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Mixed-Integer Linear Regression Kalman Filters for GNSS Positioning

Marcus Greiff1, Karl Berntorp1, Stefano Di Cairano 1, and Kyeong Jin Kim1

Abstract— In this paper, recursive filters are formulated for
the mixed-integer GNSS receiver estimation problem, where the
integer variables come from the ambiguities in the carrier-phase
measurements. Insights from the linear setting illustrate pitfalls
in designing optimal recursive filters, motivating a relaxation
of the original optimization problem and a departure from
conventional methods. A set of filters are developed for se-
quential nonlinear mixed-integer estimation based on statistical
linearization, entertaining two estimate densities and taking the
time-evolution of the ambiguities into account by adapting the
process noise covariance based on a statistical model. Numerical
examples illustrate the efficacy of the proposed algorithms.

I. INTRODUCTION

The GNSS positioning problem concerns the estimation
of a receiver’s states from a set of code and carrier-phase
measurements received from multiple satellites [1]. The
involved measurement equations are time-varying, nonlin-
ear, and include biases. In the carrier-phase measurements,
there is an integer bias known as the ambiguity, unique
to each carrier-phase measurement from each satellite [2].
These biases typically remain constant until sporadically
and independently of each other jumping to new integer
values, commonly referred to as “cycle slip”. The works
in [1], [3], [4] have highlighted performance gains that can be
made if the ambiguity estimates are constrained to integers.
These methods involve a first-order Taylor expansion of the
measurement equation, with subsequent de-correlation and
integer search methods to resolve the mixed-integer least-
squares (MILS) problem. It has been adopted to an extended
Kalman filter (EKF) setting (c.f., [2], [5]–[7]), used in GNSS
receiver positioning (e.g., in the RTK library [8]). At each
time step, a real-valued estimate is computed using a relaxed
model, from whose distribution an integer ambiguity hypoth-
esis is computed, before conditioning on this hypothesis. The
problem has been well studied in the linear MILS-setting but
there remains room for improvement in sequential filtering.

First, the design of sequential maximum-likelihood es-
timators for the mixed-integer GNSS positioning problem
includes solving a mixed-integer problem of increasing size,
and relaxations need to be made for the estimator to be
implementable. In [5], [6], this is done by modeling a
set of relaxed real-valued ambiguity states, and from that
ambiguity hypothesis, the relaxed estimate distribution is
corrected through a virtual measurement update [5]. This is
a departure from the optimal solution in the linear setting
in two important respects; (i), unlike the MILS-solution, the
current integer ambiguity hypotheses are computed from a
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distribution conditioned on prior integer ambiguity hypothe-
ses; and (ii), the random walk in the relaxed ambiguity
dynamics of the filter prediction model does not resemble
the integer jump process driving the cycle-slip behavior.

Second, depending on the nonlinearity of the flow and
measurement equations in the estimation model, the explicit
linearization in the EKF may be less accurate than the
nonanalytic statistical linearizations of the linear-regression
KFs (LRKFs) [9]. Certain LRKFs, such as the unscented KF
(UKF), have been considered for GNSS positioning [10], but
primarily for GNSS integration; that is, leveraging a GNSS
module outputting position information and not using the
measurements directly. One reason for this is that the higher-
order LRKFs scale poorly with the number of states in the
estimation model, a number that tends to be large in the
context of the GNSS positioning problem. However, [11]
showed that the LRKFs can be employed for problems with
linear substructure, making them suitable for the moment
approximations in sequential GNSS estimators.

We propose sequential maximum-likelihood estimators
using statistical linearization for the GNSS positioning prob-
lem. First, we discuss the conventional MILS method in a
recursive setting. We show that if the problem is to be solved
exactly, its implementation becomes computationally in-
tractable, with numerical complexity that grows significantly
in time. Second, we propose a relaxation of the original
problem by constraining past integer estimates, resulting in
a recursive MILS algorithm, maximizing a likelihood while
allowing the ambiguities to vary in time. Third, we extend
the algorithm to a nonlinear setting, employing either explicit
or statistical linearizations to evaluate the resulting moment
integrals. Contrary to [2], [5]–[7], the presented methods
require the storage of two different densities over the receiver
states and will, in the static linear setting, result in a relaxed
maximization of an associated log-likelihood cost.

Notation: Vectors are written as x with the ith element
denoted by xi. Similarly, matrices are typeset as A. The real
numbers are denoted by R and the integers by Z. The vector
1N ∈ RN is a column vector of ones, the matrix 0N×M ∈
RN×M is a zero matrix, IN ∈ RN×N is the identity matrix,
and ∥x∥2A = x⊤Ax. In addition, N (x|mx,Σxx) denotes a
Gaussian probability density function over x with mean mx

and covariance Σxx, following the notation in [12]. Random
variables (RVs) associated with a density are denoted by

¯
x ∼

p
¯
x(x), where the subscript of p is often omitted for brevity,

and E[
¯
x] =

∫
xp

¯
x(x)dx. Let (·)k be a variable at a time-step

k, (·)a|b a variable at a time a conditioned on information up
to and including b. Symmetric matrix entries whose values
are already evident, are indicated by ⋆.



II. PRELIMINARIES

In the GNSS literature, the state of a receiver, partitioned
into real-valued states xk ∈ Rm and integer ambiguities
nk ∈ Zn, is commonly inferred from a linear measurement
model with Gaussian noise

¯
ek ∼ N (ek|0,Rk), denoted by

¯
yk = Hkxk +Gknk +

¯
ek ∈ Rp. (1)

Commonly, inference is done by maximizing the measure-
ment log-likelihood over the parameters xk,nk. That is, if

N (yk|Hkxk +Gknk,Rk), (2)

we seek to solve the weighted MILS problem on the form

argmin
xk∈Rm,nk∈Zn

∥yk −Hkxk −Gknk∥2R−1
k

. (3)

As Rk = R
⊤

k ≻ 0, take Rk = LL⊤ and define the linear
maps Ak = L−1

k Hk,Bk = L−1
k Gk and ȳk = L−1

k yk.
Then (3) can be equivalently written as an MILS problem

argmin
xk∈Rm,nk∈Zn

∥ȳk −Akxk −Bknk∥2I . (4)

If we momentarily relax the above problem by lifting the
integer constraint, with x̂f

k ∈ Rm, and n̂f
k ∈ Rn denoting

the relaxed estimates, these are given by the normal equations

(A⊤
k Ak)x̂

f
k + (A⊤

k Bk)n̂
f
k = A⊤

k ȳk, (5a)

(B⊤
k Ak)x̂

f
k + (B⊤

k Bk)n̂
f
k = B⊤

k ȳk. (5b)

If (i) the term A⊤
k Ak is invertible, and (ii) there exists a

solution to the normal equations in (5), then by completion
of squares, the ordinary MILS problem in (4) can be written

argmin
xk∈Rm,nk∈Zn

∥xk − x̂k∥2Ξ−1
k

+ ∥nk − n̂f
k∥

2
Ψ−1

k
, (6)

as originally pointed out in [13], where

Ξk = (A⊤
k Ak)

−1, (7a)

Ψk = (B⊤
k (I −AkΞkA

⊤
k )Bk)

−1, (7b)

n̂f
k = ΨkB

⊤
k (I −AkΞkA

⊤
k )ȳk, (7c)

x̂k = ΞkA
⊤
k (ȳk −Bknk). (7d)

The existence of (7b) is implied by (i) and (ii), as seen by the
Shur complement. Thus, given (i) and (ii), we can compute
nI

k directly from the second term in (6), and then evaluate
the estimate x̂k that zeros the first term in (6). Instead of
dealing with the original (3), we only require the solution to

nI
k = argmin

nk∈Zn

∥nk − n̂f
k∥

2
Ψ−1

k

, (8)

which is NP-hard and therefore commonly solved using
heuristics, typically involving de-correlation methods, such
as the LAMBDA method in [3] or the MR-reduction in [14],
and various integer search methods, such as the shrinking
search-space or bootstrap methods outlined in [1] and [14].

III. PITFALLS WITH RECURSIVE ESTIMATORS

When considering recursive filtering, the integer-fixation
(de-correlation and integer search) is often introduced heuris-
tically. Part of the reason is that (8) is NP-hard, and needs
to be solved over all prior ambiguities, therefore growing in
size with time. For a recursive LS (RLS) scheme for the case
of a static receiver position, if we define

Ȳ k =

[
Ȳ k−1

ȳk

]
, Ak =

[
Ak−1

Ak

]
, Bk =

[
Bk−1 0
0 Bk

]
,

Nk =

[
Nk−1

nk

]
, N I

k =

[
N I

k−1

nI
k

]
, N̂f

k =

[
N̂f

k−1

n̂f
k

]
,

using (6) and (7), it can be shown that the solution to

{x̂k,N
I
k} = argmin

xk∈Rm,Nk∈Zkn

∥Ȳ k −Akxk − BkNk∥2I , (9)

at time step k can lead to a revision of previous integer
ambiguity estimates. To compute the solution to (9) exactly,
we herefore need to solve increasingly larger ILS problems.

With some relaxations, we can approximately maximize
the measurement likelihood in (9) by solving for the state
distribution and integer ambiguity hypothesis at time step
k. This is referred to as constrained RMILS, and is akin
computing the most likely estimate conditioned on a past
ambiguity trajectory. However, the resulting estimates will
only approximately minimize the true MILS problem.

A. A Bayesian intepretation

The resulting algorithm can be given a Bayesian interpre-
tation which will be useful in deriving the recursive filters.
To start, we assume the solution to the relaxed LS-problem

argmin
xk−1∈Rm,Nk−1∈Rn(k−1)

∥Ȳ k−1 −Ak−1xk−1 − Bk−1Nk−1∥2I

is known at time step k−1 given the information Ȳ k−1. For
this discussion, we are only interested in the distribution of
this relaxed state estimate xf

k−1,

p(xf
k−1|Ȳ k−1) = N (xf

k−1|m
xf

k−1,Σ
xfxf

k−1 ). (10)

Using (10) as a prior for the real-valued state estimate at k,
and no prior for the unconstrained ambiguities at k, we solve

argmin
xk∈Rm,nk∈Rn

∥ȳk −Akxk −Bknk∥2I +∥xk −mxf

k−1∥2(Σxfxf
k−1

)−1
,

(11)
yielding, through the normal equations (5), a solution

p(xf
k ,n

f
k |Ȳ k)=N

([
xf
k

nf
k

]∣∣∣[mxf

k|k
mnf

k|k

]
,

[
Σxfxf

k|k Σxfnf

k|k

⋆ Σnfnf

k|k

])
.

(12)
If we are only interested in solving for the ambiugities at
time step k, we can solve

nI
k = argmin

nk∈Zn

∥nk −mnf

k|k∥
2

(Σnfnf

k|k )−1
. (13)

With this new integer hypothesis, we seek to evaluate the dis-
tribution of the state conditioned on all prior measurements
and integer ambiguities, p(xk|Ȳ k,N

I
k). It is difficult to use



the density in (12) for this purpose, as it is only conditioned
on the measurements and not prior ambiguity hypotheses.
Instead, we can recursively update a separate distribution.
We introduce an integer constrained measurement, as

z̄k = ȳk −Bkn
I
k ∈ Rp, (14)

and let Z̄k = (z̄⊤
1 , ..., z̄

⊤
k )

⊤. This leads to

p(xk|Z̄k−1) = N (xk|x̂k−1,Ξk−1), (15)

where Ξk can be computed recursively as

Ξk = Ξk−1−Ξk−1A
⊤
k (I+AkΞk−1A

⊤
k )

−1AkΞk−1. (16)

Given the measurement equation with a fixed integer ambi-
guity, we can form a joint one-step prediction

p(xk, z̄k|Z̄k−1) = (17)

N

([
xk

z̄k

] ∣∣∣∣∣
[
mx

k|k−1

mz
k|k−1

]
,

[
Ξk−1 Ξk−1A

⊤
k

⋆ I +AkΞk−1A
⊤
k

])
which, if conditioned on the constrained measurement z̄k,
yields the posterior distribution

p(xk|Z̄k) = N (xk|x̂k,Ξk). (18)

Thus, the approximate recursive solution to (9), when fixing
the ambiguity hypotheses, has a Bayesian interpretation and
requires the storage and recursive updating of two related
but separate densities, p(xf

k ,n
f
k |Ȳ k) and p(xk|Z̄k).

Remark 1 If we intend to approximately solve the problem
defined by the cost in (9), with the assumption that we do not
revise old ambiguity hypotheses, then this equates to storing
two separate state estimate distributions; one for the solution
of the relaxed problem, which is conditioned only on the
measurements, p(xf

k ,n
f
k |Ȳ k), and one for the approximate

constrained problem, conditioned on all measurements and
prior integer ambiguities, p(xk|Z̄k).

Next, we use the above estimator as inspiration when
deriving associated recursive filtering algorithms in the non-
linear setting, with dynamics and process noise, which will
differ from the methods by which the ambiguity states are
fixed in conventional GNSS filters. The propagation of both
p(xf

k ,n
f
k |Ȳ k) and p(xk|Z̄k) is essential to recover the

optimal solution to the relaxed problem in the linear setting.

IV. FILTER FORMULATIONS
Given the Bayesian interpretation of the relaxed RMILS

estimator, we extend the algorithm to a nonlinear Gaussian
filtering setting using two different moment approximations:
the first-order Taylor expansions in the EKF, and the statis-
tical linearizations in the LRKFs.

A. Moment Approximations
In nonlinear filtering, a common way of approximating

the moments of the output
¯
o of a generic function g, given

a Gaussian input
¯
i ∼ p

¯
i(i) = N (i|mi,Σii), is to explicitly

linearize the function g about mi, with

g(i) ≈ g(mi) +G(i−mi), G =
∂g(i)

∂i

∣∣∣
i=mi

. (19)

The joint distribution of the output
¯
o = g(

¯
i) and input

¯
i can

be approximated in its first two moments by

p
¯
i
¯
o(i,o) ≈ N

([
i
o

] ∣∣∣ [mi

mo

]
,

[
Σii Σio

⋆ Σoo

])
, (20)

with the unknown moments in (20) given by

mo ≈ g(mi), Σio ≈ΣiiG⊤, Σoo ≈GΣiiG⊤. (21)

Remark 2 In the context of a nonlinear GNSS measurement
equation,

¯
y = h(

¯
x) + G

¯
n +

¯
e, with Gaussian noise

¯
e ∼

N (e|0,R), we could take the input to be all of the system
states i = (x⊤,n⊤)⊤, and let the output be the measurement
vector,

¯
y =

¯
o = g(

¯
i) +

¯
e. Assuming a Gaussian prior over

the inputs, that the inputs and the noise are not correlated,
the moments of the joint p

¯
x,

¯
n,

¯
y(x,n,y) by (21) are then

my =mo, Σiy =Σio, Σyy =Σoo +R. (22)

An alternative to the explicit linearization in Remark 2 is
the statistical linearization, where the moment integrals

mo =

∫
RI

g(i)N (i|mi,Σii)di, (23)

Σio =

∫
RI

(i−mi)(g(i)−mo)⊤N (i|mi,Σii)di,

Σoo =

∫
RI

(g(i)−mo)(g(i)−mo)⊤N (i|mi,Σii)di,

are approximated by evaluating g in a set of weighted
integration points, P = {(w(i), ξ(i))}K(I)

i=1 , where I =
dim(i). This point set uniquely defines the various LRKFs,
encompassing the unscented transform in [15], the spherical
cubature rules in [16], and the Gauss-Hermite integration
rules in [12]. The resulting finite-sum approximations of (23)
are accurate to higher orders than the first-order approxima-
tion in (21), but the number of required integration points
K(I) often scales super-linearly or even exponentially in the
number of input dimensions, I (c.f. [12]). However, [11]
noted that linear substructure can be exploited to drastically
decrease the number of integration points. If the measure-
ment equation is be linear in a majority of the states, we
evaluate the integrals in (23), using Proposition 1 in [11].

Remark 3 Consider a nonlinear GNSS measurement equa-
tion,

¯
y = h(

¯
x) + G

¯
n +

¯
e, with Gaussian noise

¯
e ∼

N (e|0,R). Decompose the real-valued states x into a non-
linear xn and a linear part, xl, such that x = (xn⊤,xl⊤)⊤

with h(x) = hn(xn)+H lxl. Let i = (x⊤,n⊤)⊤ and define

y = h(x) +Gn+ e = Tg(i) + e, (24)

where

T =
[
I I

]
, o = g(i) =

[
hn(xn)

H lxl +Gn

]
. (25)

Applying Proposition 1 in [11], the moments in (23) can
be computed given any LRKF, but now in K(dim(xn))
function evaluations instead of K(dim(i)) evaluations. The
approximate moments of p

¯
x,

¯
n,

¯
y(x,n,y) are then given by

my=Tmo, Σxy=ΣxoT⊤, Σyy=TΣooT⊤+R. (26)



B. Cycle slips and ambiguity dynamics

The integer ambiguities in the carrier-phase measurements
need consideration when developing the filters. They likely
remain constant over long periods of time before single
ambiguities suddenly “jump” to a new integer values during
a cycle slip event. This behavior can be modeled as a dynam-
ical system driven by a special discrete random walk (here
referred to as integer noise), an approach that differs from
the modeling in [5], [6], where the ambiguities are assumed
constant in time in the prediction model. To capture the
ambiguity dynamics, consider a discrete stochastic process
that with probability b ∈ [0, 1] “jumps”, attaining a random
value drawn from a uniform distribution over the integers on
the interval I = [−a, a] ⊂ Z, and with probability 1 − b is
zero. Let

¯
s ∈ I ⊂ Z be an RV with the associated density

J (s|a, b) = p
¯
s(s) =

{
(1−b)δ(s−si) for si =0
b
2aδ(s−si) for si ∈ I\{0}

. (27)

where δ denotes Dirac’s delta function. In the multivariate
setting, the jumps are independent in each dimension, and
on rectangular intervals about the origin defined by the
corresponding elements of a vector a ∈ Rn with jump
probabilities defined by the elements of a vector b ∈ [0, 1]n.
Here, the noise is a RV

¯
s ∈ [−a1, a1]×· · ·×[−an, an] ⊂ Zn,

with the associated probability density function (PDF),

¯
s ∼ J (s|a, b) = p

¯
s(s) =

n∏
j=1

J (sj |aj , bj). (28)

Using (28), we model the integer time-evolution

¯
nk+1 =

¯
nk +

¯
sk,

¯
sk ∼ J (sk|a1, bh1). (29)

where h > 0, which implies a probability of an ambiguity
jumping as b per ambiguity per time unit. The integer noise
PDF in (27) and a realization of the jump process in (29) is
used to generate the data in Sec. V.

C. Cycle-Slip Detection

Given ambiguity biases that evolve by (29), it is beneficial
to capture the jump behavior in the ambiguity priors, as
opposed to (11) which incorporates no such prior. One
approach is to detect when a cycle slip occurs and adapt
the priors for the relaxed estimation problem accordingly.
The detection of the cycle slips can be done by considering
some true state xk and integer ambiguity nk, and an estimate
distribution p(xf

k ,y
f
k) with zero mean noise

¯
ek, where

¯
yk = h(xk) +Gknk +

¯
ek (30a)

¯
yf
k = h(

¯
xf
k) +Gk

¯
nf

k +
¯
ek (30b)

By defining δyk = E[
¯
yk −

¯
yf
k ], δnk = E[nk −

¯
nf

k ],
and assuming that all of the variation in the predicted
measurement mean is due to the cycle slips, we obtain

δyk = Gkδnk ⇔ δnk = (G⊤
k Gk)

−1Gkδyk. (31)

Note that for GNSS measurement equations, the matrix G
generally has full column rank and the left-inverse in (31)

always exists. If any dimension of δnk is sufficiently far
away from the origin, determined by a threshold d, we
ascribe this to the presence of a cycle slip. In the event of
such cycle slips, we are likely to see significant changes in
the corresponding dimension of nk between consecutive time
steps, and the uncertainty in the prediction should therefore
increase to reflect the parameter a of the integer jump noise.
We capture this by defining an incidence vector ck, with

ci,k =

{
1 if |δni,k| > d

0 otherwise
, (32)

and consider a prediction model in the ambiguity biases of
the relaxed filter from time step k − 1 to k as

nk = nk−1 +
¯
vk−1, (33a)

¯
vk−1 ∼ N (vk−1|0,V k−1), (33b)

V k−1 = diag(ckσ
2
jump + (1− ck)σ

2
stay), (33c)

where the variances σ2
jump reflect the support of the integer

jump process a, and σ2
stay is a regularizing term, modeling

uncertainty in the relaxed estimate ambiguity dynamics when
no cycle slip is detected. As a rule of thumb, we suggest
letting σjump ≈ a and 0.01 < σstay < 0.4.

D. Filters with adaptive ambiguity priors
Given the Bayesian interpretation of the RMILS algorithm

in Sec. III, we now extend the algorithm to the nonlinear fil-
tering setting using the moment approximations in either (21)
or (23) to evaluate the joint distributions in (12) and (17).
Simultaneously, we incorporate the adaptive ambiguity priors
for the relaxed estimation problem, which reflect the behavior
of the integer jump process in (29). Consider the model

¯
xk+1 = fk(¯

xk) +
¯
wk,

¯
wk ∼N (wk|0,W k), (34a)

¯
nk+1 =

¯
nk +

¯
vk,

¯
vk ∼N (vk|0,V k), (34b)

¯
yk = hk(

¯
xk) +Gk

¯
nk+

¯
ek,

¯
ek ∼N (ek|0,Rk), (34c)

where the ambiguities evolve by a random walk with noise
chosen by the cycle-slip detection in Sec. IV-C. The goal is
to design an estimator based on the Bayesian interpretation
in Sec. III-A, which if fk(xk) = xk, hk(xk) = Hkx,
and W k = 0, V k → ∞ equates to the constrained RMILS
scheme in Sec. III, hence approximately solving (9).

Assume knowledge of a solution to the relaxed estimation
problem at a time k − 1 (i.e., with real-valued ambiguities),
p(xf

k−1,n
f
k−1|Y k−1), as an approximate Gaussian density,

N

([
xf
k−1

nf
k−1

]∣∣∣∣∣
[
mxf

k−1|k−1

mnf

k−1|k−1

]
,

[
Σxfxf

k−1|k−1 Σxfnf

k−1|k−1

⋆ Σnfnf

k−1|k−1

])
. (35)

We can propagate (35) forward through the dynamics
in (34a) yielding p(xf

k ,n
f
k |Y k−1), and compute the joint

PDF of predicted measurement and states through (34c),

p(xf
k ,n

f
k ,yk|Y k−1) =

N


 xf

k

nf
k

yk

∣∣∣∣∣
m

xf

k|k−1

mnf

k|k−1

my
k|k−1

,
Σ

xfxf

k|k−1 Σxfnf

k|k−1 Σxfy
k|k−1

⋆ Σnfnf

k|k−1 Σnfy
k|k−1

⋆ ⋆ Σyy
k|k−1


, (36)



for example, using the explicit linearization in Remark 2.
From Remark 3, the moments in (36) can also be evaluated
using statistical linearization in [11]. Conditioning on the
measurement yields the relaxed solution at a time step k as
an approximate Gaussian density with

p(xf
k ,n

f
k |Y k)=N

([
xf
k

nf
k

]∣∣∣∣∣
[
mxf

k|k
mnf

k|k

]
,

[
Σxfxf

k|k Σxfnf

k|k

⋆ Σnfnf

k|k

])
.

We can then use the posterior in the relaxed estimation
problem, to find the integer ambiguity hypotheses by solving
the ILS problem similar to (13),

nI
k = argmin

nk∈Zn

∥nk −mnf

k|k∥(Σnfnf

k|k )−1 . (37)

In this paper, we use the LAMBDA method [3] and the
sequential bootstrapping method [1]. Based on the integer
hypotheses, we form a constrained measurement by

zk = yk −Gkn
I
k ∈ Rp. (38)

With p(xk−1|Zk−1) ≈ N (xk−1|mx
k−1|k−1,Σ

xx
k−1|k−1) and

mx
k−1|k−1,Σxx

k−1|k−1 known from the previous time-step,
this estimate is propagated through the dynamics in (34a)
to form the joint distribution between predicted state and
predicted integer constrained measurement through (34c), as

p(xk, zk|Zk−1)≈

([
xk

zk

]∣∣∣∣∣
[
mx

k|k−1

mz
k|k−1

]
,

[
Σxx

k|k−1 Σxz
k|k−1

⋆ Σzz
k|k−1

])
.

The moments of the joint distribution can again be com-
puted by a statistical linearization, from Remark 3. Finally,
through a Bayesian update, we evaluate p(xk|Zk) and output
mx

k|k and Σxx
k|k along with the integer hypotheses nI

k.
The method is summarized in Algorithm 1. The algorithm
using Remark 2 is referred to as the MI-EKF, and using
Remark 3 results in the MI-LRKF. Both algorithms become
the constrained RMILS algorithm in the linear static setting
if V k → ∞ and W k = 0 for all k.

V. NUMERICAL EXAMPLES

Consider a single-band GNSS receiver whose motion is
governed by a three-dimensional double integrator with a
position pR(t) ∈ R3 and velocities vR(t) ∈ R3, driven by a
random walk characterized by a variance α > 0. We consider
a total of N visible satellites, each of which is associated
with several biases. The biases are collected in θ(t) ∈ R3N ,
and are subject to a random walk with variance β > 0. The
real-valued state vector is xk = (pR

k

⊤
,vR

k

⊤
,θ⊤

k )
⊤. Zero-

order hold sampling with time-step h gives

¯
xk+1=

I hI 0
0 I 0
0 0 I


¯
xk+

¯
wk,

¯
wk∼N (wk|0,W k), (39)

where

W k =

(αh3/3)I3 (αh2/2)I3 0
(αh2/2)I3 αhI3 0

0 0 hβI3N

 . (40)

Algorithm 1: MI-EKF/LRKF, with adaptive priors.

Receive mxf

0|0,m
nf

0|0,Σ
xfxf

0|0 ,Σxfnf

0|0 ,Σnfnf

0|0 ,mx
0|0,Σ

xx
0|0

for k = 1 to K do
Receive yk

// Compute ambiguity prior
Compute ck using (32) and V k−1 using (33)
// Compute the unconstrained joint
Evaluate p(xf

k ,n
f
k ,yk|Y k−1) by Remark 2 or 3

// Condition on measurement
Evaluate p(xf

k ,n
f
k |Y k)

// Compute integer ambiguity hypotheses
nI

k = argmin
nk∈Zn

∥nk −mnf

k|k∥(Σnfnf

k|k )−1

// Compute constrained measurement
zk = yk −Gkn

I
k

// Compute constrained joint
Evaluate p(xk, zk|Zk−1) by Remark 2 or 3
// Condition on the constrained measurement
Evaluate p(xk|Zk)
Output x̂k = mx

k|k and nI
k

end

In addition to xk, we have a total of M = N−1 ambiguities
denoted nk ∈ ZM , which evolve by an multivariate integer
jump process according to (29), here characterized by a =
10 · 1M and the jump probabilities b = (0.01h) · 1M .

The satellite positions are pi ∈ R3, corresponding to the
GPS satellite system, and we assume a known static base
station located at pB ∈ R3 and 104 [m] from the initial
receiver position pR

0 , both on the Earth’s surface. We define
the Euclidean distance between satellite and receiver, the
single difference and double-difference operators as

ρiR,k = ∥pR
k − pi

k∥2, (41a)

∆i
BR(ρk) = ρiR,k − ρiB,k, (41b)

∇∆ij
BR(ρk) = ∆i

BR(ρk)−∆j
BR(ρk). (41c)

Let ρk = (∆1
BR(ρk), ...,∆

N
BR(ρk))

⊤ and define M =[
1 −I

]
. Hence, the double-difference measurements are

¯
yP
k = M

¯
ρk +M

¯
θI
k +M

¯
θP
k +

¯
ϵk, (42a)

¯
yΦ
k = M

¯
ρk + λ

¯
nk −M

¯
θI
k +M

¯
θΦ
k +

¯
ηk, (42b)

with zero-mean Gaussian noise terms
¯
ηk and

¯
ϵk. We estimate

the kinematic states pR
k and vR

k ; the double difference integer
ambiguities, nk ∈ ZM ; the single difference ionospheric
biases, θI

k ∈ RN ; the single difference code correction terms,
θP
k ∈ RN ; and the single difference phase correction terms,

θΦ
k ∈ RN . The states are not fully observable in (42a)

and (42b), and the reason for including the biases in this
manner is to facilitate the inclusion of satellite dependent
correction terms and modeled ionospheric biases (e.g., using
a slanted total electron count grid interpolation [8]), intro-
duced as a measurement on the associated bias. To facilitate
this, we model three additional measurement equations,

¯
yI
k =

¯
θI
k +

¯
rIk,

¯
yP
k =

¯
θP
k +

¯
rPk ,

¯
yΦ
k =

¯
θΦ
k +

¯
rΦk . (42c)



TABLE I
NOMINAL PARAMETERS USED IN THE SIMULATION

Parameter Value Parameter Value
h 0.1 σslip 10
α 0.01 σstay 0.05
β 0.01 σP 0.5
a 10 σΦ 0.01
b 0.05 σθ 0.01
λ 0.2 N 13

Fig. 1. Top three subplots: Mean positional estimate errors in the relaxed
solution (blue) and the integer constrained solution (red) when running the
MI-LRKF with a Spherical Cubature point set and adaptive ambiguity priors,
with an estimated 2σ-confidence interval. Bottom: Mean ambiguity estimate
error in the relaxed estimation problem and fixed integer hypothesis.

Collecting ek = (ϵ⊤k ,η
⊤
k , r

I
k, r

P
k , r

Φ
k )

⊤, we assume that

¯
ek ∼ N

ek
∣∣∣∣∣0,
2σ2

PMM⊤ 0 0

0 2σ2
ΦMM⊤ 0

0 0 σ2
θI3N

 ,

as is common in prior works [2], resulting in a model in (34),
with nominal parameters in Table I. Given (42), the cycle-slip
detection in (31) is well defined at all times. The synthetic
data are generated from the model in (34), but with the
integer ambiguity biases evolving in time by (29).

The resulting estimates of the MI-LRKF, with adaptive
ambiguity priors in Algorithm 1, using a point set corre-
sponding to the Spherical Cubature rule used to define the
CKF in [16] is shown in Fig. 1 in terms of the positional
estimate errors and their variances in the relaxed solution
(blue) and the constrained solution (red), as well as the mean
ambiguity estimate errors in the relaxed estimate density
(blue) and the fixed integer hypotheses (red).

Fixing the integer ambiguity biases using the dual density
MI-LRKFs outlined in Algorithm 1 with the adaptive ambi-
guity priors is a viable approach for the GNSS-positioning
problem. When studying the errors in Fig. 1, both the esti-
mate variance seems consistent with the mean error both in

the relaxed and constrained solutions, and the 12-dimensional
ambiguity hypotheses vector is estimated correctly after the
initial transient with the exception of deviations in single
dimensions occurring at three distinct time-steps, despite the
frequent occurrence of cycle slips in the synthetic data.

VI. CONCLUSIONS
We considered the GNSS positioning problem and devised

recursive filters equating to the constrained and approxi-
mately optimal solution to a maximum-likelihood problem
in the linear setting. We relaxed the original optimization
problem and considered the simultaneous propagation of two
separate densities over the real-valued states, one conditioned
on all prior measurements, and another conditioned on all
prior measurements and fixed integer ambiguity hypotheses.
We have (i) shown how to replace the explicit linearization
common in GNSS positioning with statistical linearization
in [11]. We have also (ii) devised a method of adapting
the prior of the relaxed ambiguity distribution based on a
modeled underlying integer jump process. We demonstrated
the approach in a filtering setup with synthetic data.
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