditioning on bt. Using the variational
lower bound [33], like in Eq. 1, we have :

log p(xt|bt,x1:t−1) ≥ Eqφ(zt|x1:t) log pθ(xt|x1:t−1,zt, bt)−
KL (qφ(zt|x1:t)‖pψ(zt|x1:t−1) , for t > F.

(9)
Please see the supplementary for the derivation. As stated
before, we seek to connect the uncertainty Σz

t in the latent
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Figure 2. Overview of our approach.

prior pψ(zt|x1:t−1) to the precision bt. We accomplish this
via a variational encoder-decoder network. Such a formula-
tion permits the flexibility of introducing customized prior
distributions on its latent space. During training, the encoder
component of this network, ζλ(·), with parameters λ, takes
as input Σz

t , and produces the sufficient statistics of the pos-
terior distribution qλ(·) governing the latent space of this
network, while the decoder τν(·), with parameters ν draws a
sample st, from this distribution, and decodes it to generate
bt, with a distribution on bt denoted by pν(·). This sampling
scheme is described as follows:

bt ∼ pν(bt|st,x1:t−1) = pν(bt|st,Σzt ),
st ∼ qλ(st|x1:t−1) = qλ(st|Σzt )

(10)

In order to provide appropriate regularization for the
latent space distribution, qλ(·), we assume a manually-
defined hyper-prior distribution governing the latent space
of this module denoted p(st). Let the hyper prior p(st) ∼
Dγ(αst , β

s
t ), with parameters αst , β

s
t chosen by the user and

let qλ(st|Σzt ) ∼ Dλ(αŝt , β
ŝ
t ), where the parameters αŝt , β

ŝ
t

are estimated by the encoder network ζλ(·). With this setup,
analogous to Eq. 2, we obtain the following variational lower
bound on the likelihood of bt:

log p(bt|x1:t−1) ≥ Eqλ(st|Σzt ) log pν(bt|st,Σzt )−
KL (qλ(st|Σzt ) ‖ p(st)) , for t > F

(11)

Please see the supplementary for the derivation. Plugging
Eq. 9 and Eq. 11 in Eq. 8, we have the following:

Eqφ(zt|x1:t) log pθ(xt|x1:t−1,zt, bt)−

KL (qφ(zt|x1:t)‖pψ(zt|x1:t−1)) +

Eqλ(st|x1:t−1) log pν(bt|st,Σzt )−KL (qλ(st|Σzt )‖p(st))
(12)

Assuming that pθ(xt|x1:t−1, zt, bt) follows a Gaussian
distribution N (xt,

1
bt

), along the lines of Eq. 4, leads us to
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Figure 3. Plate diagrams depicting the graphical model of our
NUQ-framework. (a) shows the sampling dependencies between
the learned prior and the uncertainty prediction modules, while (b)
shows our posterior sampling framework. The plates denote, for
example, t− 1 repetitions of the random variable x in (a).

our final ELBO objective, which we minimize:

LPθ,φ,ψ,λ =

T∑
t=F+1

1

2

[
bt ‖x̂t − xt‖2 − log bt

]
−

Eqλ(st|Σzt ) log pν(bt|st,Σzt )+
η1 KL(qφ(zt|x1:t)‖pψ(zt|x1:t−1)) + η2 KL (qλ(st|Σzt )‖p(st))

(13)

where η1, η2 ≥ 0 are regularization constants (as suggested
in Higgins et al. [25]).

Given our setup, a natural choice in a hierarchical
Bayesian conjugate sense is to assume p(st) ∼ Γ(αst , β

s
t ),

the gamma distribution, which is a conjugate prior for the
precision. Unfortunately, however using the gamma distribu-
tion for the posterior does not permit the reparametrization
trick [34, 33], which is essential for making sampling-based
networks differentiable. While one may resort to approxima-
tions to the gamma prior such as using implicit gradients [16]
or generalized re-parameterization techniques [46], these ap-
proaches can be computationally expensive. Instead, we
propose to approximate it by a truncated normal distribu-



tion Ntr(αŝt , βŝt ) (which is amenable to re-parametrization),
where now αŝt (≥ 0) and βŝt correspond to the mean and the
standard deviation of the truncated normal, respectively and
are estimated by the encoder network ζλ(·). In practice, the
truncation is effected through rejection sampling [45]; i.e.,
we sample from a normal distribution, and reject samples
if they are negative. Empirically, we find this choice of the
hyper prior (being a gamma distribution) and our truncated-
normal posterior combination to be beneficial. Thus, the KL
divergence in Eq. 11 will eventually promote the network
ζλ(·) to produce the sufficient statistics of a truncated-normal
distribution which will closely approximate the true gamma
hyper-prior governing p(st). Additionally, since st is a scalar
(∈ R), thus bt (= 1

st
) is directly sampled from qλ(·) rather

than through the decoder network, τν(·) . Figure 3 presents a
plate diagram of our proposed hierarchical graphical model.

4.2. Sequence Discriminator

Inspired by the success of generative adversarial net-
works in generating realistic images and realistic object mo-
tions [20, 20, 22, 4, 39, 37], as well as the synergy that GANs
bring about in improving the quality of other generative mod-
els [10, 23, 3], we propose to integrate NUQ with a sequence
discriminator, where the generated frame sequences are input
to a discriminator that checks for their realism and motion
coherence. Different from prior approaches that employ
GANs for future frame prediction [39, 37], our discrimi-
nator (Dw) is a recurrent neural network with weights w.
It takes as input k contiguous frames with image dimen-
sions δh × δw, and produces a non-negative score, denoting
the probability of that sequence being real or fake. Thus,
Dw : Rδh×δw×k → R+. Suppose, y1:k ⊂ x1:T represents
k contiguous frames starting at a random time step from
video sequences x1:T in the training dataset X . If x̂t−k+1:t

represents a sequence of k generated frames, then our dis-
criminator loss is given by:

LDw := −
T∑

t=F+1

Ey1:k∼X log [Dw(y1:k)] + (14)

Ex̂t−k+1:t∼p(x̂t−k+1:t|x1:t−k,z1:t) log [1−Dw(x̂t−k+1:t)] ,

where, the discriminator is trained to distinguish between the
generated (with label zero) and real (with label one) input
sequences, by minimizing LDw, while the generator tries to
maximize it. Combining the ELBO loss in Eq. 13 with the
generator loss, we have our modified training loss for this
variant, given by L = LPθ,φ,ψ,λ − γLDw, where γ > 0 is a
small regularization constant. For both variants (Eq. 13 or
Eq. 14), we optimize the final objective using ADAM [32].

5. Experiments
In this section, we empirically validate the efficacy of

NUQ on challenging real-world and synthetic datasets.

(a) SSIM Measure
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(b) Qualitative

Figure 4. Diversity Results: SSIM score with increasing number
of generated futures, per time step, on the SMMNIST test set, as a
quantification of output diversity (left) and qualitative generation
results (right) using NUQ trained with 2000 training samples.

Datasets: We conduct experiments on four standard stochas-
tic video prediction datasets, namely (i) Stochastic Moving
MNIST (SMMNIST) [13, 10], (ii) BAIR Robot Push [15],
(iii) KTH-Action [47], and (iv) UCF-101 [48]. In SMM-
NIST, a hand-written digit moves in rectilinear paths within
a 48× 48 pixel box, bouncing off its walls, where the post
bounce movement directions are stochastic. The dataset
has a test set size of 1,000 videos [10]. The BAIR Push
Dataset [15] consists of 64×64 pixel videos featuring highly
stochastic motions of a Sawyer robotic arm pushing objects
on a table. This dataset has 257 test samples using the split
of Denton and Fergus [13]. The KTH Action Dataset [47] is
a small dataset of 64× 64 pixel videos containing a human
performing various actions (walking, jogging, etc.), captured
in a controlled setting with a static camera. The test set for
this dataset consists of 476 videos. Finally, the UCF-101
Dataset [48] is a dataset of videos, resized to 64×64 contain-
ing 101 common human action categories (such as pushups,
cricket shot, etc.), spanning both indoor and outdoor activi-
ties. The test set for this dataset consists of 1,895 videos. We
hypothesize that by incorporating the predictive uncertainty,
NUQ undergoes more efficient training updates and can thus
train with fewer samples, efficiently. We therefore conduct
experiments with varying training set sizes for some of these
datasets.
Baselines and Evaluation Metrics: To carefully evaluate
the performance improvement brought about by incorporat-
ing our uncertainty estimation method into a stochastic video
generation framework, we choose three competitive and
closely-related state-of-the-art methods within the stochastic
video prediction realm as baselines, namely: (i) Denton and
Fergus [13], (ii) Castrejon et al. [8], and (ii) Hsieh et al. [27].
At test time, we follow the standard protocol of generating
100 sequences for all models and report performances on
sequences that matches best with the ground truth [13]. To
quantify the generation quality, we use standard evaluation
metrics: (i) per-frame Structural Similarity (SSIM) ([9]), (ii)
Peak Signal to Noise Ratio (PSNR), and (iii) Learned Per-
ceptual Image Patch Similarity (LPIPS) [64] - with a VGG
backbone. We report the average scores on these metrics
across all predicted frames.
Experimental Setup: For SMMNIST, BAIR Push, and



Table 1. SSIM, PSNR, and LPIPS scores on the test set for different datasets after @1, @5, and @Convergence (C) (upto 150 epochs)
epochs of training with varying training set sizes. [Key: Best results in bold and second-best in blue.]

Dataset: SMMNIST SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C

Number of training samples - 2,000
Ours 0.8686 0.8638 0.8948 17.76 18.13 18.14 0.3087 0.2836 0.1803
Ours (w/o discriminator) 0.8599 0.8825 0.8929 17.82 18.07 18.48 0.3283 0.3158 0.1967
Denton and Fergus [13] 0.8145 0.8650 0.8696 17.07 18.05 18.13 0.3429 0.3345 0.2321
Castrejon et al. [8] 0.8564 0.8748 0.8868 17.36 17.98 18.12 0.3392 0.3432 0.2262
Hsieh et al. [27] 0.4538 0.8419 0.8569 11.27 16.40 16.70 0.4370 0.3696 0.2842

Number of training samples - 8,000 (full training set)
@1 @5 @ C @1 @5 @ C @1 @5 @C

Ours 0.8524 0.8610 0.9088 17.93 18.14 19.07 0.3787 0.3013 0.1149
Denton and Fergus [13] 0.8154 0.8607 0.8819 17.49 18.22 18.30 0.4061 0.3626 0.2813
Castrejon et al. [8] 0.8640 0.8708 0.8868 17.23 18.06 18.27 0.3939 0.3316 0.1040
Hsieh et al. [27] 0.5328 0.8374 0.8801 11.46 16.65 16.70 0.4217 0.4039 0.2747

Dataset: BAIR Push SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C

Number of training samples - 2,000
Ours 0.7709 0.8230 0.8314 18.40 19.15 19.26 0.3394 0.2014 0.1574
Denton and Fergus [13] 0.7351 0.7853 0.8196 17.32 17.44 18.49 0.3531 0.3197 0.1725
Castrejon et al. [8] 0.7094 0.7961 0.8221 17.19 17.92 18.79 0.3433 0.2560 0.1742
Hsieh et al. [27] 0.4979 0.7901 0.7989 11.32 15.28 16.00 0.4159 0.3899 0.1891

Number of training samples - 43,264 (full training set)
@1 @5 @ C @1 @5 @ C @1 @5 @C

Ours 0.8135 0.8336 0.8460 19.03 19.14 19.31 0.1656 0.1470 0.1296
Denton and Fergus [13] 0.7782 0.8198 0.8328 18.30 18.38 18.81 0.2119 0.1843 0.1499
Castrejon et al. [8] 0.7816 0.8309 0.8437 18.29 18.56 19.59 0.1878 0.1720 0.1181
Hsieh et al. [27] 0.7507 0.8123 0.8323 16.52 16.61 16.61 0.2140 0.1829 0.1713

Dataset: KTH Action SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C

Number of training samples - 1,911 (full training set)
Ours 0.7990 0.8192 0.8448 22.62 22.89 24.02 0.4309 0.3390 0.2238
Denton and Fergus [13] 0.7028 0.8056 0.8374 21.29 22.93 24.73 0.4621 0.3580 0.2497
Castrejon et al. [8] 0.6345 0.8054 0.8510 21.31 21.12 24.82 0.4513 0.3471 0.2395
Hsieh et al. [27] 0.4647 0.5335 0.7057 11.25 12.32 16.44 0.5189 0.3939 0.2771

Dataset: UCF-101 SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C
Number of training samples - 11,425 (full training set)

Ours 0.7359 0.7636 0.7729 21.25 21.98 22.73 0.3914 0.2865 0.0836
Denton and Fergus [13] 0.6253 0.7540 0.7603 19.35 20.60 21.64 0.3507 0.3006 0.1259
Castrejon et al. [8] 0.6712 0.7555 0.7756 20.58 20.58 22.53 0.3414 0.2965 0.1036
Hsieh et al. [27] 0.6199 0.6800 0.7103 16.65 17.18 18.41 0.3989 0.3239 0.1771

Table 2. SSIM, PSNR, and LPIPS scores on the SMMNIST test set after @1, @5, and @Convergence (C) (upto 150 epochs) epochs of
training with alternative formulations of our model using 2,000 training samples. [Key: Best results in bold].

Dataset: SMMNIST SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C

p(st) ∼ Uniform[0, 1] 0.8173 0.8374 0.8523 17.6 17.95 18.06 0.3442 0.3038 0.198
Estimate bt from the decoder pθ(·) 0.7627 0.7628 0.7828 17.54 17.55 17.55 0.3463 0.3259 0.2225
Estimate bt w/o variance encoder-decoder 0.7450 0.7454 0.7648 16.22 16.53 16.78 0.3469 0.3263 0.2328
NUQ (Ours) 0.8686 0.8638 0.8948 17.76 18.13 18.14 0.3087 0.2836 0.1803

KTH Action, we train all methods with 5 seen and 15 un-
seen frames, while at test time 20 frames are predicted af-
ter the first 5 seen ones. When training with UCF-101,

15 seen and 10 unseen frames are used, while at test time
the number of unseen frames is set to 15. For the base-
line methods [13, 8, 27], we use the publicly available im-
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Figure 5. Qualitative results of NUQ against competing baselines
on SMMNIST (top) and on KTH-Action (bottom).
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Figure 6. Evolution of scaled uncertainty on the SMMNIST dataset
(trained with 2,000 training samples) against time-steps.
Table 3. Human preference scores for samples generated using
NUQ versus competing baselines across different datasets,

Dataset (# Training Samples) Prefer: Ours/ [8]/ [13]
SMMNIST (2000 samples) 89% / 11% / 0 %
BAIR Push (2000 samples) 78% / 22% / 0 %
KTH-Action (1911 samples) 78% / 11% / 11 %

plementations from the authors. To ensure our proposed
NUQ-framework is similar in learning capacity, we use the
“DCGAN encoder-decoder” architecture for the frames, as
in Denton and Fergus [13], for all datasets. Our variance
encoder network ζλ(·) is a multi-layer perceptron with 2
layers, and our sequence discriminator is an LSTM with a
single 256-d hidden layer. More architectural details are
in the Supplementary Materials. We set k = 3 in Eq. 14,
and γ to be 0.00001. We use η1 = 0.0001 and η2 = 0.001
in Eq. 13. Learning rate is set to 0.002 and no scheduling
is used. The hyper-parameters for the baseline methods are
chosen using a small validation set (∼ 5% of training data).
State-of-the-Art Comparisons: In Table 1, we report quan-
titative evaluations of our model versus competing baselines
across the four datasets. We observe that both variants of
the NUQ outperform recent competitive baselines by wide
margins on all measures (upto 10% in SSIM), with the one
with the discriminator being slightly better - underscoring
the benefits of adversarial training. While noticeable gains
are obtained across the board, NUQ really shines under

limited training set sizes. We surmise that this gain is at-
tributable to the failure of the baseline methods in incor-
porating predictive uncertainty explicitly into the learning
objective. From the table, we also see that NUQ converges
faster than other methods both for small and large training set
sizes. Figures 1 and 5 show sample generation results from
SMMNIST, BAIR Push, and KTH-Action datasets versus
competing baselines, trained with 2,000 and 1,911 samples,
respectively. From these figures, we see that compared to
baseline methods, frames generated by our method are su-
perior at capturing both the appearance and the motion of
the object (i.e. digit/robot arm/human) even under limited
training data. Human annotators, when presented with a few
random sample generations by NUQ versus competing meth-
ods, overwhelmingly choose NUQ samples for their realism,
as shown in Table 3. Figure 6 shows the evolution of a scaled
uncertainty estimate derived from 1

bt
over different frames.

The plot shows the increase in uncertainty co-occurs with
the bounce of the digit against the boundary, suggesting that
the uncertainty is well grounded in the data.
Alternative Formulations: Next, we discuss the results
of some alternative formulations of our model. We con-
sider: (i) replacing the gamma hyperprior on p(st) with
Uniform(0, 1) distribution, (ii) estimating bt from the frame
decoder pθ(·) by producing a diagonal covariance matrix,
and (iii) assuming a deterministic mapping from Σz

t to bt
through a multi-layer perceptron. Table 2 presents the per-
formance of these alternatives on the SMMNIST dataset.
From the first row of the table, we see that choosing the
Uniform(0, 1) as priors results in suboptimal variants of
NUQ. Further, the results also show that either estimating
bt directly from the decoder pθ(·), or computing it deter-
ministically from Σz

t performs poorly, suggesting that such
estimation techniques are not ideal.
Diversity: In Figure 4 (a), we plot the average SSIM of NUQ
for a set of futures, with increasing cardinality of this set.
Our plot shows that the SSIM increases with larger number
of futures, suggesting that the possibility of matching with
a ground truth future increases with more futures, implying
better diversity of our model. Figure 4(b) presents diverse
generation results on the SMMNIST dataset by NUQ.

6. Conclusions

Recent approaches have demonstrated the need for model-
ing data uncertainty in video prediction models. However, in
this paper we show that the state of the art in such stochastic
methods do not leverage the model’s predictive uncertainty
to the fullest extent. Indeed, we show that explicitly incor-
porating this uncertainty into the learning objective via our
proposed Neural Uncertainty Quantifier (NUQ) framework,
can lead to faster and more effective model training even
with fewer training samples, as validated by our experiments.
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