
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

A Kalman Filter for Online Calibration of Optimal
Controllers

Menner, Marcel; Berntorp, Karl; Di Cairano, Stefano

TR2021-091 August 10, 2021

Abstract
This paper proposes an approach for the calibration of the cost function of optimization-based
controllers. The approach uses a Kalman filter that estimates the cost function parameters
using data of closed-loop system operation. It adapts the parameters online and robustly,
provides safety guarantees, is computationally efficient, has low data storage requirements,
and is easy to implement making it appealing for many real-time applications. The approach
provides a dataefficient alternative to Bayesian optimization and an automated alternative to
learning from demonstrations. Simulation results show that the approach is able to learn cost
function parameters quickly (approximately 95% faster than Bayesian optimization), is able
to adapt the parameters to compensate for disturbances (approximately 25% improvement
on tracking precision), and is robust to noise.

IEEE Conference on Control Technology and Applications (CCTA)

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

A Kalman Filter for Online Calibration of Optimal Controllers

Marcel Menner, Karl Berntorp, and Stefano Di Cairano

Abstract— This paper proposes an approach for the cali-
bration of the cost function of optimization-based controllers.
The approach uses a Kalman filter that estimates the cost
function parameters using data of closed-loop system operation.
It adapts the parameters online and robustly, provides safety
guarantees, is computationally efficient, has low data storage
requirements, and is easy to implement making it appealing
for many real-time applications. The approach provides a data-
efficient alternative to Bayesian optimization and an automated
alternative to learning from demonstrations. Simulation results
show that the approach is able to learn cost function parameters
quickly (approximately 95% faster than Bayesian optimization),
is able to adapt the parameters to compensate for disturbances
(approximately 25% improvement on tracking precision), and
is robust to noise.

I. INTRODUCTION

The control of many dynamical systems such as au-
tonomous vehicles or robots include various specifications
that are often conflicting, and thus require considerable
manual calibration efforts. Furthermore, calibration is usually
done at the production stage and it is often difficult to
adjust the controller later, while the operating conditions
of the dynamical system change over its lifetime. Hence,
automating controller calibration and enabling to adapt the
controller during operation is relevant in many applications
[1]–[4].

In this paper, we propose an algorithm for the adaptation
of cost function parameters for optimization-based control,
such as model predictive control (MPC). The algorithm is
implemented recursively using a Kalman filter that estimates
the parameters of the cost function (rather than the state of
the dynamical system). Fig. 1 shows the block-diagram of
the proposed adaptation scheme, where the Kalman filter
acts as a tuning module that uses data to calibrate the
optimal controller. The main advantages of using a Kalman
filter are that it (i) adapts the parameters online during
system operation, (ii) is robust to noise due to the filter-
based design, (iii) maintains safety guarantees of the closed-
loop operation, (iv) is computationally efficient, (v) requires
reduced data storage due to the recursive implementation,
and (vi) is easy to implement, hence making it appealing for
industrial applications. In this setting, the Kalman filter uses
a training objective that evaluates the performance of the
closed-loop system operation online, which is then used to
adapt the parameters to improve upon the closed-loop system
operation measured with respect to the training objective.
The training objective has a highly flexible structure, while

All authors are with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, 02139, USA (e-mail: menner@ieee.org;
karl.o.berntorp@ieee.org; dicairano@ieee.org).

Tuning
Module

Optimal
Controller Plant

Fig. 1. Closed-loop adaptation of MPC objective function. The closed-loop
of the optimal controller with the plant is augmented by a tuning module
that takes data to adapt the parameters of the controller online.

the optimal control cost function has a structure that is
restricted due to its real-time application, e.g., the cost
function often needs to be differentiable and convex such that
it is suited for numerical optimization. Simulation results of
a simple autonomous driving example show that the method
achieves fast convergence of the parameters (approximately
95% faster than Bayesian optimization), improved closed-
loop system performance (approximately 25% improvement
on trajectory tracking precision), and is robust to noise.

Related Work

The three research directions that are most closely related
to the algorithm in this paper are inverse reinforcement
learning (e.g., [5]–[10]), Bayesian optimization-based cost
function learning (e.g., [11]–[13]), and retrospective cost op-
timization (e.g., [14]–[16]). For a more extensive discussion
on cost function learning, the reader is referred to [17].

Inverse reinforcement learning (IRL): IRL uses human
demonstrations to learn a cost function. Often, it aims at
transferring human expertise to an autonomous system, e.g.,
for humanoid locomotion [5], identifying human movements
[6], robot manipulation tasks [7], [8], or autonomous driving
[9], [10]. Similarly to IRL, we also learn a cost function. Dif-
ferently from IRL, we do not utilize human demonstrations
and we do not require an episodical learning task (although
our method can be implemented episodically). Instead, our
approach estimates cost function parameters online during
system operation.

Bayesian optimization (BO): BO-based approaches usu-
ally learn a mapping as a black-box function from the cost
function parameters to a pre-specified performance metric,
e.g., a reward function, using trial-and-error search [11]–
[13]. Similarly to BO, we use a training objective to learn
cost function parameters. Differently from BO, we do not
require an episodical learning task and we do not have

a trial-and-error implementation. Instead, our algorithm is
implemented recursively, which allows to compensate for
systematic disturbances, while learning the cost function
parameters. Furthermore, the recursive implementation is
data efficient as the data history need not be stored.

Retrospective cost optimization (RCO): RCO uses transfer
functions and optimizes the cost function retrospectively
[14]–[16]. RCO adapts certain coefficients such that the
new set of coefficents would have led to better performance
over a previous window of operation. The idea is that the
coefficients that would have performed well in the past
will also perform better in the future, which is the case,
e.g., in the presence of systematic disturbances. Similarly to
retrospective cost optimization, we also optimize the optimal
controller retrospectively, which allows us to compensate for
systematic disturbances. Differently from retrospective cost
optimization, we use a Kalman filter with a training objective
to tune cost function parameters.

II. PRELIMINARIES

A. Notation
Given two integer indices n,m with m<n and a vector

xi ∈Rnx , we define Xm|n ∈Rnx(n−m+1) as the vectorized
sequence that comprises xi from i=m through i=n,

Xm|n :=

xm...
xn

 . (1)

Further, diag(λ) ∈ Rnλ×nλ is a matrix, whose diagonal
entries are the entries of a vector λ ∈ Rnλ , I is an
identity matrix of appropriate dimension, and 0 is an all-zero
matrix of appropriate dimension. We define ‖x‖Σ := xTΣx
and the conditional probability density (PDF) function of a
vector xk at time steps k = 0, ..., N , conditioned on y, as
p(x0:N |y) := p(x0, x1, ..., xN |y). N (µ,Σ) is the Gaussian
distribution with mean vector µ and covariance matrix Σ.

B. KKT Conditions
Consider an optimization problem of the form

min
z

θTφ(z) (2a)

s.t. D(z) = 0 (2b)
C(z) ≤ 0, (2c)

where z is the optimization variable, θTφ(z) is the cost
function to be minimized, subject to equality constraints,
D(z) = 0, and inequality constraints, C(z) ≤ 0. The
Lagrangian of (2) is

L(z, λ, ν) = θTφ(z) + λTC(z) + νTD(z)

and the Karush-Kuhn-Tucker (KKT) conditions are

∇zL(z, λ, ν) = 0 (3a)

λTC(z) = 0 (3b)
D(z) = 0 (3c)
C(z) ≤ 0 (3d)
λ ≥ 0, (3e)

where λ and ν are called the dual variables or Lagrange
multipliers (of the inequality and equality constraint, respec-
tively), (3a) is the stationarity condition, (3b) is the comple-
mentary slackness condition, (3e) is called dual feasibility,
and (3c) and (3d) are the primal feasibility conditions. The
KKT conditions are first-order derivative tests for constrained
optimization problems (necessary conditions for local min-
ima). The reader is referred to [18] for more details.

C. Differentiating the KKT Conditions
Let z0, λ0, ν0 be solutions to (3). Further, define

φz(z0) :=∇zφ(z)|z=z0 , Dz(z0) :=∇zD(z)|z=z0 , Cz(z0) :=
∇zC(z)|z=z0 , and Lzz(z0, λ0, ν0) :=∇zzL(z, λ0, ν0)|z=z0 .
The sensitivity of the minimizer of (2), z0, with respect to
the parameters θ, i.e., ∆z

∆θ , can be obtained using the total
derivative of (3),

W0

∆z
∆λ
∆ν

+ V0∆θ = 0 (4)

with

V0 =

φz(z0)T

0
0

W0 =

Lzz(z0, λ0, ν0) Cz(z0)T Dz(z0)T

diag(λ0)Cz(z0) diag(C(z0)) 0
Dz(z0) 0 0

 .
Remark 1: This strategy to compute the sensitivity is

based on applying the Implicit Function Theorem to the KKT
conditions [19], [20].

III. PROBLEM STATEMENT

A. System Dynamics and Constraints
We consider discrete-time systems of the form

xk+1 = f(xk, uk) + wk, (5)

where xk∈Rnx is the state at time step k, uk∈Rnu is the
input, wk is the process noise, and f is a general nonlinear
function. Further, we consider constraints for the dynamical
system in (5), given by

c(xk, uk) ≤ 0.

We assume that both the state, xk, and the input, uk, are
measurable.

B. Optimal Controller
We consider optimal predictive controllers of the form

min
xk,uk

θTφ(x0,...,N+1, u0,...,N) (6a)

s.t. xk+1 = f(xk, uk) ∀k = 0, ..., N (6b)
c(xk, uk) ≤ 0 ∀k = 0, ..., N (6c)
xk = x(k) (6d)

implemented in receding horizon fashion, e.g., MPC [21].
In (6a), θTφ(x0,...,N+1, u0,...,N) is the cost function with
parameters θ, and x(k) in (6d) is the current system state.
Hence, (6) computes a plan (a control sequence) for N time
steps, starting from the current state, x(k).

C. Goal of the Learning Algorithm

The approach in this paper adapts the parameters of the
cost function, θ, in (6). The adaptation algorithm calibrates
θ based on sensor measurements, xk and uk, and a training
objective or oracle, which evaluates the performance of the
controller. The parameters are adapted online using a re-
cursive algorithm such that the closed-loop system operation
maintains its stability guarantees. As the algorithm uses time-
varying parameters, i.e., the parameters are adjusted at each
time step, we use time-indices (similar to the state and input
variables) with

θk+1 = θk + ∆θk, (7)

where θk are the parameters at time step k. The goal is thus
to find an adaptation law for the parameters, ∆θk.

Procedure and Training Objective: The learning algo-
rithm takes sensor measurements, evaluates the performance
of the controller, and outputs a new set of parameters
for the controller, θk+1. It uses an evaluation function,
r(Xk−N |k, Uk−N |k−1) ∈ Rnr , which takes the past state and
input sequences (of length N), Xk−N |k and Uk−N |k−1, and
proposes a nominal value yk ∈ Rnr that the controller
should ideally achieve. The nominal value, yk, is a part of
the training objective and is chosen by the system designer.
It is closely related to a reference value to be tracked by
a controller. One difference between the training objective
and the cost function in (6a) is that the training objective is
very generic in its structure and flexible in its specifications,
while the cost function often requires a certain structure
that enables real-time implementation, e.g., suited for convex
optimization.

Remark 2: This approach is related to Bayesian optimiza-
tion to train a cost function, where a reward/loss is obtained
after a trial. The main conceptual differences are the online
capable, recursive, and real-time feasible implementation,
which uses a Kalman filter-based design (outlined in the
following section) rather than a trial-and-error search.

Remark 3: The method proposed in this paper is similarly
applicable if only a subset of the parameters are to be
adjusted with θk+1 = θk +G∆θk, e.g., if certain parameters
are known or should be fixed. For ease of exposition,
however, we use (7) throughout.

IV. OBSERVER-BASED PARAMETER ADAPTATION

In this section, we propose the recursive algorithm to
adjust the parameters of the cost function, θ. Given the
parameters at the current time step, θk, we aim to perform an
update, ∆θk, based on data of closed-loop system operation
as in (7). In particular, the learning algorithm aims to make a
certain function r(Xk−N |k, Uk−N |k−1) follow a nominal value
yk “as closely as possible”, i.e., the dynamical system is
controlled perfectly if yk = r(Xk−N |k, Uk−N |k−1). In order
to ease exposition, using the notation in (1), we define a,
possibly nonlinear, function F with

Xk|k+N+1 = F (Uk|k+N , xk,Wk|k+N), (8)

which is equivalent to applying (5) iteratively, from k to
k+N . Let yk=r(Xk−N |k, Uk−N |k−1)+vk, where vk denotes
a slack variable. As the input sequence Uk−N |k−1 results from
an optimal control problem as in (6), it is a function of the
parameters κ(θk, xk−N−1) :=Uk−N |k−1. Therefore,

yk = r(F (Uk−N−1|k−1, xk−N−1,Wk−N−1|k−1)) + vk

= r(F (κ(θk, xk−N−1), xk−N−1,Wk−N−1|k−1)) + vk.

To further ease notation, we define

h(θk) := r(F (κ(θk, xk−N−1), xk−N−1,Wk−N−1|k−1)).

Finally, we obtain the following two main equations for the
adaptation scheme proposed in this paper,

θk+1 = θk + ∆θk (9a)
yk = h(θk) + vk. (9b)

In order to drive the adaptation law, we model the param-
eters, ∆θk, as well as the slack variable, vk, as random
variables with Gaussian zero-mean prior distributions ∆θ∼
N (0,Cθ) and vk ∼ N (0,Cv). We obtain the parameter
adaptation law from the corresponding posterior distribution
p(θk+1|θ0:k, y0:k) =

∏k
i=0 p(θi+1|θi, yi)p(θ0). In particular,

we use a Kalman filter whose goal is to estimate θk+1

(rather than the state), and yk is a desired value for the
system operation (rather than sensor measurements). One
benefit of using the Kalman filter is that it allows for a
recursive implementation, which means that we do not need
to store the entire data history but only the data used for
the Kalman filter recursion. Note that h(θ) in (9b) considers
process noise, Wk|k+N , explicitly. Hence, we seek to find
the parameters θ that optimize the training objective for the
process noise distribution/disturbances at hand. This allows
for accommodating systematic disturbances as we will show
in Section V. In the following, we present two implementa-
tions of the Kalman filter-based adaptation method, as well
as their stability properties.

Remark 4 (Interpretation of Cv,Cθ): The covariance ma-
trix Cθ determines the aggressiveness of the adaptation. The
covariance matrix Cv defines the relative importance of the
vector-valued objective vector yk. It is also possible to tune
Cv,Cθ during application, cf. [22]. Throughout this paper,
Cθ = I implying that there are no preferences for tuning
specific parameters faster than others, and Cv = I .

A. Extended Kalman Filter

If h(θ) is differentiable, the following implementation of
the extended Kalman filter (EKF) can be used to compute
the parameter update in (7),

∆θk = Kk (yk − h(θk)) (10)

with the Kalman gain, Kk, computed as

Kk = Pk|k−1H
T
k S
−1
k (11a)

Sk = HkPk|k−1H
T
k + Cv (11b)

Pk|k−1 = Pk−1|k−1 + Cθ (11c)
Pk|k = (I −KkHk)Pk|k−1, (11d)

where Hk = ∂
∂θh(θ) |θ=θk , Sk is the innovation covariance,

and Pk|k is the estimate covariance matrix. In order to
compute the linearization Hk, we use the chain rule

Hk =
∂h(θ)

∂θ
=
∂h(θ)

∂z

∂z

∂θ
, z =

[
Xk−N |k
Uk−N |k−1

]
,

where we use ∂z
∂θ ≈

∆z
∆θ and ∆z

∆θ is obtained by differentiating
the KKT conditions, see Section II-C.

Remark 5 (Computational requirements): The computa-
tionally most demanding calculation step is the gradient com-
putation Hk. Thus, using the approach outlined in Section II-
C, this implementation requires solving one optimal control
problem similar to (6) to obtain λ0, ν0, z0 and one linear
least squares problem using (4).

B. Unscented Kalman Filter

An alternative to EKF is to use an unscented Kalman
filter (UKF) to compute the Kalman gain Kk. UKF uses
deterministic samples (called sigma points) around the mean,
which are propagated and used to update the mean and
covariance estimates [23]. In the following, we use super-
scripts, i, to index sigma points, as opposed to the subscripts
indicating the time step, k. Using a UKF, h(θ) need not be
differentiable, which is one major advantage of this imple-
mentation. Here, too, the adaptation law for the parameters
is given in (10) but the Kalman gain, Kk, is computed as

Kk = CszS
−1
k (12a)

Sk = Cv +
∑2L
i=0 w

c,i(yi − ŷ)(yi − ŷ)T (12b)

Csz =
∑2L
i=0 w

c,i(θi − θ̂)(yi − ŷ)T (12c)

ŷ =
∑2L
i=0 w

a,iyi (12d)

yi = h(θi) (12e)

Pk|k−1 = Cθ +
∑2L
i=0 w

c,i(θi − θ̂)(θi − θ̂)T (12f)

θ̂ =
∑2L
i=0 w

a,iθi (12g)

Pk|k = Pk|k−1 −KkSkK
T
k , (12h)

where θi with i = 0, ..., 2L are the sigma points, wc,i and
wa,i are the weights of the sigma points, Csz is the cross-
covariance matrix, and Sk and Pk|k are similar to the EKF.

Remark 6: In this paper, we choose the following weights
and sigma points

θ0 = θk

θi = θk +
√
L/(1− w0)Ai i = 1, ..., L

θi = θk −
√
L/(1− w0)Ai i = L+ 1, ..., 2L

with weights −1<wa0 =wc0<1, wai =wci =(1−wa0)/(2L) and
Ai being the ith column of A with Pk−1|k−1 = AAT , i.e., A
is calculated using the Cholesky decomposition. This choice
is motivated by its simplicity. Other choices of sigma points
and weights are also possible.

Remark 7 (Computational requirements): The main ad-
vantage of this implementation is the ability to embed non-
differentiable objectives. The main disadvantage compared
to the EKF implementation is that since computing h(θi)
in (12e) means solving an optimization problem, the UKF

requires solving 2L+1 optimization problems, where L is
the number of parameters. However, due to independence
they can be solved in parallel, thereby limiting the overall
increase of computation time.

Remark 8: We use the EKF implementation to refer to the
gradient-based method and UKF to the gradient-free method.
However, as outlined in [24], there are implementations of
the EKF that avoid computing the gradient explicitly.

Remark 9: The model-based nature of the adaptation al-
gorithm allows for verifying the parameters using control-
theoretic properties. For example, recursive feasibility fol-
lows from standard arguments (on constraints and terminal
set/cost) and Lyapunov stability follows from cost-decrease
arguments. In this paper, we omit details to conserve space.

V. SIMULATION RESULTS

We consider the kinematic single track vehicle model [25]

xk+1 = (I + TsAc)xk + TsBcuk + wk

with

xk =
[
pX,k pY,k ψk Vk δk

]T
uk =

[
V̇k δ̇k

]T
Ac =

∂f(x, u)

∂x

∣∣∣∣
x=xlin,u=ulin

Bc =
∂f(x, u)

∂u

∣∣∣∣
x=xlin,u=ulin

linearized at xlin =[0, 0, 0, 10 m/s, 0]T , ulin =[0, 0]T and

f(xk, uk) =

vx,k cos(ψk + βk)/ cos(βk)
vx,k sin(ψk + βk)/ cos(βk)

vx,k tan(δk)/L

V̇k
δ̇k

where pX and pY mark the vehicle’s position in the world
frame, ψ is the heading (yaw) angle, vx is the longitudinal
velocity, δ is the steering angle of the front wheel, L =
lf + lr is the wheel base, and β = arctan(lr tan(δ)/L) is
the kinematic body-slip angle. The inputs u1 and u2 are the
longitudinal acceleration and the steering rate.

The following simulations represent a reference tracking
task, in which a vehicle tracks a certain lateral deviation from
the center-line and a certain velocity. We use the quadratic
cost function θTφ(·)=‖M(xN − xref)‖P+

∑N−1
k=0 ‖M(xk −

xref)‖Q + ‖uk‖R with M = [04×1 I4], i.e., all states but
the longitudinal progress are penalized (road oriented in
pX direction). Hence, we learn the cost function parameters
P,Q ∈R4×4 and R ∈R2×2, where P,Q,R� ε · I , with a
small ε. We include constraints on the available acceleration
with |V̇k| ≤ 1 m/s

2. Throughout this section, we use the
sampling time Ts = 0.25 s and a planning horizon of
the predictive controller N = 20. For all simulations and
methods in this section, we initialized the parameters, Q,R,
using randomly sampled positive definite matrices, where P
is the result of the DARE.

0

1

2
C

os
t

Extended Kalman Filter
Unscented Kalman Filter
Bayesian Optimization

0 20 40 60 80
0

1

2

Time steps

A
ve

ra
ge

C
os

t

Fig. 2. Evaluation of Controller Performance. Both recursive algorithms,
EKF and UKF, as well as BO are displayed. The plot shows the median
(solid or dashed lines), as well as 75th and 25th percentiles (shaded areas) of
500 trials. Top: Cost of operation at each time step. Bottom: Average cost of
controllers over time. The bottom plot is particularly interesting as it shows
the increased cost that BO incurs due to the trial-and-error implementation.

Remark 10: The algorithm’s performance using the lin-
earized vehicle model was observed to be similar to the
nonlinear vehicle model case. This is to be expected as the
parameters are linear in the cost function for both cases (the
linearized vehicle model and nonlinear vehicle model), cf.
also related work [26].

A. Comparison with Bayesian Optimization

First, we consider a noise-free test case, wk = 0, and a ref-
erence tracking task with xref =xlin =[0, 0, 0, 10 m/s, 0]T ,
where the initial state is x0 = [0, 2 m, 0, 12 m/s, 0]T .
The learning algorithm uses the training objective h(θ) =
[XT

0|N , U
T
0|N]T and yk = 0. Fig. 2 reports the cost ‖yk −

h(θ)‖22 over time, by showing the results of 500 trials, where
the cost parameters are initialized randomly at the beginning
of each trial. It shows the convergence behaviors of the two
recursive algorithms proposed in this paper, the EKF and the
UKF, along with a Bayesian optimization (BO) approach,
which is added as comparison. Here we use an episodical
learning task to obtain a meaningful comparison with BO.
The BO approach uses a squared exponential kernel and
the Upper Confidence Bound (UCB) acquisition function,
both commonly used in the literature, e.g., [13]. Further,
we restrict the BO approach also to the search space of
positive definite matrices. It can be seen that both the EKF
and UKF variants outperform BO in terms of convergence
speed and steady-state cost at the end of the simulation at
time step 100. Note that a potential drawback of the proposed
methods for some applications might be that the lack of
global exploration, compared to BO.

0

2

4

6

8

C
os

t

Extended Kalman Filter
Unscented Kalman Filter

0 5 10 15 20 25
0

2

4

6

8

Time steps

A
ve

ra
ge

C
os

t

Fig. 3. Evaluation of Controller Performance for Partially Non-
Differentiable Objective. The plot shows the median (solid or dashed lines),
as well as 75th and 25th percentiles (shaded areas) of 500 trials. Top: Cost
of operation at each time step. Bottom: Average cost of controllers over
time. The UKF implementation is able to identify the cost-beneficial tuning
of the parameters. It can be seen that the UKF moves toward the beneficial
region, even if it means to encounter slightly higher cost temporarily (top
plot, around time steps 4–8).

B. EKF and UKF for Non-Differentiable Objective

In addition to the tracking task described in Section V-
A, the training objective in this simulation includes a
penalty for each sign change in δ̇ (yk = 0 and h(θ) =
[XT

0|N , U
T
0|N , #δ̇ sign changes]T). One rational behind this

penalty is to reduce oscillatory or jittering motions of the
vehicle. This additional penalty is a discontinuous function
of the control input sequence. Fig. 3 shows the learning
performance of the EKF and UKF implementation in the
presence of the partially non-differentiable training objective.
It shows that the UKF adjusts the parameters to capture
the discontinuity, whereas the EKF converges to a set of
parameters that incur higher cost.

C. Continuous Control Task with Disturbances

In order to test the robustness of the adaptation algorithm,
next we present a simulation study of a continuous control
task, in the presence of process noise and disturbances. Here,
we present the EKF implementation but the UKF performs
similarly. The results show that the algorithm is able to
adjust to systematic disturbances and is able to reject random
process noise, both of which are desirable properties. We
simulate system (5) from time step k= 0 through k= 1000
with initial state x0 =xref and choose process noise, wk, as

wk =
[
0 ∆pY,k 0 0 0

]T
,

where ∆pY,k is varied as displayed in Table I. In other words,
we consider additive process noise/disturbances acting on the

TABLE I
AVERAGE COST FOR DIFFERENT PROCESS NOISE AND DISTURBANCES

Adaptive Adaptive Not Adaptive
Test case (diag. Q,R) True param.

∆pY,k = 1 9.133 7.916 10.748
∆pY,k = cos(10−3k) 3.443 3.323 4.355
∆pY,k = cos(10−2k) 5.031 4.014 5.472
∆pY,k = cos(10−1k) 4.195 4.4674 5.331
∆pY,k = cos(k) 0.609 1.1599 1.664
∆pY,k = cos(10k) 0.1912 0.1975 0.2621
∆pY,k ∼ N (0, 1) 1.160 1.122 1.120

lateral position of the vehicle, which could, e.g., result from
winds/gusts. The training objective is h(θ) = [XT

0|N , U
T
0|N]T

and yk = 0, as in Section V-A. As baseline, Table I shows
the performance of the MPC controller without adaptation
that uses the true parameters of the training objective (last
column). Table I shows that the algorithm is able to improve
upon the system operation in the presence of systematic
disturbances (e.g., the closed-loop cost is reduced by roughly
25% for ∆pY,k = 1), but is also not over-fitting to noise (e.g.,
the closed-loop cost is comparable for ∆pY,k ∼ N (0, 1)).
As an example for how the algorithm operates, for the test
case where ∆pY,k = 1, the algorithm detects that there is a
constant disturbance pushing the vehicle to the right side. As
a consequence, the algorithm reacts by increasing the penalty
for lateral deviations, pY . Table I shows the performance of
the algorithm for learning nondiagonal matrices Q,R � 0,
as well as diagonal matrices, which might be of interest for
some readers as it is a common choice for control system
designers. Note that we did not observe oscillations or other
undesirable behaviors during our simulation studies.

VI. CONCLUSION

This paper proposed a method to estimate cost function
parameters for optimal controllers. The method is imple-
mented in a recursive fashion using a Kalman filter, which
estimates the parameters (rather than the dynamical system’s
state). The main benefits of the proposed method are the low
computational requirements, low data storage requirements,
and a relatively high flexibility of embedding, e.g, non-
differentiable objectives in the control system. Simulation
results show that the method is able to learn the cost
function parameters (i) quickly and robustly and (ii) adjust
the parameters to systematic disturbances, thereby effectively
reducing closed-loop cost of the system operation.

REFERENCES

[1] S. Di Cairano and A. Bemporad, “Model predictive control tuning
by controller matching,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 185–190, 2009.

[2] A. Lucchini, S. Formentin, M. Corno, D. Piga, and S. M. Savaresi,
“Torque vectoring for high-performance electric vehicles: an efficient
MPC calibration,” IEEE Control Systems Letters, vol. 4, no. 3,
pp. 725–730, 2020.

[3] M. Zhu, A. Bemporad, and D. Piga, “Preference-based MPC calibra-
tion,” arXiv preprint arXiv:2003.11294, 2020.

[4] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion—an inverse optimal control approach,” Au-
tonomous robots, vol. 28, no. 3, pp. 369–383, 2010.

[5] D. Clever, R. M. Schemschat, M. L. Felis, and K. Mombaur, “Inverse
optimal control based identification of optimality criteria in whole-
body human walking on level ground,” in 2016 6th IEEE International
Conference on Biomedical Robotics and Biomechatronics (BioRob),
pp. 1192–1199, 2016.

[6] M. Menner, P. Worsnop, and M. N. Zeilinger, “Constrained inverse
optimal control with application to a human manipulation task,” IEEE
Transactions on Control Systems Technology, vol. 29, no. 2, pp. 826–
834, 2021.

[7] P. Englert, N. A. Vien, and M. Toussaint, “Inverse KKT: Learning
cost functions of manipulation tasks from demonstrations,” The Inter-
national Journal of Robotics Research, vol. 36, no. 13-14, pp. 1474–
1488, 2017.

[8] G. Chou, N. Ozay, and D. Berenson, “Learning constraints from
locally-optimal demonstrations under cost function uncertainty,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3682–3690, 2020.

[9] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2658–2665,
2019.

[10] M. Menner, K. Berntorp, M. N. Zeilinger, and S. D. Cairano, “Inverse
learning for data-driven calibration of model-based statistical path
planning,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1,
pp. 131–145, 2021.

[11] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
lqr tuning based on gaussian process global optimization,” in 2016
IEEE international conference on robotics and automation (ICRA),
pp. 270–277, 2016.

[12] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe,
“Data-efficient autotuning with bayesian optimization: An industrial
control study,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 730–740, 2019.

[13] Q. Lu, R. Kumar, and V. M. Zavala, “MPC controller tuning using
Bayesian optimization techniques,” arXiv preprint arXiv:2009.14175,
2020.

[14] M. A. Santillo and D. S. Bernstein, “Adaptive control based on
retrospective cost optimization,” Journal of guidance, control, and
dynamics, vol. 33, no. 2, pp. 289–304, 2010.

[15] Y. Rahman, A. Xie, J. B. Hoagg, and D. S. Bernstein, “A tutorial and
overview of retrospective cost adaptive control,” in 2016 American
Control Conference (ACC), pp. 3386–3409, 2016.

[16] Y. Rahman, A. Xie, and D. S. Bernstein, “Retrospective cost adaptive
control: Pole placement, frequency response, and connections with lqg
control,” IEEE Control Systems Magazine, vol. 37, no. 5, pp. 28–69,
2017.

[17] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 269–296, 2020.

[18] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge University Press, 2004.

[19] A. V. Fiacco, Introduction to sensitivity and stability analysis in
nonlinear programming. Mathematics in Science and Engineering,
Burlington, MA: Elsevier, 1983.

[20] H. Pirnay, R. López-Negrete, and L. T. Biegler, “Optimal sensitivity
based on IPOPT,” Mathematical Programming Computation, vol. 4,
no. 4, pp. 307–331, 2012.

[21] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[22] T. Ardeshiri, E. Özkan, U. Orguner, and F. Gustafsson, “Approxi-
mate Bayesian smoothing with unknown process and measurement
noise covariances,” IEEE Signal Processing Letters, vol. 22, no. 12,
pp. 2450–2454, 2015.

[23] G. A. Terejanu, “Unscented Kalman filter tutorial,” University at
Buffalo, Buffalo, 2011.

[24] F. Gustafsson and G. Hendeby, “Some relations between extended and
unscented Kalman filters,” IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 545–555, 2012.

[25] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty - a control
perspective,” European Journal of Control, vol. 24, pp. 14–32, 2015.

[26] M. Menner and M. N. Zeilinger, “Maximum likelihood methods for
inverse learning of optimal controllers,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 5266–5272, 2020.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-091.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

